ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

1	1.0	INTRODUCTION AND DESCRIPTION	. 1
2	1.1	Purpose and Scope	. 1
3	1.2	Relationship to Other Documents	. 2
4	1.3	Functional Overview	
5	1.4	Flight Management Computer Description	
6	1.5	Interchangeability	. 4
7	1.5.1	General	
8	1.5.2	Interchangeability for the ARINC 702A Flight Management Computer System	
9	1.5.3	Generation Interchangeability Considerations	
10	1.6	Regulatory Approval	
11	1.7	Integrity and Availability	. 5
12	1.8	Reliability 5	_
13	1.9	Testability and Maintainability	
14	1.10	Flight Simulators	. 5
15	2.0	INTERCHANGEABILITY STANDARDS	. 7
16	2.1	Introduction	
17	2.2	Form Factor, Connectors, and Index Pin Coding	. 7
18	2.3	Standard Interwiring	. 7
19	2.4	Power Circuitry	. 7
20	2.4.1	Primary Power Input	
21	2.4.2	Power Control Circuitry	. 8
22	2.4.3	The AC Common Cold	
23	2.4.4	The Common Ground	
24	2.4.5	Batteries	
25	2.5	Standardized Signaling	
26	2.5.1	General Accuracy and Operating Ranges	
27	2.5.2	Resolution	
28	2.5.3	ARINC 429 Data Bus	
29	2.5.4	Standard "Open"	
30	2.5.5	Standard "Ground"	
31	2.5.6	Standard "Applied Voltage" Output	
32	2.5.7	Standard Discrete Input	
33	2.5.8	Standard Discrete Output	
34 25	2.5.9 2.5.10	Ethernet Interface	
35 36	2.5.10	Environmental Conditions	
30 37	2.0 2.7	Cooling 11	
38	2.7	Weights 12	
39	2.0	Grounding and Bonding	12
40	3.0	SYSTEM DESIGN CONSIDERATIONS	
41	3.1	System Configurations	
42	3.1.1	Single System Configuration	
43	3.1.2	Single System/Dual MCDU Configuration	
44 45	3.1.3	Dual System Configuration	
45 46	3.1.4	Other Configurations.	
46 47	3.2	Certification Design Considerations	
47 ⊿o	3.2.1	Partitioning Considerations	
48 40	3.2.2	Operational Functional Independence	
49 50	3.2.3 3.3	System Response to Power Interrupts	
50	5.5	System Resputse to Fower Interrupts	10

ARINC STANDARD 702A TABLE OF CONTENTS

51	3.4	FMC Performance	16
52	3.4.1	Accuracy, Integrity, and Continuity	
53	3.4.2	Response Time	16
54	3.5	Dual System Design Considerations	17
55	4.0	FLIGHT MANAGEMENT FUNCTIONS	19
56	4.1	Introduction	
57	4.2	Functional Initialization and Activation	
58	4.2.1	Navigation Sensor Initialization	
59	4.2.1.1	IRS Initialization	
60	4.2.1.2	IRS Heading Set	
61	4.2.1.3	GNSS Initialization	
62	4.2.2	Flight Plan Initialization and Activation	
63	4.2.3	Performance and Predictions Initialization	
64	4.2.4	Lateral and Vertical Guidance Activation	
65	4.2.5	Use of Data Link for System Initialization	
66	4.3	Functional Description	
67	4.3.1	Navigation	
68	4.3.1.1	Multi-Sensor Navigation	
69	4.3.1.2	Navigation Modes	
70	4.3.1.3	RNP-Based Navigation	
71	4.3.1.3.1	RNP Determination	
72	4.3.1.3.1.		
73	4.3.1.3.1.		
74	4.3.1.3.1.	•	
75	4.3.1.3.1.	5	
76	4.3.1.3.2	Determination of Navigation System Performance	
77	4.3.1.3.3	Navigation Alerting and Display	
78	4.3.1.4	Navaid Data	
79	4.3.1.5	Crew Controlled Navigation Options	
80	4.3.1.6	VHF Radio Tuning	
81	4.3.1.6.1	Automatic Station Selection	
82	4.3.1.6.2	Navaid Reasonableness Determination	
83	4.3.1.7	Real Time Clock	
84	4.3.2	Flight Planning	
85	4.3.2.1	Flight Plan States	
86	4.3.2.2	Navigation Data Base	
87	4.3.2.3	Supplemental and Temporary NDB Creation and Management	30
88	4.3.2.3.1	PBD Waypoints	31
89	4.3.2.3.2	PB/PB Waypoints	
90	4.3.2.3.3	Along Track Fix Waypoints	
91	4.3.2.3.4	Lat/Long Waypoints	
92	4.3.2.3.5	Lat/Long Crossing Waypoints	
93	4.3.2.3.6	Unnamed Airway Intersection	31
94	4.3.2.3.7	Fix Intersection Waypoints	
95	4.3.2.3.8	Runway Extension Waypoints	
96	4.3.2.3.9	Dir-To Abeam Waypoints	
97	4.3.2.3.10	21 VI	
98	4.3.2.3.1		
99	4.3.2.4	Lateral Flight Planning	
100	4.3.2.4.1	Flight Plan Construction	
101	4.3.2.4.2	Terminal Area Procedures	

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

102	4.3.2.4.3	Flight Plan Editing	34
103	4.3.2.4.3.1	Direct/Intercept Option	34
104	4.3.2.4.3.2	Entry of Waypoints	34
105	4.3.2.4.3.3	Flight Plan Linking	34
106	4.3.2.4.3.4	Flight Plan Delete	34
107	4.3.2.4.3.5	Procedure Selection	34
108	4.3.2.4.3.6	Holding Patterns (HM Leg)	35
109	4.3.2.4.3.7	Flight Plan Editing using Data Link	35
110	4.3.2.4.3.8	Flight Plan Editing using a Pointing Device	
111	4.3.2.4.4	Flight Planning Support for ATM	35
112	4.3.2.4.5	Missed Approach Procedures	36
113	4.3.2.4.6	Lateral Offset Construction	36
114	4.3.2.4.7	Magnetic Variation	37
115	4.3.2.5	Vertical Flight Planning	38
116	4.3.2.5.1	Wind, Temperature, and Atmospheric Model	39
117	4.3.2.5.2	Waypoint Altitude Constraints	
118	4.3.2.5.3	Waypoint Speed Constraints	42
119	4.3.2.5.4	Temperature Compensation	43
120	4.3.3	Lateral and Vertical Guidance	
121	4.3.3.1	Lateral Guidance and Path Construction	46
122	4.3.3.1.1	Lateral Reference Path Construction	46
123	4.3.3.1.2	Lateral Leg Transitions	47
124	4.3.3.1.2.1	Fly-By Turns	
125	4.3.3.1.2.2	Fly-Over Turns	
126	4.3.3.1.2.3	Fix Radius Transitions (FRT)	
127	4.3.3.1.3	Special Lateral Path Construction	
128	4.3.3.1.4	Lateral Guidance Roll Command	50
129	4.3.3.1.5	Lateral Guidance Output Parameters	50
130	4.3.3.1.6	Lateral Capture Path Construction	50
131	4.3.3.1.7	Localizer/MLS Capture	50
132	4.3.3.1.8	Earth Reference Model	50
133	4.3.3.2	Vertical Guidance and Trajectory Predictions	50
134	4.3.3.2.1	Trajectory Predictions	50
135	4.3.3.2.1.1	Takeoff Phase Predictions	53
136	4.3.3.2.1.2	Climb Phase Predictions	53
137	4.3.3.2.1.3	Cruise Phase Predictions	
138	4.3.3.2.1.4	Descent Phase Path Construction and Predictions	55
139	4.3.3.2.1.4.1	I Descent Phase Path Construction	56
140	4.3.3.2.1.4.2		
141	4.3.3.2.1.5	Approach Phase Path Construction and Predictions	62
142	4.3.3.2.1.6	Missed Approach Phase Prediction	
143	4.3.3.2.2	Vertical Guidance	65
144	4.3.3.2.2.1	Climb Phase Operation	66
145	4.3.3.2.2.2	Cruise Phase Operation	66
146	4.3.3.2.2.3	Descent Phase Operation	67
147	4.3.3.2.2.4	Selected Altitude Compliance	
148	4.3.3.2.2.5	Altimeter Barometric Correction for Terminal Area Operations	68
149	4.3.3.2.2.6	Altitude Constraints	
150	4.3.3.2.2.7	Speed Restrictions	
151	4.3.3.2.3	Estimated Time of Arrival (ETA)	
152	4.3.3.2.4	Required Time of Arrival (RTA)	
153	4.3.3.2.5	Time of Arrival Control (TOAC)	75

ARINC STANDARD 702A TABLE OF CONTENTS

154	4.3.3.3	Three-Dimensional RNAV Approach	76
155	4.3.4	Performance Calculations Function	76
156	4.3.4.1	Performance Modes	76
157	4.3.4.1.1	Climb Mode	77
158	4.3.4.1.2	Cruise Mode	77
159	4.3.4.1.3	Descent Mode	77
160	4.3.4.2	Maximum and Optimum Altitudes Calculation	77
161	4.3.4.3	Trip Altitude Calculations	
162	4.3.4.4	Alternate Destinations Calculation	78
163	4.3.4.5	Step Climb/Descent	
164	4.3.4.6	Cruise Climb	
165	4.3.4.7	Vertical Advisory Calculations	
166	4.3.4.8	Thrust Limit Data Calculations	
167	4.3.4.9	Takeoff Reference Data	
168	4.3.4.10	Approach Reference Data	
169	4.3.4.11	Reserve Fuel Calculation	
170	4.3.4.12	Engine-Out Performance Calculation	
171	4.3.4.13	Other Predictions	
172	4.3.4.13.1	Maximum Range Computation	
173	4.3.4.13.2	Maximum Endurance Computation	
174	4.3.4.13.3	Descent Energy Circles	
175	4.3.5	Printer Functions	
176	4.3.6	AOC Function	80
177	4.3.7	ATS Datalink	
178	4.3.7.1	Future Air Navigation System 1/A (FANS 1/A)	82
179	4.3.7.1.1	Air Traffic Services Facilities Notification (ÁFN)	
180	4.3.7.1.2	Controller/Pilot Data Link Communication (CPDLC)	
181	4.3.7.1.3	Automatic Dependent Surveillance - Contract (ADS-C)	
182	4.3.7.2	Link 2000+	
183	4.3.7.2.1	Context Management (CM)	
184	4.3.7.2.2	Controller Pilot Data Link Communication (CPDLC)	
185	4.3.7.3	Baseline 2 (B2)	
186	4.3.7.3.1	Context Management (CM)	
187	4.3.7.3.2	Controller Pilot Data Link Communication (CPDLC)	
188	4.3.7.3.3	Automatic Dependent Surveillance (ADS-C)	
189	4.3.8	Airport Surface Guidance	
190	4.3.9	Terrain and Obstacle Data	
191	4.3.10	Electronic Map Interfaces	
192	4.3.10.1	Navigation Display Interface	
193	4.3.10.2	Vertical Situation Display Interface	
194	4.3.11	CMU Interface	
195	4.3.12	Predictive Receiver Autonomous Integrity Monitoring (RAIM)	
196	4.3.13	Precision-Like Approach Guidance	
197	4.3.13.1	LP/LPV Approach Guidance	
198	4.3.13.2	FMS Landing System (FLS)	
199	4.3.14	Integrity Monitoring and Alerting	
200	4.3.14.1	Sensor Status	
201	4.3.14.2	System Status Alert	
202	4.3.14.3	Self-Test	
203	4.3.14.4	Failure Response	92
204	4.4 Tr	raining Simulator Support Functions	

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

205	5.0	STANDARD INTERFACES	. 93
206	5.1	FMC Digital Data Input Ports	. 93
207	5.1.1	VOR Input Ports	
208	5.1.2	DME Input Ports	
209	5.1.3	ILS/MMR Input Port	
210	5.1.4	Air Data Input Ports	
211	5.1.5	IRS/AHRS Input Ports	
212	5.1.6	GNSS Input Ports	
213	5.1.7	Flight Control System Input Ports	
214	5.1.8	MCDU Input Ports	
215	5.1.9	Data Loader Input Ports (ARINC 615)	94
216	5.1.10	Data Link Input Ports	
217	5.1.11	Intersystem Data Input Port	
218	5.1.12	Propulsion/Configuration Data Input Ports	
219	5.1.12	Electronic Flight Instrument System Input Ports	
220	5.1.13	Printer 95	. 94
	-		05
221	5.1.15	Digital Clock Input	
222	5.1.16	Maintenance Input	
223	5.1.17	WBS Input	
224	5.1.18	Simulator Input	
225	5.1.19	Pointing Device	
226	5.1.20	ASAS Input	
227	5.1.21	Reserved Ports for Growth Inputs	
228		FMC Digital Data Outputs	
229	5.2.1	FMC Intersystem Output	
230	5.2.2	General Data Output	
231	5.2.3	Primary Display Data Output	
232	5.2.4	MCDU Output Ports	
233	5.2.5	Data Loader Output	. 96
234	5.2.6	Data Link Output Ports	. 96
235	5.2.7	Autothrottle (Reserved)	. 96
236	5.2.8	Printer 96	
237	5.2.9	Onboard Maintenance	
238	5.2.10	Programmable Data Output	. 96
239	5.2.11	Simulator	
240	5.2.12	Aircraft State and Intent Path Output (Trajectory Bus)	. 97
241	5.2.12.1	Aircraft State Data	
242	5.2.12.1.1	A429 Aircraft State	. 97
243	5.2.12.1.2		
244	5.2.12.2	Trajectory Intent Data	
245	5.2.12.2.1		
246	5.2.12.2.2		
247	5.2.13	Reserved Ports for Growth	
248	5.3	Discrete Inputs and Outputs	
249		FMC/FMC Intersystem Communications	
250		Ethernet Interface (ARINC 646)	
200			
251		CONTROL DISPLAY UNIT INTERFACE	111
252		General 111	
253	6.2	Standby Navigation	111
254	6.3	Self-Test 111	
255	6.4	MCDU Annunciators	111

ARINC STANDARD 702A TABLE OF CONTENTS

256 257	6.5 6.6	MCDU Alerting MCDU Color and Font Usage	
258	7.0	ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE	113
259	7.1	Introduction	113
260	7.2	FMC Outputs to EFI	113
261	7.3	FMC Inputs from EFI	113
262	7.4	EFI Design Features	
263	7.4.1	Map 113	
264	7.4.2	Plan 113	
265	7.4.3	HSI Mode	114
266	7.4.4	Map Scales	114
267	7.4.5	Map Projection	
268	7.4.6	Option Selection	
269	7.4.7	Symbol Repertoire	
270	7.4.8	EFI Data Conditioning	
271	7.4.9	Pointing Device	
272	7.4.10	Surface Map Mode	
273	7.5	FMC Design Features	
274	7.5.1	Flight Plans	
275	7.5.2	Map Display Edit Areas	
276	7.5.3	Pointing Device	
277	7.6	Interface Design	
278	7.6.1	General	
279	7.6.2	Map Data Updating	
280	7.6.3	Background Data Prioritizing	
281	7.6.4	Background Data Editing	
282	7.6.5	Mode Change Response	
283	7.6.6	Map Translation and Rotation Data	
284	7.6.7	Resolution	
285	7.6.8	Interface Data Errors	
286	7.6.9	FMC-to-EFI Data Transfer Protocol	
287	7.6.9.1	Data Block Format	
288	7.6.9.2	Data Type Word Formats	
289	7.6.10	EFI-to-FMC Data Transfer	
290 291	8.0 8.1	COMMUNICATIONS MANAGEMENT UNIT INTERFACE	121
292	9.0	DATA BASE STORAGE CONSIDERATIONS	122
293	9.1	Introduction	122
294	9.2	Navigation Data Base	122
295	9.3	Airline Modifiable Information (AMI) Data Base	
296	9.4	Performance Data Base	
297	9.5	Magnetic Variation Data Base	
298	9.6	Terrain and Obstacle Data	
299	9.7	Airport Surface Map Data	126
300	9.8	Configuration Data Base	
		•	
301	10.0	BUILT-IN TEST AND MAINTENANCE PROVISIONS	
302	10.1	General Discussion	
303	10.2	Fault Detection and Reporting	
304	10.2.1	General	
305	10.2.2	Self-Monitoring	127

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

306	10.2.3 Debug	ging Tools	128
307	10.2.4 Failure	e Rate Monitor	128
308	10.2.5 Fault I	Vlessaging	128
309		aintenance	
310	10.3.1 Return	n to Service Testing	128
311		ammable Data Bus Interface	
312	10.3.3 Data L	_oading	129
313	10.3.4 Cross	Loadable Software	129
314	10.3.5 Data L	oading Fault Recovery	130
315	10.4 Provision	s for Automatic Test Equipment	130
316	10.4.1 Gener	al	130
317	10.4.2 ATE T	esting	130
318	ATTACHMENTS		
319	ATTACHMENT 1	FLIGHT MANAGEMENT SYSTEM	
320	ATTACHMENT 2	FMC CONNECTOR AND INTERWIRING	133
321	ATTACHMENT 3	147	
322	ATTACHMENT 4	DATA INPUT/OUTPUT FMC OUTPUTS	
323	ATTACHMENT 5	ENVIRONMENTAL TEST CATEGORIES	
324	ATTACHMENT 6	FMC/EFI INTERFACE	
325	ATTACHMENT 7	FMC/DATALINK INTERFACE	
326	ATTACHMENT 8	CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES	262
327	APPENDICES		
328	APPENDIX A	REFERENCE DOCUMENTS	269
329	APPENDIX B	ACRONYMS	
330	APPENDIX C	GLOSSARY	276
331			
331			

332

1.0 INTRODUCTION AND DESCRIPTION

333 1.0 INTRODUCTION AND DESCRIPTION

334 **1.1 Purpose and Scope**

365 366

367 368

369

370 371

372 373

- 335 This document sets forth the characteristics of an advanced Flight Management 336 Computer System (FMS) specifically designed for installation in new generation aircraft. The system is also intended for retrofit in aircraft that presently use ARINC 337 700 series equipment. The advanced FMS is expected to provide expanded 338 functional capability beyond that defined in ARINC Characteristic 702, and support 339 340 the necessary requirements for operation in the future Communication, Navigation, 341 and Surveillance/Air Traffic Management (CNS/ATM) operational environment. As 342 described in ARINC Report 660B, this includes extensive use of Global Navigation 343 Satellite System (GNSS), Required Navigation Performance (RNP) based 344 navigation, air to ground data link for communications and surveillance, and the associated crew interface control/display capabilities. The functional requirements 345 defined herein also apply to a Flight Management Function (FMF) in an integrated 346 347 modular avionics (IMA) architecture with software partitions.
- 348The ICAO Future Air Navigation System (FANS) Standards and Recommended349Practices (SARPs) for CNS/ATM are currently evolving and are expected to350continue to evolve. The requirements included in this document are intended to351support performance based navigation (PBN) and trajectory-based operations352(TBO) and be consistent with:
- 353 ICAO Doc 9613: Performance-Based Navigation Manual (PBN Manual)
- 354RTCA DO-236(): Minimum Aviation System Performance Standards: Required355Navigation Performance for Area Navigation (RNP MASP), and
- 356RTCA DO-283(): Minimum Operational Performance Standards for Required357Navigation Performance for Area Navigation (RNP MOPS).
- 358This document does not characterize the requirements for a Control Display Unit359(CDU). While the CDU is included in the original version of ARINC Characteristic360702, the capabilities of the Multi-Purpose Control Display Unit (MCDU) are361separately defined in ARINC Characteristic 739.
- 362This document defines the functional and interface characteristics of the FMS and363assumes that the appropriate MCDU characteristics are defined separately in364ARINC Characteristic 739A or elsewhere.
 - ARINC originated with the airlines and the ARINC documents were created as airline requirements for system implementers. Therefore, the use of the word "should" in this document carries with it the expectation of incorporation. This is especially true in the context of fit, form, interface requirements, and crew indication requirements. In allowing for the various architectures described in this document it is still expected that the functions will operate, at a system level, as described in this document.

COMMENTARY

374End users should be aware that there can be possible differences in
hardware and/or tailored implementation of certain functions from
ARINC 702A standard so that the FMC may meet fit, form, and
intended functional requirements for the particular airframe.
Differences may be due to the various airplane architectures, system

1.0 INTRODUCTION AND DESCRIPTION

379 limitations, and/or specific end user needs which take precedence 380 over complete compliance with ARINC 702A. 381 382 **1.2 Relationship to Other Documents** 383 This document is one of a family of ARINC Characteristics for advanced navigation equipment that includes: 384 ARINC Characteristic 756: GNSS Navigation and Landing Unit 385 • ARINC Characteristic 760: GNSS Navigation Unit 386 • 387 The functional characteristics of these three systems are very similar, and consequently, significant portions of these three equipment characteristics are 388 highly common. Users of these documents should consider this commonality issue 389 390 when planning future revisions. 391 The vast majority of military and government specifications for equipment design 392 and construction usually employ specification language; that is, terms such as thou 393 shalt and thou shalt not. However, that type of language makes it difficult to 394 describe preferences which have grown out of airline experience which designers 395 might weigh differently. For this reason, this characteristic, like other AEEC 396 documents, represents guidance material which attempts to acquaint the 397 manufacturer with the need for specific design practices rather than to tell them that they must meet certain requirements under all circumstances. 398 399 A complete list of documents referenced herein can be found in Appendix A. 400 **1.3 Functional Overview** 401 The FMS provides the following functions: navigation, flight planning, lateral and vertical guidance, performance optimization and prediction, air ground data link, and 402 pilot interfaces via the Electronic Flight Information System (EFIS) and MCDU 403 404 displays or, in newer architectures, a graphical Cockpit Display System (CDS). The 405 following paragraphs provide a summary description of these characteristics, with references to their functional descriptions in later sections of this characteristic. 406 407 Navigation (Section 4.3.1) - The navigation function determines the position and velocity of the aircraft using input data from all appropriate sources. The outputs 408 409 include position in terms of altitude, latitude and longitude, and velocity in terms of around speed and track angle, wind, true and magnetic headings, drift angle. 410 magnetic variation, and inertial flight path angle. 411 Flight Planning (Section 4.3.2) - This function provides the sequence of waypoints, 412 airways, flight levels, departure procedures, and arrival procedures to fly from the 413 origin to the destination and/or alternates. The flight plan may be entered manually 414 on the MCDU or automatically by uplink via the air-ground data link. A navigation 415 data base in the Flight Management Computer (FMC) contains the necessary data 416 associated with every flight plan element identifier for the entire aircraft flight 417 domain. 418 419 Lateral and Vertical Guidance (Section 4.3.3) - Lateral guidance is computed with 420 respect to geodesic paths defined by the flight plan, and to transitional paths between the geodesic paths, or to preset headings or courses. Vertical guidance is 421 computed with respect to altitudes assigned to waypoints, or to paths defined by 422

1.0 INTRODUCTION AND DESCRIPTION

	1.0 INTRODUCTION AND DESCRIPTION
423 424	stored or computed profiles. Speed control along the desired path is provided during all phases of flight.
425 426 427	Trajectory Predictions (Section 4.3.3.2.1) - This function predicts distance, time, speed, altitude, and gross weight at each future waypoint in the flight plan, including computed waypoints such as top-of-climb and top-of-descent.
428 429 430	Performance Calculations (Section 4.3.4) - The objective of this function is to optimize the vertical and speed profiles to minimize the cost of the flight or meet some other criterion, subject to a variety of constraints.
431 432 433 434 435 436 437	Air-Ground Data Link - Two-way data communication can be provided to the Airline Operations Facility and to Air Traffic Services (ATS). Airline Operational Communication (AOC) data link (Section 4.3.6) is used for flight plans, weather data, takeoff speeds, preflight initializations, etc., from the airline operations facility directly into the FMC. Air Traffic Control (ATC) data link (Section 4.3.7) is used to communicate predefined ATS controller-to-pilot uplink and pilot-to-controller downlink messages via the MCDU.
438 439 440 441 442 443 444 445	Pilot Interface via the MCDU (Section 6.0) – In legacy architectures, the MCDU is the pilot interface to the FMS. It transmits button pushes to the FMC and displays data on the MCDU screen in response to transmissions from the FMC. The MCDU may also provide backup functions should both FMCs fail. In newer architectures, the MCDU is replaced by a graphical user interface provided by the Cockpit Display System (CDS). The FMS is a User Application (UA) which requests graphical widgets to be displayed on the display and the CDS provides the FMS with actions performed on those widgets. The CDS interface is documented in ARINC 661.
446	COMMENTARY
447 448 449	Within this document, references to crew input from the MCDU and display of FMS information on the MCDU should be treated as generic references which also apply to a CDS architecture.
450 451 452 453 454 455 456 457 458 459 460 461	Electronic Flight Instrument System (Section 7.0) - The FMC generates a variety of outputs in support of electronic map displays (EMD): Primary Flight Display (PFD), Navigation Display (ND), and optionally a Vertical Situation Display (VSD). Within this document, the terms Electronic Flight Instrument System (EFIS) and Cockpit Display System (CDS) are used in reference to the display system hardware and associated interfaces; the terms EMD, PFD, ND, and VSD are used generically to refer to the various graphical display areas or windows. Based on the interface, the FMC may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661. The requirements within this document are intended to be consistent with RTCA DO-257(): <i>Minimum Operational Performance Standards for the Depiction of Navigational Information on Electronic Maps</i> .
462	COMMENTARY
463 464	The airlines wish to avoid the installation of equipment that becomes

1.0 INTRODUCTION AND DESCRIPTION

470	growth and flexibility provisions must allow the system to be easily
471	upgraded after initial installation and certification to accommodate the
472	changes in airline and airspace operational requirements.

473 **1.4 Flight Management Computer Description**

474 The FMC should contain all of the components, electronic circuitry, memory, etc., incident to the functioning of the system. The unit should also contain, as a 475 minimum, sufficient data storage for all required active engine and airplane 476 performance data, all navigation data required to support the active flight plan and 477 any secondary flight plan which may have been entered into the system. The FMC 478 479 should be capable of storing all data required by the system. The computer should be designed such that normal and abnormal power switching transients and other 480 481 primary power interruptions as defined in RTCA DO-160() do not cause essential memory contents to be lost. Provisions should be made in the design of the 482 computer to allow for future growth of the system. Expanding the capabilities of the 483 computer should be possible with a minimum of rework and at a minimum cost to 484 485 the airline customer.

486 **1.5 Interchangeability**

487 1.5.1 General

488 One of the primary functions of an ARINC Characteristic is to designate, in addition 489 to certain performance parameters, the interchangeability desired for aircraft 490 equipment produced by various manufacturers.

491 **1.5.2** Interchangeability for the ARINC 702A Flight Management Computer System

492System interchangeability of the FMC with respect to the standard aircraft493installation is desired regardless of the manufacturing source. The standards494necessary to ensure this level of interchangeability are set forth in Section 2.0 of495this Characteristic.

496 **1.5.3 Generation Interchangeability Considerations**

- 497The advanced FMS defined by ARINC 702A represents an evolutionary498development beyond the FMS defined by ARINC 702. Consequently, general form499factors and interwiring are similar, but strict interchangeability is not the intended500goal.
- 501The air transport industry desires that future evolutionary equipment improvements502and the inclusion of additional functions in new equipment during the next few years503do not violate the interwiring and form factor standards set forth in this document.504Provisions to ensure forward-looking generation interchangeability (as best can be505predicted) are included in this document to guide manufacturers in future506developments.

507 1.6 Regulatory Approval

- 508 The equipment should meet all applicable regulatory requirements. This
- 509Characteristic does not and cannot set forth the specific requirements that an510equipment must meet to be assured of approval. Such information must be obtained511from the appropriate regulatory authority.

1.0 INTRODUCTION AND DESCRIPTION

512 **1.7 Integrity and Availability**

513 514	Since this equipment is the primary means of navigation on most aircraft, the utmost attention should be paid to the need for integrity and availability in all phases of
515	system design, production, and installation. This equipment should provide the
516	system performance, design and operational integrity, and availability necessary for
517	CNS/ATM and Required Navigation Performance (RNP) operations. Integrity should
518	consider design assurance for reduced risk of operational excursions beyond RNP
519	containment limits, and functional assurance via system capabilities and features
520	consistent with CNS/ATM and RNP operations. The system production and
521	installation processes and methods should be consistent with the required integrity
522	and availability of the system.

523 1.8 Reliability

532

524 525	The anticipated operational use of the system demands the utmost attention to the need for reliability in all phases of system design, production, installation, and
526	operation of the FMC. It is of paramount importance to the airlines to operate a
527	trouble-free unit with minimum impact on scheduling and maintenance. A special
528	emphasis should be given to total system quality, including built in testing, ramp
529	testing, and shop testing to increase the Mean Time Between Unscheduled
530	Removals (MTBUR). MTBUR has a profound effect on airline operations despite a
531	high MTBF.

COMMENTARY

533Airlines have a heightened interest in identifying and correcting the534root cause(s) of unnecessary LRU removals, many of which result in535a No Fault Found (NFF) disposition. Each NFF occurrence536represents an unacceptable additional and excessive cost of537ownership to the airline. All efforts in the developmental process to538eliminate NFF occurrences will help improve the MTBUR.

539 **1.9 Testability and Maintainability**

- 540 The total system quality should include adequate ability for the operator to test and 541 maintain the FMS effectively. The FMS designer should confer with the user to 542 establish goals and guidelines for testability to minimize unnecessary removals. The 543 use of advanced Built-In Test Equipment (BITE), ramp testing equipment, and 544 adequate documentation will help the operators improve MTBUR. For airline 545 operations, MTBUR is at least as important, perhaps more so, than MTBF. 546 Testability should provide for the rapid identification of the root cause(s) of repeat 547 removals and ultimate elimination of unconfirmed faults.
- 548For shop maintainability, the design of physical access and functional partitioning of549the FMS should be such to minimize repair time. Where possible, excessive unit550disassembly should not be required for internal component replacement. Full and551complete documentation included in a Component Maintenance Manual will also552facilitate effective maintainability.

553 1.10 Flight Simulators

554Flight simulators are recognized as an important part of the aviation industry.555Airlines depend upon simulators for flight crew and maintenance training. FMS556equipment should be designed for use in flight simulators. Airlines typically desire557simulators to be available as early as possible to allow for crew training prior to

1.0 INTRODUCTION AND DESCRIPTION

558introduction into revenue service. The guidelines of ARINC Report 610(): Guidance559for Use of Avionics Equipment and Software in Simulators apply.

560

2.0 INTERCHANGEABILITY STANDARDS

561 2.0 INTERCHANGEABILITY STANDARDS

562 2.1 Introduction

563 This section sets forth the specific form factor, mounting provisions, interwiring, 564 input and output interfaces, and power supply characteristics desired for the Flight 565 Management Computer (FMC). These standards are necessary to ensure the 566 continued independent design and development of both the equipment and the 567 airframe installations. Manufacturers should recognize the practical advantages of 568 developing equipment in accordance with the form factor, interwiring, and signal 569 standards of this document.

570 2.2 Form Factor, Connectors, and Index Pin Coding

- 571The FMC should comply with the dimensional standards in ARINC Specification572600: Air Transport Avionics Interfaces, for the 8 Modular Concept Unit (MCU) or 4573MCU form factor. The FMC should also comply with ARINC Specification 600 with574respect to weight, racking attachments, front and rear projections, and cooling.
- 575 The FMC should be provided with a low insertion force, ARINC 600 Size 2 service 576 connector. This connector should be located on the center grid of the FMC rear 577 panel, and index code 04 should be used. The top and center inserts of the connector Top Plug (TP) and Middle Plug (MP) should each provide 150 socket-578 579 type contacts. The lower insert Bottom Plug (BP) should provide 11 pin-type contacts and spaces for two small diameter coaxial contacts. Attachment 2 to this 580 581 document shows the connector arrangement. Attachment 3 shows the pin 582 assignments.
- 583 If functions (not assigned pins on the service connector in Attachment 2-2 to this 584 document) are needed to be brought to the outside world to facilitate testing, they 585 should be assigned pins on an auxiliary connector whose type and location is 586 selected by the equipment manufacturer. The manufacturer should refer to ARINC 587 Specification 600 when choosing the location for this connector and note that, other 588 than to accommodate the needs for equipment identification by the ATE described 589 in this document, he is free to make whatever pin assignments he wishes. The 590 airlines do not want the unassigned (future spare) pins of the service connector 591 used for functions associated solely with ATE use.

592 2.3 Standard Interwiring

593 The standard interwiring for the FMC is set forth in Attachment 2-2. The interwiring 594 for a given installation needs only to ensure interconnection with those sub-systems 595 actually installed and supported on a particular aircraft type. Wiring associated with 596 alternate sub-systems shown in Attachment 2-2 need not be installed. Equipment 597 manufacturers are cautioned not to rely on special wires, cabling, or shielding for 598 their particular units because they will not exist in an ARINC 702A installation.

599 2.4 Power Circuitry

- 600 2.4.1 Primary Power Input
- 601The FMC should be designed to use 115 volt 400Hz single phase power from a602system designed for Category (A) utilization equipment per ARINC Specification603413A.
- 604The primary power inputs to the FMC will be protected by a circuit breaker.605Installation designers should note that the FMC circuit breaker may need to be606capable of handling the current drain of an ARINC 615 or 615A data loader. When

2.0 INTERCHANGEABILITY STANDARDS

- 607such a device is used with the FMC, it may derive its power from the FMC power608source.
- 609The equipment designer should be aware that severe switching and other transient610interruptions to primary power occur during normal aircraft operations. He should611ensure that such interruptions do not cause the computer to lose the contents of its612memory or impose the need to provide an external battery to maintain operations.613No pilot action should be needed to cause the system to return to normal operation614following such normal power interruptions.
- 615Equipment designers should take precautions to prevent anomalous operation of616equipment during and after interruptions or transients in the aircraft power system.617The equipment should, as a design goal, continue normal operation while sourcing618current to all active guidance and flag outputs during power interruptions of up to619200 milliseconds. If the equipment shuts down during a power interruption, normal620operation should resume without the need to recycle circuit breakers or clear621memories when power is restored.
- 622System response and data retention requirements for primary power interruptions623longer than 200 milliseconds are discussed in Section 3.3.
 - Note: Airframe installation designers should verify that the aircraft power systems satisfy the primary power interruption criteria of ARINC Specification 413A.

627 2.4.2 Power Control Circuitry

There should be no master on/off power switching within the FMC system.

629 2.4.3 The AC Common Cold

630The wire connected to the FMC connector pin labeled 115 VAC Cold will be631grounded to the same structure that provides the dc chassis ground but at a632separate ground stud. Airframe manufacturers are advised to keep AC ground wires633as short as practicable in order to minimize noise pick-up and radiation.

634 2.4.4 The Common Ground

635The wire connected to the FMC connector pin labeled Chassis Ground should be636employed as the DC ground return to aircraft structure. It is not intended as a637common return for circuits carrying heavy ac currents, and equipment638manufacturers should design their equipment accordingly.

639 2.4.5 Batteries

624

625

626

628

643

640If battery devices are used in equipment designs, they should not degrade the641MTBF and MTBUR targets for the equipment and should also have a life642expectancy greater than the MTBF target.

COMMENTARY

644Airline experience has shown that batteries have proven to be645maintenance problems in avionic equipment. Manufacturers may646consider the use of batteries to hold-up memory devices through647power transients or long term power outages. Batteries might also be648utilized to maintain real time clock circuits or for other purposes.649However, the airlines encourage the manufacturers to consider other650design solutions instead of using batteries for these functions.

2.0 INTERCHANGEABILITY STANDARDS

651 **2.5 Standardized Signaling**

- 652The desire for interchangeability necessitates standardization of the FMC input and653output interface parameters.
- 654The FMC should be capable of exchanging data in digital form and as discrete655inputs and outputs. The characteristics of digital signals and discrete signals are656defined herein. These standards should be used as design guidelines to assure the657desired interchangeability of equipment.
- 658Certain basic standards established herein are applicable to all signals. Unless659otherwise specified, the signals should conform with the standards set forth in the660subparagraphs below.

661 **2.5.1 General Accuracy and Operating Ranges**

662The accuracies specified herein should apply under all combinations of the663environmental conditions referenced in Section 2.5 of this document. Accuracy664measurements should be made on the assumption that the inputs to the FMC are665perfect. Accuracies are specified on the basis of 95% of observations and do not666include typical reading inaccuracies of the pilot's instruments.

667 2.5.2 Resolution

679

For the purposes of this Characteristic, the resolution or the function threshold
sensitivity is considered to be the maximum cyclic input change (double amplitude)
that can occur without detectable change in the output. The specific figures set forth
for threshold sensitivity of each function should be made without vibration of any
kind being applied and it should be checked approaching the reading with signals
from either direction.

674 2.5.3 ARINC 429 Data Bus

- 675The FMS equipment utilizes digital signal interfaces defined by ARINC Specification676429: Digital Information Transfer System (DITS).
- 677ARINC 429 data bus input labels are defined in Attachment 4 of the document.678Material in this document is included for reference purpose only.

COMMENTARY

- 680In the event of conflict between this document and ARINC681Specification 429, the equipment designer is encouraged to contact682the supplier of equipment sourcing the ARINC 429 data words.
- 683ARINC 429 data bus output labels sent by the FMS are defined in Attachment 4 of684this document. Material in this document is intended to be used by the FMS685equipment designer.

686 2.5.4 Standard "Open"

687 The standard "open" signal is characterized by a resistance of 100,000 ohms or 688 more with respect to signal common.

689 COMMENTARY

690In many installations, a single switch is used to supply a logic input to691several Line Replaceable Units (LRUs). One or more of these LRUs692may utilize a pull up resistor in its input circuitry. The result is that an

2.0 INTERCHANGEABILITY STANDARDS

693 open may be accompanied by the presence of +27.5 VDC nominal. 694 The signal could range from 18.5 to 36 VDC. 695 2.5.5 Standard "Ground" 696 The standard "ground" signal may be generated by either a solid state or mechanical type switch. For mechanical switch type circuitry, a resistance of 10 697 ohms or less to signal common would represent the ground condition. 698 699 Semiconductor circuitry would exhibit a voltage of 3.5 VDC or less with respect to signal common in the ground condition. 700 701 2.5.6 Standard "Applied Voltage" Output 702 The standard "applied voltage" is defined as having a nominal value of +27.5 VDC. This voltage should be considered to be applied when the actual voltage under the 703 704 specified load conditions exceeds 18.5 VDC (+36 VDC maximum) and should be 705 considered to be not applied when the voltage at the output is 3.5 VDC or less when 706 loaded with no less than 50,000 ohms. 707 2.5.7 Standard Discrete Input 708 A standard Discrete Input should recognize incoming signals having two possible 709 states, open and ground. The characteristics of these two states are defined in Sections 2.5.4 and 2.5.5. The maximum current flow in the ground state should not 710 exceed 20 milliamperes. 711 COMMENTARY 712 713 Some older installations use a number of voltage levels and 714 resistances for discrete states. In addition, the assignments of valid and invalid states for the various voltage levels and resistances were 715 sometimes interchanged, which caused additional complications. A 716 single definition of discrete levels is being used in an attempt to 717 718 standardize conditions for discrete signals. The voltage levels and resistances used are, in general, acceptable to hardware 719 manufacturers and airlines. This definition of discrete is also being 720 used in the other ARINC 700-series characteristics. However, there 721 722 are few exceptions for special conditions. 723 The logic sources for the Discrete Inputs to the unit are expected to take the form of 724 switches mounted on the airframe component (flap, landing gear, etc.) from which the input is desired. These switches will either connect the Discrete Input pins on 725 the connector to airframe dc ground or leave an open circuit as necessary to reflect 726 727 the physical condition of the related components. The unit will, in each case, be 728 expected to provide the DC signal to be switched. Typically, this is done through a 729 pull-up resistor. The equipment input should sense the voltage on each pin to 730 determine the state (open or closed) of each switch. 731 The selection of the values of voltages and resistances is based on the assumption 732 that the Discrete Input will utilize a ground-seeking circuit. When the circuit senses a 733 low resistance or a voltage of less than +3.5 VDC, current flow from the input will signify a ground state. When a voltage level between +18.5 and +36 VDC is present 734 or a resistance of 100,000 ohms or greater is connected to the input, little or no 735 current should flow. The input should be in a quiescent state. The input should also 736 utilize an internal pull-up to provide for better noise immunity when a true open is 737 738 present at the input.

2.0 INTERCHANGEABILITY STANDARDS

739 The probability is quite high that the sensors (switches) will be providing similar 740 information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit from other equipment, especially when 741 742 the switches are in the open condition. For this reason, equipment manufacturers 743 are advised to base their logic sensing on the ground (less than +3.5 VDC) state of each input. Also, both equipment and airframe suppliers are cautioned concerning 744 745 the need for isolation to prevent sneak circuits from contaminating the logic. 746 Typically, diode isolation is used in the avionics equipment to prevent this from happening. 747

748 2.5.8 Standard Discrete Output

- 749A standard Discrete Output should exhibit two states, open and ground, as defined750in Sections 2.5.4 and 2.5.5. The open state of each discrete is defined as a voltage751greater than +18.5 VDC (+36 VDC max.), or a resistance of 100,000 ohms or more,752from the assigned equipment connector pin to airframe dc ground. The ground state753is defined as a voltage less than +3.5 VDC (0 VDC min.) to airframe dc ground at754the assigned pin. The maximum current flow through the discrete wire in the ground755state should not exceed 20 mA.
 - COMMENTARY
- 757 The probability is quite high that the switches will be providing similar information to a number of users. The probability is also high that 758 unwanted signals may be impressed on the inputs to the unit 759 760 especially when the switches are in the open condition. For this 761 reason, equipment manufacturers are advised to base their logic 762 sensing on the standard ground (less than +3.5 VDC) state of each input. Avionics suppliers are alerted to the need for isolating diodes in 763 the equipment to prevent sneak circuits from contaminating the logic. 764

765 2.5.9 Ethernet Interface

756

766ARINC Specification 646: Ethernet Local Area Network (ELAN) defines the767characteristics of this interface. In the event of conflict between this document and768ARINC Specification 646, the latter should be assumed to be correct.

769 2.5.10 Standard Annunciators

770A standard annunciator output should exhibit the same characteristics as the771standard discrete output described in Section 2.5.8, except the annunciator output772should be capable of sinking up to 200 mA when in the ground state.

773 **2.6 Environmental Conditions**

774The FMC should meet the requirements of the latest versions of RTCA DO-160()775and EUROCAE ED-14(). Attachment 5 to this document tabulates the relevant776environmental categories.

777 2.7 Cooling

778The FMC may be designed to utilize, and the airframe installation should provide,779cooling air in the manner described in Section 3.5 of ARINC Specification 600. The780airflow rate provided to the FMC in the aircraft installation should be 44 kg per hour781and the pressure drop of the coolant airflow through the equipment should be 25 ± 5 782mm of water at this rate. The unit should be designed to expend the pressure drop783in a manner to maximize the cooling effect within the equipment. Adherence to the784pressure drop standard is needed to allow interchangeability of equipment.

2.0 INTERCHANGEABILITY STANDARDS

785 In addition to the above, individual aircraft installations may require operation with 786 loss of cooling air to meet Extended-Range Twin-Engine Operations (ETOPS) operating requirements. 787 788 COMMENTARY 789 Current ETOPS rules can require operation up to 180 minutes 790 without cooling air. 791 Equipment failures in aircraft due to inadequate thermal management have plaqued the airlines for many years. Section 3.5 of ARINC 792 793 Specification 600 provides design guidance for airframe equipment suppliers to prevent such problems in the future. Airlines regard this 794 material as required reading for all potential suppliers of unit and 795 796 aircraft installations. 797 2.8 Weights 798 System manufacturers should take note of the guidance information on weights 799 contained in ARINC Specification 600. 800 2.9 Grounding and Bonding 801 The attention of equipment and airframe manufacturers is drawn to the guidance material in Section 3.2.4 of ARINC Specification 600 and Appendix 2 of ARINC 802 Specification 404A on the subject of equipment and radio rack grounding and 803 804 bonding. COMMENTARY 805 806 A perennial problem for the airlines is the location and repair of 807 airframe ground connections whose resistance has risen as the 808 airframe aged. A high resistance ground usually manifests itself as a 809 system problem that resists all usual approaches to rectification, and invariably consumes a wholly unreasonable amount of time and effort 810 on the part of maintenance personnel to fix. Airframe manufacturers 811 812 are urged, therefore, to pay close attention to assuring the longevity 813 of ground connections.

3.0 SYSTEM DESIGN CONSIDERATIONS

814 3.0 SYSTEM DESIGN CONSIDERATIONS

815 3.1 System Configurations

816Different configurations of the ARINC 702A Flight Management Computer System,817illustrated in ATTACHMENT 1 to this document, are described in this section. The818FMC is expected to be capable of operating interchangeably in all configurations. In819an IMA architecture, the FMF is analogous to the FMC for the purpose of these820system configurations.

821 3.1.1 Single System Configuration

- 822 In this configuration, the system accepts inputs from one, two, or three Inertial 823 Reference System (IRS), Air Data/Inertial Reference System (ADIRS), or Altitude 824 Heading Reference System (AHRS); one or two GNSS Sensors; two each Air Data 825 System, VHF Omni-Range Navigation (VOR), and Distance Measuring Equipment 826 (DME): and one Instrument Landing System (ILS)/Microwave Landing System 827 (MLS) to provide the various navigation and guidance functions. An ARINC 615 and ARINC 615A (growth) data loader input is provided for both software and navigation 828 829 data base loading. Also, an interface is provided for an ACARS Management Unit 830 (MU) or an ARINC 758 Communications Management Unit (CMU) Mark 2.
- 831Inputs of fuel quantity, fuel flow, and engine/airplane configuration parameters and832inputs from the flight control computer (and for some installations, the thrust control833computer) combined with the air data inputs are used to provide the performance834and prediction functions. Initial condition inputs may be inserted manually using the835MCDU, automatically from airplane sensor systems or loaded using the data link836function.
- 837The system should be capable of driving two flight control computers and two838communication management units, and independently driving two navigation839displays.

840 3.1.2 Single System/Dual MCDU Configuration

841In this configuration, the interface is the same as for the single system, with the842addition of a second MCDU. Both MCDUs have the capability of data entry and843display independently.

844 **3.1.3 Dual System Configuration**

- 845 A typical Flight Management System installation is dual, consisting of two MCDUs 846 and two FMCs. The FMCs are linked together via the intersystem bus and both the 847 MCDUs are connected to both FMCs. MCDU button pushes are processed for 848 mode control and display changes. The left and right MCDUs may be operated independently; they can display different data pages and the crew can insert data 849 using either of them to affect the FM operation. The FMCs transmit certain data to 850 each other for comparison and validation. For example, if the computed position 851 between the FMCs differs by more than a set threshold, a message is issued to 852 853 warn the crew.
- 854 855
- Please refer to Section 3.5 for Dual System Design Considerations.

3.0 SYSTEM DESIGN CONSIDERATIONS

856 3.1.4 Other Configurations

- 857 Some installations have provided for a third MCDU since one of the MCDUs is primarily used to manage the data link activity. For this configuration, the third 858 859 MCDU may be used as a repeater that can be switched in or out as necessary.
- Additionally, some installations have provided for a third FMC. This unit is usually 860 not synchronized with the other two FMCs unless it is switched in as a replacement 861 because of a unit failure. At this point the unit is fully synchronized by the remaining 862 FMC and used in the dual configuration. 863

864 **3.2 Certification Design Considerations**

865 3.2.1 **Partitioning Considerations**

- 866 Manufacturers should carefully consider the internal structure of software in 867 partitioning sub-functions within an overall function. In an integrated architecture, the FMF may be a partition within a system which provides all CNS/ATM airborne 868 functions. The flight management function itself may consist of several sub-869 functions such as Navigation, Flight Planning, Crew Interface, I/O, etc., which may 870 871 be separate partitions. As the objectives of software partitioning are efficient design 872 and effective functional allocation, as well as reduced software change costs and lead times, manufacturers must ensure that the software structure eliminates the 873 874 need to revalidate software partitions and modules that have not been affected by a particular change. 875
- 876 In some configurations, the system may be a mixed criticality unit. In other words, 877 this unit may house software of more than one DO-178B/C level. In these 878 configurations, manufacturers must ensure that partitioning is robust enough to 879 accommodate changes in any lower level software (i.e., less critical software) 880 without mandating the rigors of the more critical software validation, certification, 881 and maintenance.

3.2.2 Operational Functional Independence 882

- 883 884 885
- While the system makes extensive use of shared resources as a multi-function system (e.g., power supplies, processors), manufacturers may provide for some system functions to be retained during failure conditions.

COMMENTARY

- Airlines strongly desire to continue to operate the system even if one or more functions or external interfaces have failed, as long as the aircraft operation is not predicated on the use of the failed sensor or function(s). Therefore, a failure condition unique to one function or sensor should not adversely impact normal operation of any other system functions.
- 893 3.2.3 Unit Identification Considerations
- 894

886 887

888 889

890

891 892

COMMENTARY

895 Avionics and airframe manufacturers are strongly encouraged to 896 implement an FMS unit identification methodology that does not 897 correlate the software version with the basic face plate part number 898 of the unit. The objective is that a software revision should not result in the re-identification - part number roll - of the unit. A further 899 objective is that a common FMS platform (i.e., a single face plate part 900

3.0 SYSTEM DESIGN CONSIDERATIONS

- 901number) could be used across multiple fleets and airframe902manufacturers without re-identification of the unit, even if fleet903specific software is required for each fleet type.
- 904With this approach an individual manufacturer's part numbers are905assigned and maintained for (1) the FMC hardware, (2) the FMC906software, and (3) the overall unit (i.e., face plate part number). In this907case, the face plate part number is referred to as the generic or908system part number and is not affected by normal revisions to the909FMS software (e.g., all software or data that can be loaded into the910unit via a data loader will not require a re-identification of the unit).
- 911For this scenario, the operator may stock a given FMC under its912system part number. This unit could be effective across multiple fleet913types, each with fleet specific software requirements. When an FMC914is replaced on an aircraft, the software configuration can be verified915from the MCDU. If necessary, the FMC may be loaded with the916applicable certified software for that fleet via data loader or system917crossload.
- 918This scheme allows the operator to minimize sparing when a given919FMC is used on multiple fleet types, even when unique software is920required for each fleet. It will also enable new FMC software loads on921the aircraft without requiring a revision to the FMC ID plates or the922aircraft Illustrated Parts Catalog (IPC).

923 3.3 System Response to Power Interrupts

941

- 924An appropriate period of time, usually between 5 and 10 seconds, should be925selected to differentiate between inadvertent power loss and normal equipment turn926on. The reason for this distinction is to provide a basis for when the system should927be reinitialized.
- 928For power outages greater than this time period, the system should automatically929perform a power-up test cycle. Failure to complete this test cycle successfully930should cause appropriate flight deck annunciation. The system should also reset931any flight dependent data such as initial position, flight plan, performance932initialization, etc., and prompt the crew for entry of this data. Configuration related933data from program strapping, configuration files, or Airplane Personality Module934(APM) should be read.
- 935For power outages less than this time period the system should resume normal936functions as quickly as possible. The power up test cycle should not be performed937and initialization, configuration, and flight plan data should not be reset and the crew938should not be prompted for data entry. The crew may be prompted to select the939appropriate fly-to waypoint since flight plan points may have been passed during the940power outage.

COMMENTARY

942Some systems may also make a distinction of being on the ground or943in the air. Typically, in-air power ups will be treated as inadvertent944power outages regardless of the power outage time period. The945system should be designed to protect data from a power interrupt for946a period of time consistent with its intended use. Since some947methods of protecting data do not ensure data validity indefinitely,

3.0 SYSTEM DESIGN CONSIDERATIONS

948 949 950		data integrity should be checked before it is used after a power outage, especially if the system uses in-air status for determining normal power turn on.
951	3.4 FN	IC Performance
952	3.4.1	Accuracy, Integrity, and Continuity
953 954 955		Accuracy, integrity, and continuity requirements for the Lateral Guidance function are defined by the DO-283(). DO-283() also addresses accuracy requirements for the Vertical Guidance and Trajectory Predictions functions.
956 957		The system design should comply with the aeronautical data quality and integrity requirements set forth in RTCA DO-200A() and RTCA DO-201A().
958		The system should ensure data integrity in all operations such as:
959		 Dataload of program and databases into system memory
960		 Reading of program and databases from memory
961		 Input of sensor information into the system
962		Entry and edit of information in the flight plan
963		 Navigation, performance, and guidance computations
964		 Output of information to the various external systems and displays
965	3.4.2	Response Time
966 967 968 969		Specification of precise response time standards is dependent on the detailed system operational design. This section provides general guidelines that should be considered by system designers in determining computer processing requirements and software architecture.
970 971 972		Unless explicitly stated otherwise, flight plan response times throughout this document are for modifications to the active flight plan. The response times listed below are from the completion of crew action until the output of data on the display.

- below are from the completion of crew action until the output of data on the display.
- 973

Task Description	Max. Response Time
Direct to a Waypoint - Display of direct-to lateral path on ND	2 seconds
Lateral Guidance Output following flight plan change	3 seconds
Revise Speed or Altitude Constraint in climb or cruise – Time to display target altitude and target speed	3 seconds
Revise Speed or Altitude Constraint in descent (no RTA) - Time to display target altitude, target speed, and vertical deviation	5 seconds
Revise RTA target speed	30 seconds (15 seconds typical)
Full Flight Plan Prediction – 4D Trajectory (Note 1)	30 seconds (15 seconds typical)
Background data update in response to a Mode, Scale, or Option change on the Navigation Display	1 second
Software and Data Base Loading (Note 2)	Goal: Less than 15 minutes
ATS Uplink Messages	Note 3
ATS Downlink Messages	Note 3

3.0 SYSTEM DESIGN CONSIDERATIONS

Figure 3.4.2-1 Response Time Requirements
NOTES
 4D Trajectory includes predictions of distance, altitude, airspeed, time, and fuel. The response time depends on many factors such as the number of flight plan waypoints.
 The response time depends on file size, media, and/or data loader interface. Refer to Section 10.3.3 for additional data loader requirements.
 The International Civil Aviation Organization (ICAO) CNS/ATM-1 SARPS allocate part of the total system end to end response time to the avionics. Further allocation to individual avionics subsystems (e.g., FMS, CMU, EFIS) is system architecture dependent and beyond the scope of this document.
3.5 Dual System Design Considerations
Different approaches may be followed in defining the functional architecture of the dual system installation. Design considerations should include operational independence of the two MCDUs, redundancy management, system integrity, functional availability, and failure response mechanisms. The dual FMCs should exchange information so that in the event of a failure or loss of power in one FMC, the second FMC is available for engagement without additional crew input and without significant discontinuity in the outputs.
In a dual synchronous configuration, one of the FMCs is designated as master and the other as slave. The master designation may be based on the FMC operational status, autopilot or flight director engagement logic, and for some installations, a source select switch. The master FMC performs tasks such as directing the slave to tune radios, determining the order of MCDU button push processing, initiating flight plan leg sequencing, and other system events. Otherwise, the FMCs operate independently.
In another possible dual configuration, a master FMC may be designated that directs all FM operations and synchronizes its data with the spare FMC such that the spare FMC can resume FM operations should the master fail or the spare be selected as the master. Other dual system configurations may exist as well.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1009 4.0 FLIGHT MANAGEMENT FUNCTIONS

- 1010 **4.1 Introduction**
- 1011

This section describes the characteristics of the flight management functions.

1012 **4.2 Functional Initialization and Activation**

1013 4.2.1 Navigation Sensor Initialization

1014

1044

1045

1046 1047

1048

The system should provide for the initialization of various navigation sensors.

1015 4.2.1.1 IRS Initialization

1016 The system should be capable of initializing up to three ARINC 704 Inertial 1017 Reference Systems or ARINC 738 ADIRS when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the system should 1018 output on its general data buses a burst of not more than four or less than two initial 1019 position latitude/longitude pairs. This data should consist of BCD-encoded set 1020 latitude and set longitude words having the labels and data standards defined for 1021 1022 these quantities in ARINC Specification 429. Position data can be entered as a 1023 latitude/longitude or selected from the navigation data base as an airport and optionally gate, or input from the Global Navigation Satellite System Unit (GNSSU). 1024

1025 4.2.1.2 IRS Heading Set

1026The system should also be optionally capable of setting the IRS magnetic heading1027output to the value entered by the crew at the MCDU. The system should respond1028to the set heading command by transmitting a burst of not more than four or less1029than two BCD-encoded set heading words. ARINC Specification 429 defines the1030applicable label and data standards. Consult ARINC Specification 704: Inertial1031Reference System, for further information on initialization and heading set.

1032 4.2.1.3 GNSS Initialization

1033The system should be optionally capable of initializing up to two ARINC 743A1034GNSS Sensors when called upon to do so by flight crew action at the MCDU. In1035response to this initialize command, the navigation system should output on its1036general data buses, current time and date and a burst of not more than four or less1037than two initial position of a latitude/longitude pair. This data should consist of BNR1038encoded current time in Universal Time Coordinated (UTC), and BCD encoded1039current date, set latitude, and set longitude words.

1040 COMMENTARY 1041 GNSS sensors may be indirectly connected to the navigation system 1042 through the IRS or ADIRS.

1043**4.2.2**Flight Plan Initialization and Activation

There are various methods for constructing a flight plan such as:

- Pre-defined company routes
 - Entry using FROM/TO format
 - Menu selection of procedures and/or airways
- Individual waypoint entry
- Flight Plan Copy
- 1050 AOC/ATC Uplink

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 1051 Refer to Section 4.3.2.4 for additional details regarding these methods.
- 1052This initialization should be performed for every desired flight plan type. Once a1053flight plan has been constructed facilities should be provided to allow the crew to1054select a flight plan as the active flight plan or route.

1055 4.2.3 Performance and Predictions Initialization

- 1056To initialize performance and trajectory prediction computations, gross weight (or1057zero fuel weight and block fuel), cost index, and cruise altitude are required as a1058minimum. Other vertical flight planning parameters may also be initialized as1059desired. These are discussed in Section 0.
- 1060The trajectory prediction function also requires a specified flight plan or routing;1061most of the performance functions do not.

1062 4.2.4 Lateral and Vertical Guidance Activation

- 1063 Lateral Guidance computations are activated by position initialization and the 1064 presence of an active route. Vertical Guidance computations are activated by crew entry of gross weight, cost index, and cruise altitude. Coupled guidance can be 1065 selected using the AFCS Control Panel. In most systems, lateral and vertical 1066 1067 guidance are independent selections on the AFCS Control Panel. Of those systems with independent selections, lateral guidance may or may not be a prerequisite for 1068 vertical guidance. Both methods are acceptable. In some systems, vertical guidance 1069 managed speed control (i.e. control to the FMF vertical guidance speed target) can 1070 1071 be selected independent of vertical guidance level change control. On other systems, vertical guidance managed speed control requires managed level change 1072 control. Both methods are acceptable. 1073
- 1074 4.2.5 Use of Data Link for System Initialization
 - The data link function can also be used to provide initialization data as described in Sections 4.2.2 and 4.2.3.

1077 4.3 Functional Description

1078 4.3.1 Navigation

1075 1076

1081 1082

1083

1085

1086

1087

1088

1089

1090

- 1079The navigation function furnishes continuous, real-time, three dimensional solutions1080to the crew and provides the following navigational outputs:
 - Estimated Aircraft Position (latitude, longitude, altitude)
 - Aircraft Velocity
 - Drift Angle (optional)
- Track Angle
 - Magnetic Variation (optional)
 - Wind Velocity and Direction
 - Time
 - Required Navigation Performance (RNP)
 - Actual Navigation Performance (ANP) or Estimate of Position Uncertainty (EPU)

1091	COMMENTARY
1092	For the purpose of this document, ANP and EPU are intended to
1093	mean the same thing. In system architectures utilizing IRS sensors,
1094	drift angle and magnetic variation may be provided directly by the IRS
1095	and are not required to be computed by the FMS.

1096 1097 1098 1099 1100 1101 1102		For vertical aspects, the navigation function provides altitude, vertical speed and flight path angle. Unless explicitly stated otherwise, altitude computations operate upon inputs of smoothed inertial altitude from the Inertial Reference Units (IRUs), Air Data/Inertial Reference Units (ADIRUs), or Attitude and Heading Reference System AHRS, corrected by barometric (corrected or uncorrected) pressure altitude from the air data system. Flight path angle is derived from vertical speed and computed ground speed.
1103	4.3.1.1	Multi-Sensor Navigation
1104		The navigational output data is computed using the following:
1105		Attitude and Heading
1106		 IRU or
1107		• ADIRU or
1108		• AHRS
1109		GNSS Receiver
1110		DME Transponder
1111		VOR/LOC Receiver
1112		ILS/MLS Receiver(s)
1113		Air Data Computer
1114 1115 1116 1117 1118		The navigation function automatically selects the combination of available sensors that provides the best solution for estimating the aircraft position and velocity. Using the sensor accuracy characteristics, sensor raw data, and information about the current conditions, the best combination of position sensors (GNSS, IRU, DME, VOR, etc.) is selected to minimize the position determination error.
1119 1120 1121 1122		As a minimum, the navigation function must provide for GNSS data integrated with a heading/attitude sensor and air data system as some aircraft installations may not include other navigation radios. Adequate navigation availability must be a consideration in any implementation.
1123		
1124	4.3.1.2	Navigation Modes
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135		Available navigation sensor data is validated before it is used for updates to the aircraft position. On aircraft with IRUs installed, the primary mode of operation utilizes IRS heading, attitude, position, and velocity, with IRS position and velocity combined with GNSS or VHF radio data (e.g. DME, Tactical Air Navigation System (TACAN), VOR, and LOC). On aircraft without IRUs the primary mode of operation is position and velocity from available sensors with heading and attitude being provided from an AHRS. The filtering algorithm should give appropriate weighting based on the sensor accuracy and should provide for sensor error modeling such that the navigation solution accuracy can be maintained through short term unavailability of various sensors. The navigation function should behave smoothly regardless of sensor availability or sensor transitions.
1136		
1137 1138		With the transition to RNP-based navigation, standardized navigation sensor selection logic is not required; however, in some
1100		

1139 1140	implementations, a navigation mode sensor hierarchy such as the following may be utilized:
1141	LOC (approach only)
1142	• GNSS
1143	DME/DME
1144	DME/VOR
1145	It may be desirable for non-IRU aircraft to correct heading/attitude sensor data
1146 1147	based on the other available sensors to provide for a more accurate coasting mode of operation.
1148	4.3.1.3 RNP-Based Navigation
1149 1150 1151	The navigation function should satisfy the accuracy, integrity, and availability criteria set forth for aircraft systems intended to operate in RNP airspace. The systems criteria are specified in DO-236() and DO-283().
1152 1153 1154 1155 1156 1157 1158 1159 1160	The capabilities of the system should encompass position estimation, path definition, and path control and tracking, as well as computing position uncertainty. These capabilities, in addition to a means to evaluate and mitigate flight technical error, should form the basis for evaluating and determining total aircraft systems performance for RNP operations. The system should provide design, function, and operational integrity to ensure acceptable, repeatable, and error-free performance. The system should provide for clear and unambiguous indications of the navigation situation, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace.
1161	COMMENTARY
1162 1163 1164 1165 1166	RNP is the required navigation performance necessary for operation within a defined airspace. RNP is specified in terms of accuracy, containment integrity, containment continuity, and availability of navigation signals and equipment for a particular airspace, route or operation.
1167 1168	The intent of the material in this section is to provide additional insight into RNP criteria, especially system and integration considerations.
1169	4.3.1.3.1 RNP Determination
1170 1171 1172	The system should provide the appropriate RNP selection and entry capabilities to support determination of the applicable RNP for a flight plan path terminator (leg), procedure, or environment based upon the following, in order of priority:
1173	procedule, el entrient bacea apen de reneming, in craer el prienty:
	Manual RNP entry by the crew
1174	
	Manual RNP entry by the crew
1174	 Manual RNP entry by the crew Leg-Based RNP value from the navigation data base or ATS datalink
1174 1175 1176 1177	 Manual RNP entry by the crew Leg-Based RNP value from the navigation data base or ATS datalink The default RNP value COMMENTARY RNP flight plans will consist of a limited subset of the path
1174 1175 1176 1177 1178	 Manual RNP entry by the crew Leg-Based RNP value from the navigation data base or ATS datalink The default RNP value COMMENTARY RNP flight plans will consist of a limited subset of the path terminators defined in Section 4.3.2.2. These RNP routes and
1174 1175 1176 1177	 Manual RNP entry by the crew Leg-Based RNP value from the navigation data base or ATS datalink The default RNP value COMMENTARY RNP flight plans will consist of a limited subset of the path

4.0 FLIGHT MANAGEMENT FUNCTIONS

1182 or designated by default according to the airspace or environment. When the system is operated using the default RNP values, the 1183 system will require navigation environment (i.e. oceanic, enroute, 1184 1185 terminal, approach) logic to ensure the proper transition from one RNP default value to another. 1186 The system should output the current RNP and ANP values on the general-purpose 1187 1188 output busses. 1189 1190 4.3.1.3.1.1 Manually Entered RNP Values 1191 The system should support manual entry within a range of possible RNP values 1192 appropriate for the PBN operation to be flown. 1193 A manually entered RNP value should supersede any pre-programmed RNP value associated with a route, procedure or leg, or any default value. The manually 1194 entered RNP value should be clearly distinguishable as a manually entered value. 1195 In the event of a manually entered value larger than the value being overridden, an 1196 1197 advisory alert or annunciation, as appropriate, should be provided to the crew. When a manual entry is deleted, the system should return to the appropriate RNP 1198 value based upon its priority. Unless deleted by the crew, the manual entry should 1199 1200 remain the active RNP value. 1201 COMMENTARY 1202 The annunciation and alerting requirement for manually entered RNP 1203 values which exceed the active RNP value may be applied in various ways. One instance is upon entry of the value: this assures pilot 1204 awareness of his action relative to overriding limits applicable to the 1205 route, procedure, leg, or airspace, and which form the basis for 1206 1207 separation. However, conditions such as NOTAMs or diversions due 1208 to weather may be among the reasons why a manual entry is made. Once accepted, the system should also actively monitor the manual 1209 1210 entry relative to the RNP for the procedure, route, leg or default, in 1211 the event they change to a smaller value. Advance annunciation or alerting would also be advisable in this case. 1212 4.3.1.3.1.2 Preplanned RNP Values 1213 1214 When an RNP approach procedure offers multiple lines of minima, the system should allow the flight crew to specify or pre-select the desired RNP value for the 1215 1216 final approach segment. 1217 COMMENTARY 1218 Some RNP Authorization Required (AR) approaches are designed with multiple lines of minima corresponding to the respective RNP requirement. For these 1219 1220 approaches, ARINC 424 specifies that the least restrictive "level of service" be coded in the primary record of the approach procedure. Additional lines of minima 1221 are contained in the approach continuation records. For RNP approaches designed 1222 1223 with multiple RNP values associated with lines of minima, the flight crew may desire a more restrictive RNP value than the one coded in the NDB. The system should 1224 1225 provide a means for the flight crew to specify or pre-select the RNP value to use on 1226 the final approach segment prior to commencing the procedure. 1227

4.0 FLIGHT MANAGEMENT FUNCTIONS

1228 4.3.1.3.1.3 Leg-Based RNP Values

1229The system should support the definition of an RNP on a leg-by-leg basis. The Leg-1230Based RNP value should be initialized to the navigation database value associated1231with the leg upon insertion of the navigation procedure into the flight plan. Uplink of1232a Leg-Based RNP Value via ATS datalink should be supported as part of dynamic1233RNP operations.

1234

1235	COMMENTARY
1236 1237 1238 1239 1240 1241 1242	The system designer may need to consider that although an RNP value may be specified for individual leg(s) of a procedure (SID, STAR, Airway, Approach, Transition, etc.), one is not required. The procedure designer may develop procedures where the RNP value is designated leg by leg, or possibly for only selected flight legs. In this case, where nothing is specified, the system default value would apply.
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253	On some routes and terminal procedures, restrictions along the route (e.g., terrain, airspace, environmental) may require that RNP values be placed on individual legs. These values may be other than the default values (for the respective navigation environment), and the values may decrease as the aircraft proceeds along the route. This RNP structure is referred to as the "Scalable RNP" element of Advanced RNP. It is assumed that published procedures which employ the Scalable RNP element will retrieve the respective RNP value for each leg from the NDB. In addition to the values coded in the NDB, RNP values may be transmitted via ATS datalink for dynamic operations.
1254 1255 1256 1257 1258	When the RNP value is provided on downpath legs, the system should provide an indication to the flight crew when the RNP performance cannot be met at the next waypoint. The indication should be provided sufficiently early such that the flight crew can take action to resolve the situation.
1259 1260	4.3.1.3.1.4 Stored Default Values
1261 1262 1263 1264	The system should provide the capability for stored default RNP values for the various navigation environments (e.g., oceanic, enroute, terminal, approach). These values may be established as pre-programmed values and/or loadable into the system.
1265 1266 1267	The stored default RNP value for each respective navigation environment should correlate to one of the Navigation Specification values as defined in ICAO Doc 9613: <i>Performance-Based Navigation Manual</i> .
1268	COMMENTARY
1269 1270 1271 1272 1273 1273	The system design may establish the stored defaults with pre- programmed default values which can be overridden by loadable values via a separately loadable data file. As an alternative, the default values may be established by the loadable data file only. The approach taken will be influenced by the system built-in test design for faults and response, as well as the system design integrity.
1275	4.3.1.3.2 Determination of Navigation System Performance
1276 1277 1278 1279	Navigation system performance should be evaluated considering position estimation error, path definition error, and flight technical error, which are the key elements of total system error. The total system error components in the cross-track and along track directions should be less than the RNP value 95% of the flying time.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1280	COMMENTARY
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294	The complete set of criteria for evaluating navigation system performance should be as set forth in DO-283(). It should be noted that while all system integrators will need to evaluate their systems using the same standards and criteria, the systems implementations will vary and will dictate the acceptable operating modes and systems configurations. In one method, the system operation will be predicated on a design which relies upon comparisons of the systems' estimate of position uncertainty versus RNP, while at the same time evaluating integrity. However, this may carry with it restrictions on the mode of system operation (e.g. flight director mode or coupled with autopilot for RNP 1) necessary to achieve and assure consistent performance. In another method, the system operation will be predicated upon a real-time evaluation of all factors in total system error such that mode limitations or restrictions may not apply.
1295	4.3.1.3.3 Navigation Alerting and Display
1296 1297	The system should provide for clear and unambiguous indications of the state of the aircraft navigation system, including situational awareness information and alerts.
1298	COMMENTARY
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	The system should provide information which allows the determination that the equipment is functioning properly. In addition, indications should be provided which allow the operator to determine the navigation sensors in use and the actual level of navigation performance. The system should also provide annunciations and alerting of unacceptable degradation in navigation performance, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace, routes, and procedures. Some solutions for this could include indications and alerts when the system estimate of position uncertainty exceeds the RNP value. In others, the estimate of position uncertainty and flight technical error may have correlated indications and alerts.
1311 1312 1313	Additional display and alerting requirements relative to manually entered RNPs and determination of navigation system performance are described in Sections 4.3.1.3.1.1 and 4.3.1.3.2.
1314	4.3.1.4 Navaid Data
1315 1316 1317 1318 1319 1320	In support of the navigation function, the system must contain an extensive navigation data base. This database typically includes the enroute, terminal, and approach procedures (including RNP criteria), the navigation aid ground station information, and the procedure recommended navaid information required for flight in the area in which the aircraft operates. See Section 9.2 for additional details regarding the navigation database.
1321	4.3.1.5 Crew Controlled Navigation Options
1322	Some sensor inputs to the navigation function should be capable of being blocked

1322Some sensor inputs to the navigation function should be capable of being blocked1323by pilot action. Localizer updates should always occur when in approach with an ILS1324approach selected as part of the flight plan. DME, VOR, and GNSS updating may1325be stopped by manual selection on the MCDU. Additionally, DME and VOR navaids

4.0 FLIGHT MANAGEMENT FUNCTIONS

1326may be individually blocked from the navigation solution by entering their identifiers1327on the MCDU or by data link. This manual blockage of individual navaids should be1328cleared at flight completion.

1329Capability may also be provided for navigation override where the operator can1330force the navigation position to coincide with a selected navigation sensor or1331reference position (e.g. takeoff runway threshold or intersection point). This position1332shift action aligns the system position to the selected sensor. Override of the1333navigation position to a manual reference point (i.e. overfly fix) is inconsistent with1334RNP operation.

1335

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 1336These options are intended as backup options for use in the event that a system1337generated message, such as verify position, alerts the crew to a problem in the1338navigation that the system cannot correct itself.
- 1339Facilities should be provided to accommodate manual tuning by the crew of the1340DME/VOR radios. If a receiver is being manually tuned, the navigation function1341should continue to auto tune any available channels with station selection as1342specified for auto tuning. If insufficient channels remain for satisfactory auto-tuning,1343then the navigation function may utilize the manually tuned stations if appropriate.

1344 4.3.1.6 VHF Radio Tuning

1345 4.3.1.6.1 Automatic Station Selection

- 1346When the navigation VHF radio receivers are available for automatic tuning, the1347navigation function should select and tune appropriate ground radio navigation1348facilities and use their position fixing data to refine the current navigation position.1349The navaids considered to be available for selection should be those contained1350within a usable distance from the estimated current aircraft position. This group of1351navaids, combined with any additional navaids defined by crew entry, should make1352up the set of navaids from which the best navigation aids can be drawn.
- 1353With scanning DME installations, up to five frequencies can be allocated to tune1354each interrogator and, depending upon the aircraft, may be designated for multiple1355DME range measurements, VOR/DME position fixing, ILS/DME or procedure-1356specified or pilot-selected navaids. If a procedure being flown has a specified1357navaid associated with it, then that navaid must be tuned and used for navigation1358purposes.
- 1359Station selection criteria should be designed to limit station switching activity to a1360minimum.

1361 4.3.1.6.2 Navaid Reasonableness Determination

1362DME range measurements received by the navigation function should be compared1363with that of the expected radio range measurement as a reasonableness test. When1364the comparison is outside of a reasonable tolerance, the data should be rejected1365and should not be used in the position computations.

1366 4.3.1.7 Real Time Clock

1367The system should receive real time (UTC) clock data from the GNSS. For back up1368purposes, the system should utilize a GNSS-updated (or manually synchronized)1369on-board clock (See Section 5.1.15), or provide an internal UTC time clock1370capability which is synchronized with the external input or may be manually1371initialized. In the event of loss of the external input, the internal time clock should1372maintain UTC within a ±1 second accuracy over the duration of the flight.

1373 4.3.2 Flight Planning

1374The flight planning facilities provide for the assembly, modification, and selection of1375active and secondary flight plans. Data can be extracted from the navigation data1376base that contains airline-unique company flight plans, navigational aids, airways,1377waypoints, published departure and arrival procedures, approaches along with1378associated missed approach procedures, etc. The selection of flight planning data is1379done through the MCDU, through the data link function or optionally via a graphical1380user interface. Flight plan capacity should be a minimum of 150 waypoints in each

1381 1382		flight plan. For longer range aircraft, a minimum of 200 waypoints in each flight plan is highly encouraged.
1383		COMMENTARY
1384 1385 1386 1387 1388 1389 1389		Various system implementations use different flight plan designations such as active, modified, temporary, primary, and secondary. Within this document, the following designations are used: Active, Modified, and Secondary. With respect to a flight plan, the terms Primary and Alternate are also used and refer to the series of waypoints in an active, modified, or secondary flight plan associated with the route to the primary and alternate destination respectively.
1391		
1392		
1393	4.3.2.1	Flight Plan States
1394 1395 1396 1397		Once a route is entered or selected as the active flight plan, it becomes the basis from which all guidance and advisory data is referenced. The secondary flight plan can have the same terminus or can be completely different with no shared waypoints.
1398 1399 1400 1401 1402 1403 1403		It should be possible to make modifications to the active flight plan and review the impact of those modifications without affecting the active flight plan. For crew review and evaluation, the ND should show the modified flight plan together with the unmodified active flight plan, with unique symbology to differentiate between them. Trajectory predictions should be available on the MCDU for the modified flight plan. During this modification process, all guidance and advisory data is still referenced to the unmodified active flight plan.
1405 1406 1407 1408 1409		This modification process should use a separate modified flight plan. When all the desired changes have been made, the crew must invoke the modified flight plan to replace the active flight plan. This action will replace the active flight plan and terminate the existence of the modified flight plan. All guidance and advisory data will immediately be referenced to the newly invoked flight plan.
1410 1411		Facilities should be provided to access the independent secondary flight plan and to copy this flight plan into the active flight plan when requested by the crew.
1412	4.3.2.2	Navigation Data Base
1413 1414 1415 1416 1417 1418		The Navigation Data Base (NDB) contains enroute, terminal, and airline custom defined data needed to support the flight management functions. It should be packed in a format to efficiently use available memory and to provide rapid access to the data. The format of the source data for the navigation data base is defined in ARINC 424. The supplier of the data, packing format, and maintenance of the data is to be specified by the supplier.
1419 1420		Section 9.2 of this document provides a more complete description of the content of the navigation data base.
1421 1422 1423 1424 1425		Each navigation data base is valid for a specific effectivity period and is updated typically on a 28-day cycle. The effectivity dates for a set of data are displayed for reference on the system's configuration definition page. The navigation data base effectivity period should be compared automatically with the current date and discrepancies annunciated.

1426 1427	The system should be capable of defining a flight path based on standard ARINC 424 path terminators as shown below:
1428	AF DME Arc to a Fix
1429	CA Course to an Altitude
1430	CD Course to a Distance
1431	
1432	CI Course to an Intercept
1433	CR Course to Intercept a Radial
1434	
1435	
1436	FC Course from Fix to Distance
1437	FD Course from Fix to DME Distance
1438	FM Course from Fix to Manual Term
1439	
1440	
1441	
1442	IF * Initial Fix PI Procedure Turn
1443 1444	RF * Constant Radius to a Fix
1444	TF * Track to Fix
1445	
1440	5
1447	VD Heading to Distance VI Heading to Intercept next leg
1449	VM Heading to Manual Termination
1450	VR Heading to Intercept Radial
1451	COMMENTARY
1452	Even though it is expected that in the future only a limited set of these
1453 1454	terminator types will be used, as defined (*) above and as specified in DO-236() and DO-283(), the advanced system should continue to
1455	support this list as long as procedures exist that use these terminator
1456	types.
1457	4.3.2.3 Supplemental and Temporary NDB Creation and Management
1458 1459	Besides waypoints and navaids contained in the data base, new waypoints that can be used in flight plan construction may be created in a number of ways.
1460	The system should support creation of new waypoints in the following ways:
1461	Point Bearing/Distance (PBD)
1462	 Point Bearing/Point Bearing (PB/PB)
1463	Along Track Fix
1464	Latitude/Longitude
1465	Dir-To Abeam Waypoint(s)
1700	

4.0 FLIGHT MANAGEMENT FUNCTIONS

The system may support creation of new waypoints in the following ways: 1466 Latitude/Longitude Crossing 1467 1468 **Unnamed Airway Intersection** 1469 Fix Intersection • **Runway Extension** 1470 1471 **FIR/SUA** Intersection 1472 These waypoints should be stored in the temporary navigation database. 1473 1474 Optional capability may be provided to allow waypoints, navaids, and airports to be 1475 directly created by the crew (or data link function) using a supplemental navigation data base facility. The supplemental NDB is retained indefinitely (until deleted). The 1476 1477 temporary data base is retained until flight complete (deleted automatically after 1478 touchdown). A supplemental and temporary navigation data base summary facility is provided for the crew to inspect, review, and select the current contents of these 1479 data bases. 1480 1481 4.3.2.3.1 PBD Waypoints 1482 Waypoints can be created as bearing/distance off existing named waypoints, 1483 navaids or airports. 1484 4.3.2.3.2 PB/PB Waypoints 1485 Waypoints can be created as the intersections of bearings from two defined 1486 waypoints. 4.3.2.3.3 Along Track Fix Waypoints 1487 Waypoints can be created by an Along Track Distance from an existing flight plan 1488 waypoint. The waypoint that is created is located at the distance entered and along 1489 the current flight plan path from the waypoint used as the fix. A positive distance 1490 1491 results in a waypoint after the fix point in the flight plan while a negative distance 1492 results in a waypoint before the fix point. 1493 4.3.2.3.4 Lat/Long Waypoints 1494 Waypoints can be created by entering in the latitude/longitude coordinates of the 1495 desired waypoint. 1496 4.3.2.3.5 Lat/Long Crossing Waypoints 1497 Waypoints can be created by specifying a latitude or longitude. In this case, a waypoint will be created where the active flight plan crosses that latitude or 1498 longitude. Latitude or longitude increments can optionally be specified in which case 1499 several waypoints are created that correspond to where the flight plan crosses the 1500 specified increments of latitude or longitude. 1501 1502 4.3.2.3.6 Unnamed Airway Intersection 1503 Waypoints can be created as the intersection of two airways. Waypoints will be 1504 created at all points where the airways cross.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1505 4.3.2.3.7 Fix Intersection Waypoints

1506Waypoints can be created by using a Fix Reference MCDU page. Reference1507information includes creation of abeam waypoints and creation of waypoints where1508the intersections of a specified radial or distance from a specified fix intersects the1509current flight plan is computed.

1510 4.3.2.3.8 Runway Extension Waypoints

1511Runway extension waypoints may be created by selecting a distance from a given1512destination runway. The new waypoint will be located that distance from the runway1513threshold along the reciprocal of the runway heading.

1514 4.3.2.3.9 Dir-To Abeam Waypoints

1520 1521

1522

1523

1524

1526

1527

1528

1544 1545

- 1515If a direct-to is performed, facilities should be provided to retain intervening1516waypoint information (e.g. speed/altitude constraints, waypoint wind data, etc.). If1517the abeam facility is selected, then temporary waypoints will be created at their1518abeam point on the direct to path. Any waypoint information associated with the1519original waypoint will be transferred to the new waypoints.
 - COMMENTARY
 - Care should be exercised in the implementation of the abeam waypoint function since other effects such as inappropriate course changes in the direct-to path and inclusion of abeam points in some data link waypoint lists may be undesirable.

1525 4.3.2.3.10 FIR/SUA Intersection Waypoints

The system may define waypoints at the intersection of Flight Information Region (FIR) boundaries and Special Use Areas (SUA) stored in the navigation data base in constructing flight plans.

1529 4.3.2.3.11 Suggested Waypoint Naming Convention

1530Flight plan waypoints created using the above capabilities should be given flight1531plan identifiers in accordance with the following conventions:

1532	Place/Bearing/Distance	wptnn
1533	Place-Bearing/Place-Bearing	wptnn
1534	Along Track Waypoint	wptnn
1535	Latitude/Longitude	wxxyzzz or xxwzzzy
1536	Crossing Fix	wxx or yzzz
1537	Airway Intercept	Xawy
1538	Dir-To Abeam Waypoint	wptnn
1539	Radial or abeam intercept	wptnn
1540	Runway extension	RXrwyhdg
1541	FIR/SUA intersection	FIRnn or SUAnn
1542	Upper case indicates actual characters u	used, and lower case indica

1542Upper case indicates actual characters used, and lower case indicates variable1543content as follows:

nn	FMS-determined sequence number
awy	Full identifier of airway following the intersection

1546	wpt First 3 characters of the base waypoint identifier
1547	w N or S as appropriate
1548	y E or W as appropriate
1549	xx degrees of latitude
1550	zzz degrees of longitude
1551	rwyhdg two-digit nominal runway heading
1552	
1553	COMMENTARY
1554 1555 1556	To minimize the need for the crew to resolve duplicate waypoints, the system designer should choose naming conventions or methods that are unlikely to match waypoints in the Navigation Database.
1557	4.3.2.4 Lateral Flight Planning
1558	4.3.2.4.1 Flight Plan Construction
1559	Flight plans can be constructed in a variety of ways:
1560	Terminal Area procedures
1561	Airways
1562	Pre-stored company routes
1563	Waypoints
1564	Navaids
1565	Runways
1566	 Supplemental/Temporary waypoints
1567	Combinations thereof
1568 1569 1570	These selections may be strung together by menu selection from the NDB or by specific edit actions. Flight plans can also be constructed and edited through the data link function.
1571	4.3.2.4.2 Terminal Area Procedures
1572	The following navigation database procedure types should be supported:
1573	 Standard Instrument Departure (SID)
1574	Engine-Out SID
1575	 Standard Terminal Arrival Route (STAR)
1576	 RNAV/RNP Approach including LP/LPV (SBAS)
1577	GPS (GNSS) Approach
1578	ILS/LOC Approach
1579	MLS Approach
1580	GLS (GBAS) Approach
1581 1582	The following navigation database approach procedure types may be supported based on individual system or customer requirements:
1583	RNP Authorization Required (RNP-AR)

1584	• VOR
1585	Non-Directional Beacon
1586	Localizer Directional Aid (LDA)
1587	Instrument Guidance System (IGS)
1588	 RNAV Visual Flight Procedure (RVFP) / Visual Guidance Approach (VGA)
1589	Circling Approach
1590	Visual Prescribed Track (VPT)
1591	
1592 1593	The following navigation database SID procedure types may be supported based on individual system or customer requirements:
1594	RNP Authorization Required (RNP-AR)
1595	
1596	4.3.2.4.3 Flight Plan Editing
1597 1598	The flight planning function offers various ways to modify the flight plan at the crew's discretion. These are described in the following sections.
1599	4.3.2.4.3.1 Direct/Intercept Option
1600 1601 1602 1603 1604 1605 1606 1607	The direct/intercept feature allows the crew to select any fixed waypoint as the active waypoint and for the intercept option, to select the desired course into this waypoint. If the direct-to option is selected, the waypoint becomes the active waypoint and the flight plan that results goes direct from the current aircraft position to that waypoint. Any waypoints in the flight plan before that waypoint are deleted from the flight plan. Whenever the intercept option is selected on a given fixed waypoint, either the direct-to course or an entered course can be selected as the course to that waypoint.
1608	4.3.2.4.3.2 Entry of Waypoints
1609 1610 1611 1612 1613 1614	Waypoints may be entered at any point in the flight plan provided it results in a valid leg combination. Refer to ARINC 424 for valid leg combinations. These waypoints may be from the navigation data base, supplemental data base, or temporary data base. It is possible that more than one waypoint uses the same identifier. Therefore, facilities must be provided to display a sorted list (based on distance from the aircraft) of the coordinates for all selections and allow the crew to make the choice.
1615	4.3.2.4.3.3 Flight Plan Linking
1616 1617	Facilities should be provided to select portions of the flight plan and re-link that portion with another portion of the flight plan.
1618	4.3.2.4.3.4 Flight Plan Delete
1619 1620	Facilities should be provided to allow the use of a delete function to remove unwanted portions of a flight plan.
1621	4.3.2.4.3.5 Procedure Selection
1622 1623	Selecting procedures from the data base will replace a previous procedure selection, retaining the active waypoint if it was part of the previous procedure

- 1624 selection and optionally retaining constraints previously sent by the ATC on 1625 waypoints part of the selected procedure.
- 1626

1627 4.3.2.4.3.6 Holding Patterns (HM Leg)

1628Holding patterns can be defined by data base procedure or manually specified at1629the current position or at a selected waypoint. All parameters for holding patterns1630are editable including inbound course, turn direction, and leg time/length.1631flyover/flyby, hold speed,

1632 4.3.2.4.3.7 Flight Plan Editing using Data Link

- 1633Facilities should be provided to perform flight plan construction and editing using1634both AOC and ATC data link. If a flight plan data link is received, then a message is1635issued to the crew of the pending request. Facilities to review and to accept or reject1636the data link action must be provided.
- 1637 4.3.2.4.3.8 Flight Plan Editing using a Pointing Device
- 1638 [Deleted by Supplement 5]
- 1639 4.3.2.4.4 Flight Planning Support for ATM
- 1640 [Deleted by Supplement 5]

4.0 FLIGHT MANAGEMENT FUNCTIONS

1641 4.3.2.4.5 Missed Approach Procedures

1642	The flight planning function also allows missed approach procedures to be included
1643	in the flight plan. These missed approach procedures can either come from the
1644	navigation data base where the missed approach is part of a published procedure,
1645	in which case they will be automatically included in the flight plan. Additional
1646	waypoints can be added beyond the MAP to be flown in the event of a missed
1647	approach. Automatic guidance will be available upon activation of the missed
1648	approach.

1649 4.3.2.4.6 Lateral Offset Construction

1650The flight planning function should support the creation of a parallel offset path via1651specification of a direction (left or right of path) and distance. For the offset distance,1652the system should support a maximum value of at least 20 NM with a resolution of16530.1 NM for at least the first 10 NM. Multiple pre-planned parallel offsets may be1654supported but are not required.

1655	COMMENTARY
1656 1657 1658 1659 1660 1661 1662 1663	DO-236() and DO-283() require the system to support a resolution of 0.1 NM. The above requirement ensures that the manual entry of a parallel offset will support the 0.1 NM resolution. However, it should be noted that at the time of publication of this characteristic, some datalink systems industry standards do not currently support such resolution. For instance, DO-258A, which specifies the FANS 1/A+Interoperability Requirements, currently supports only a 1 NM resolution.
1664 1665	The system should allow initiation of the parallel offset at the current aircraft position or at a specified downpath waypoint.
1666 1667	The system should allow termination of the parallel offset: immediately when commanded by the crew, at a specified downpath waypoint, or automatically:
1668	 at the first fix of an instrument approach procedure (IAF, IF or FAF); or
1669	 when a leg type other than TF, CF, DF, RF is encountered; or
1670 1671	 when the offset path is not flyable (i.e. when a combination of ground speed, track change geometry and waypoint proximity forces course reversals); or
1672	when reaching a lateral discontinuity

- 1673When transitioning to and from the offset path, a 30-degree intercept angle should1674be used by default. Entry or selection of another intercept angle may be optionally1675provided.
- 1676The system should provide the capability to offset predefined curved paths such as1677Fixed Radius Transitions (FRT) and optionally, RF legs.
- 1678When executing a parallel offset, all performance requirements and constraints of1679the original path should be applicable to the offset path. Guidance parameters (e.g.1680cross-track deviation, distance-to-go) should be referenced to the offset path and1681offset waypoints. The system should provide a means for display of both the parallel1682offset path and the original path. Display of the transition paths between the original1683path and the parallel path is highly recommended.
- 1684 Refer to DO-236() and DO-283() for additional lateral offset requirements.

1685		
1686	4.3.2.4.7	Magnetic Variation
1687 1688 1689 1690		The system should have the capability of assigning a magnetic variation (MagVar) at any fix/location when operations are conducted relative to Magnetic North. The MagVar value may be retrieved from the NDB, or in the absence of an NDB-specified value, computed using an internal magnetic reference.
1691		
1692		COMMENTARY
1693 1694 1695		DO-283() provides requirements for the treatment of MagVar on terminal procedures, airports, leg types, en route areas and an internal set of magnetic variation tables.
1696 1697 1698 1699 1700 1701		ARINC 424 specifies NDB requirements for MagVar on certain leg types. Additionally, ARINC 424-19 introduced the concept of a Procedure Design MagVar (PDMV) which attempts to relieve the confusion on which MagVar value to use (when the various options conflict) by coding an appropriate MagVar value on the respective instrument procedure or individual procedure legs.
1702		
1703 1704		The system should incorporate a hierarchy to determine the use of MagVar sources in the following order (note that 1, 2 and 3 will be coded in the NDB):
1705 1706 1707 1708		 If the leg is part of a navigation database terminal area procedure, the MagVar to be used is the PDMV for the procedure or individual procedure legs, when available.
1709 1710 1711 1712 1713 1714		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination exists for the leg, the MagVar to be used is the recommended VHF navaid magnetic declination of the leg.
1715 1716 1717 1718 1719 1720		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination does not exist for the leg, the MagVar to be used is the MagVar of record for the airport.
1721 1722 1723 1724		 If the leg is not part of a procedure and the terminating fix is a VOR, the MagVar to be used is the station declination of the VOR.
1725 1726 1727		 If the leg is not part of a procedure and the terminating fix is not a navaid, the MagVar to be used is defined by the system using an internal model (See Section 9.5).
1728		
1729 1730		The system should have a means to accept an input or entry from the crew of the selected heading reference (Magnetic or True). For a given leg, when a heading

1731 1732 1733 1734 1735		reference has not been assigned in the navigation database, the leg bearing should be displayed in the selected heading reference; when a heading reference has been assigned, the leg bearing should be displayed in the assigned reference. The system should provide an indication to the crew when the selected heading reference differs from the (assigned) reference of the active leg.
1736		COMMENTARY
1737 1738 1739 1740		Considerations to provide the crew with a timely reminder in advance of a potential heading discrepancy are encouraged. Considerations which allow the crew to specify the reference of bearing entries are also encouraged.
1741		Refer to DO-283() for additional requirements and considerations.
1742	4.3.2.5	Vertical Flight Planning
1743 1744 1745 1746		Vertical flight planning consists of entry and deletion of altitude and speed constraints at waypoints (Section 4.3.2.5.2 and 4.3.2.5.3) as well as other parameters (listed below) which are used by the Vertical Guidance, Trajectory Predictions, and Performance Calculations functions.
1747 1748		The system should provide for entry and modification of the following performance parameters:
1749		 Zero Fuel Weight (or Gross Weight)
1750		Block Fuel
1751		Cost Index
1752		Cruise Altitude
1753		Climb Mode (Section 4.3.4.1.1)
1754		Cruise Mode (Section 4.3.4.1.2)
1755		Descent Mode (Section 4.3.4.1.3)
1756		Hold Pattern Speed
1757		Airport Speed Limit
1758		Thrust Reduction Altitude/Height
1759		Climb Acceleration Altitude/Height
1760		RTA Waypoint, Time, and Tolerance (Section 4.3.3.2.4 & 4.3.3.2.5)
1761		Climb and Descent Winds and Temperatures (Section 4.3.2.5.1)
1762		Cruise Wind at Waypoint (Section 4.3.2.5.1)
1763		Transition Altitude/Level
1764		Destination QNH
1765		Takeoff Derate(s)
1766		Climb Derate
1767		
1768 1769		All of these parameters should be considered in the trajectory predictions and performance function computations.
1770		The system may provide for entry and modification of the following parameters:
1771		Maneuver Margin

1772	Min Cruise Time
1773	 Min Rate of Climb (All-Engine - Max Climb thrust rating)
1774	 Min Rate of Climb (All-Engine - Max Cruise thrust rating)
1775	 Min Rate of Climb (Engine-Out – Max Continuous thrust rating)
1776	 Drag Factor and Fuel Flow Factor
1777	Anti-Ice Bands
1778	Tropopause Altitude
1779	Minimum Step Climb Size
1780	 Preplanned Cruise Altitude Step(s)
1781	Optimal Cruise Altitude Step(s)
1782	Cruise-Climb Block Altitude (Drift-Up Cruise)
1783	Preplanned Cruise Speed Changes
1784	 Multiple Cruise Winds at Waypoints (Section 4.3.2.5.1)
1785	 Cruise Temperature at Waypoints (Section 4.3.2.5.1)
1786 1787	When supported, these parameters should be considered in the trajectory predictions and performance function computations.
1788	4.3.2.5.1 Wind, Temperature, and Atmospheric Model
1789 1790 1791 1792	Wind and temperature may be entered via the MCDU or data link. The wind model for the climb phase should be a set of wind magnitudes and bearings that are entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed wind.
1793 1794 1795	The temperature model for the climb phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.
1796 1797 1798 1799	Wind models for use in the cruise phase should allow for the entry of one or more winds (altitude, magnitude, and bearing) at a waypoint. Systems should merge these entries with current winds obtained from sensor data in a method which gives a heavier weighting to sensed winds close to the aircraft.
1800 1801 1802 1803 1804 1805	Temperature models for use in the cruise phase may allow for entry of a temperature and altitude at a waypoint or an ISA deviation at a waypoint. As a minimum, the system should allow for entry of a single cruise temperature or ISA deviation value that applies throughout cruise. Systems should merge these entries with current temperature (ISA deviation) obtained from sensor data in a method which gives a heavier weighting to sensed values close to the aircraft.
1806 1807 1808	The wind model used for the descent phase should be a set of wind magnitudes and bearings entered for different altitudes. The value at any altitude should then be computed from these values, and merged with the current sensed wind.
1809 1810 1811	The temperature model for the descent phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.
1812 1813	Temperature should be based on the International Standard Atmosphere (ISA) with an offset (Δ ISA) obtained from pilot entries or the actual sensed temperature.

1814 1815		Likewise, the tropopause altitude (altitude at which constant temperature begins) may be crew enterable (with 36,089 ft. as default).
1816		
1817	4.3.2.5.2 Wa	ypoint Altitude Constraints
1818 1819 1820 1821 1822		The system should allow insertion of AT, AT or ABOVE, AT or BELOW, and WINDOW (i.e. both an AT or ABOVE and AT or BELOW) altitude constraints at waypoints in the flight plan. Waypoint altitude constraints may be inserted directly via crew entry or indirectly via selection of a procedure in the navigation database. The system should allow for entry and modification of WINDOW altitude constraints.
1823		
1824		COMMENTARY
1825 1826 1827 1828 1829		Historically, crew entry and modification of WINDOW altitude constraints was not possible on some systems. On such systems, WINDOW constraints could only be inserted via selection of a navigation database procedure. Per DO-283(), the system is required to support crew entry of each type of altitude constraint.
1830		
1831 1832		The system should avoid automatic deletion of altitude constraints above cruise altitude.
1833		
1834		COMMENTARY
1835 1836 1837 1838 1839 1840 1841		Upon cruise altitude modification or procedure insertion, some systems will automatically delete altitude constraints that are above cruise altitude. This design has led to airline and ATC complaints as it is susceptible to order of operation and situational awareness issues. System designs where altitude constraints are retained and ignored and/or where altitude constraints are retained and the cruise altitude modified are preferable.
1842		
1843 1844 1845 1846 1847 1848 1849 1850		The system should designate altitude constraints as either CLIMB constraints or DESCENT constraints. The system should designate an altitude constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. The system should designate an altitude constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate additional rules to designate an altitude constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.
1851		
1852 1853 1854 1855		The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4-1 below.
1856		

Altitude	Altitude Constraint Phase/Applicability	
Constraint Type	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT or ABOVE	Do not go below AT and AFTER	Do not go below PRIOR to and AT
AT	Do not exceed PRIOR to, cross AT, do not go below AFTER	Do not go below PRIOR to, cross AT, do not exceed AFTER
WINDOW	Do not exceed upper bound PRIOR to and AT Do not go below lower bound AT and AFTER	Do not exceed upper bound AT and AFTER Do not go below lower bound PRIOR to and AT

1857 1858	Table 4-1 Altitude Constraint Applicability
1859	
1860	COMMENTARY
1861 1862	PRIOR to, AFTER, and AT in Table 4-1 refer to sequence of the waypoint with the altitude constraint.
1863	
1864 1865 1866 1867 1868 1869 1870	The descent path is typically constructed using a series of straight line segments. For waypoints with a descent AT constraint, the descent path will typically cross at the specified altitude. When flown using the Vertical Guidance function, some systems may cross above or below the altitude constraint value due to a vertical fly-by transition. DO-283() defines the acceptable altitude deviation for a vertical fly-by transition.
1871	
1872 1873 1874 1875 1876 1877 1878 1879	Upon procedure selection, most systems combine common waypoints between departure, arrival, and/or approach segments. In rare situations, the altitude constraint coded in one procedure differs from the altitude constraint coded in the other procedure (e.g. STAR and APPROACH). When this occurs, systems may use different logic to meld the altitude constraints; however, the system should ensure the altitude constraint on the common waypoint always originates from one of the currently selected navigation procedures (provided the crew did not modify the altitude constraint).
1880	
1881 1882 1883 1884 1885	The system should provide a means to initiate a vertical direct-to, without affecting the lateral path definition, to a vertically constrained fix in descent, by deleting any altitude constraints prior to the vertical direct-to fix. The system should inhibit deletion of altitude constraints on waypoints which are part of the final approach (i.e. FAF, MAP/RW, and step-down fixes) via a vertical direct-to.
1886	COMMENTARY
1887 1888	This allows the aircraft to proceed from present altitude direct-to a specified altitude in the flight plan. When in climb, systems may or

1889may not provide a means to delete all altitude constraints between1890the aircraft and a vertically constrained fix.18014.3.2.5.2. Wowneint Speed Constraints

1891 4.3.2.5.3 Waypoint Speed Constraints

- 1892The system should allow insertion of AT, AT or ABOVE, and AT or BELOW speed1893constraints at waypoints in the flight plan. Waypoint speed constraints may be1894inserted directly via crew entry or indirectly via selection of a procedure in the1895navigation database.
- The system should designate speed constraints as either CLIMB constraints or 1896 1897 DESCENT constraints. The system should designate a speed constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. 1898 1899 The system should designate a speed constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate 1900 additional rules to designate a speed constraint as either a CLIMB or DESCENT 1901 constraint when the constraint is on a waypoint which is not part of a procedure 1902 listed above. 1903
- 1905The system should apply CLIMB constraints to the takeoff and climb phases of flight1906in accordance with Table 4-2 below. The system should apply DESCENT1907constraints to the descent and approach phases of flight in accordance with Table19084-2 below.

1	000	
L	909	

Speed Constraint	Speed Constraint Phase/Applicability	
Туре	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT or ABOVE	Do not go below AT and AFTER	Do not go below PRIOR to and AT
AT	Do not exceed PRIOR to, cross AT, do not go below AFTER	Do not go below PRIOR to, cross AT, do not exceed AFTER

1910 1911	Table 4-2 Speed Constraint Applicability
1912	
1913	COMMENTARY
1914 1915	PRIOR to, AFTER, and AT in Table 4-2 refer to sequence of the waypoint with the altitude constraint.
1916	
1917 1918 1919 1920 1921 1922	In accordance with Table 4-2, the system should apply ABOVE climb speed constraints after sequence of the speed constraint waypoint until transition to the climb MACH or transition to cruise flight phase. The system should apply ABOVE descent speed constraints upon transition to the descent CAS (from the cruise flight phase or descent MACH) until sequence of the speed constraint waypoint.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1923BELOW constraints may be applied in cruise flight phase in accordance with Table19244-2. This is recommended for missed approach and low(er) cruise altitude scenarios1925where procedural waypoint speed constraints may operationally be encountered1926while in cruise.

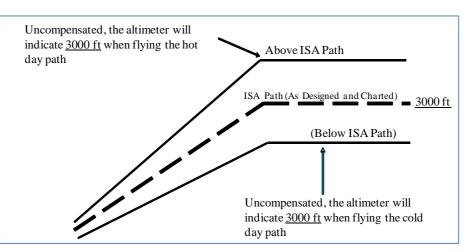
1927

1928 Upon procedure selection, most systems combine common waypoints between 1929 departure, arrival, and/or approach segments. In rare situations, the speed constraint coded in one procedure differs from the speed constraint coded in the 1930 1931 other procedure (e.g. STAR and APPROACH). When this occurs, systems may use different logic to select or meld the speed constraints; however, the system should 1932 ensure the speed constraint on the common waypoint always originates from one of 1933 1934 the currently selected navigation procedures (provided the crew did not modify the speed constraint). 1935

1936 4.3.2.5.4 Temperature Compensation

1937 For Baro-VNAV approach operations, unless compensated for temperature, the 1938 system can only be used within the temperature limitations (if any) published on 1939 approach procedure charts. To enable baro-VNAV approach operations outside published temperature limits or operations in non-ISA temperature environments, 1940 1941 the preferred method is for the system to correct for the effects of temperature on the barometric altitude upon crew entry of a destination temperature. Systems 1942 1943 providing automatic temperature compensation to the baro-VNAV guidance must comply with DO-236() Appendix H and DO-283() Appendix H. 1944

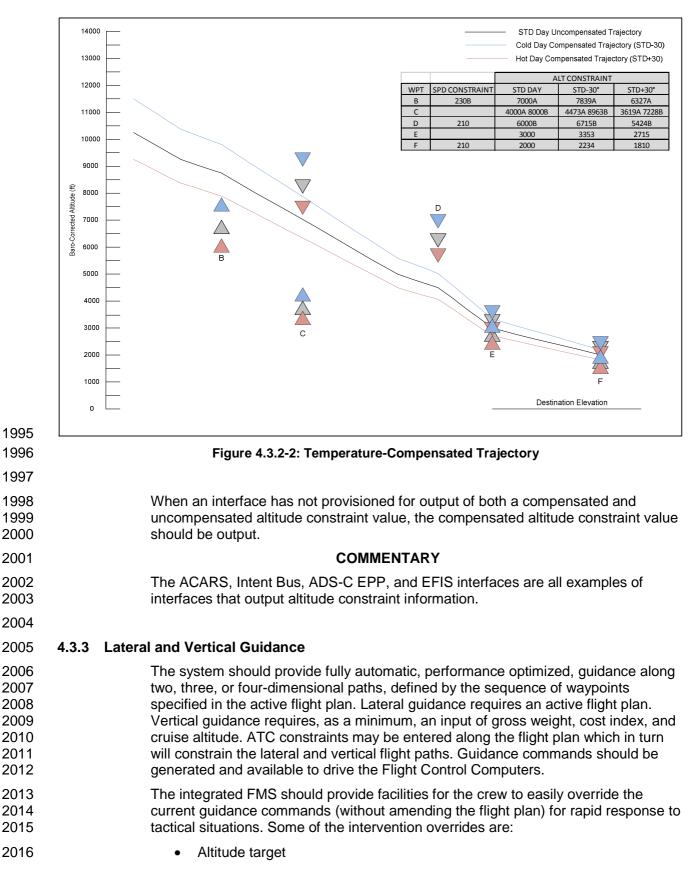
COMMENTARY


1947 The barometric altimeter indication is influenced by temperature 1948 variations. During cold temperature operations (below ISA), the airplane's true altitude is lower than the indicated altitude. Similarly, 1949 1950 during hot temperature operations (above ISA), the airplane's true altitude is higher than the indicated altitude. This results in an aircraft 1951 flying a vertical path angle shallower than (or steeper than for hot 1952 temperature) the designed vertical path angle (or gradient) without an 1953 1954 indication in the flight deck. 1955 1956 Temperature compensation corrects altitude constraints and vertical 1957 angles to those intended by the procedure designer. When the aircraft flies the compensated altitudes, the aircraft is actually flying the 1958 intended descent/approach path. However, the indicated altitude will 1959 be different than the charted value. 1960

1961

1945

1962 1963


1964

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.2-1 Temperature Effects on Altimetry

1965 The system should use a flight crew-entered temperature and standard temperature lapse rate to compute altitude and flight path angle corrections accounting for the 1966 bias in the barometric altimetry system indications caused by deviations from ISA at 1967 the aerodrome's field elevation. The temperature compensation method used 1968 should be within 10% of the "accurate method" as described in DO-283(). These 1969 corrections should be applied, at a minimum, to the altitudes and flight path angles 1970 contained in any approach procedure selected from the navigation database from 1971 1972 the initial approach fix (IAF) through the missed approach procedure up to and including the missed approach holding point (MAHP), and including altitude-1973 1974 terminated legs in the missed approach segment. For all approach types (including SBAS, GLS, ILS, MLS) temperature compensation should be applied to all 1975 1976 segments where vertical guidance is dependent on barometric altimetry, including the FAF altitude. 1977 When temperature compensation has been applied, altitudes that are manually 1978 1979 entered into a procedure by the flight crew should not be temperature compensated. 1980 The system should clearly differentiate the display of temperature compensated 1981 altitudes from uncompensated altitudes. 1982 Since the MDA/DA is not an assigned altitude, this procedural altitude is eligible for 1983 temperature compensation. When the system loads the uncompensated MDA/DA 1984 from the database or the flight crew enters it, the system should provide a means to determine and display the temperature compensated MDA/DA. 1985 1986 When temperature compensation adjusts the vertical path, the system should 1987 ensure that the path construction precludes the insertion of a climb segment in the descent path. This will typically apply when transitioning from a path segment based 1988 upon uncompensated fix altitudes to a path segment whose altitudes have been 1989 1990 compensated for temperature. When temperature compensation results in an 1991 altitude conflict, the system should provide an annunciation suitable to prompt flight crew action. 1992 1993 1994

2017	Speed target
2018	Course/Heading target
2019	Vertical Speed target
2020 2021 2022	This temporary override should replace the applicable guidance output until the override is terminated at which point the internally generated guidance commands should resume.
2023	COMMENTARY
2024 2025 2026	Different autoflight system implementations may allocate these intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AFCS functions.
2027	4.3.3.1 Lateral Guidance and Path Construction
2028 2029 2030 2031 2032 2033 2034 2035	The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures.
2036 2037 2038 2039	The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances.
2040 2041 2042	The FMS should support lateral guidance along a geodesic track between two points without any geographical area restriction, including polar areas - north of 85N and south of 85S.
2043	COMMENTARY
2044 2045	Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.
2046	4.3.3.1.1 Lateral Reference Path Construction
2047 2048 2049 2050 2051 2052	The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.
2053	COMMENTARY
2054 2055 2056 2057	Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the reference path for these leg types.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2058 4.3.3.1.2 Lateral Leg Transitions

2059 2060 2061 2062 2063	Leg transitions should provide for a continuous path between legs and generally should be determined by the course change between the legs, the type of next leg, waypoint overfly requirement, bank angle limitations, and the predicted speeds for the transition. Leg transition paths must be constructed within the airspace limitations specified in DO-283() for operation within RNP airspace.
2064 2065	When a lateral path transition cannot be constructed per the leg definition, the system should provide an indication to the crew.
2066	There are three categories of turns recognized in DO-283():
2067 2068	 Fly-by turns- Subdivided into 2 categories, high altitude (≥FL195) and low altitude (<fl195)< li=""> </fl195)<>
2069	2. Fly-over turns
2070	3. Fixed radius transitions
2071	COMMENTARY
2072 2073 2074 2075 2076 2077 2078	DO-283() assumes that course changes at a fly-by fix will not exceed 120 degrees for low altitude operation (<fl195) (≥fl195).="" 70="" a="" aircraft="" altitude="" and="" as="" assumption="" change,="" course,="" crew="" database-defined="" definitions,="" degrees="" due="" enroute="" factors="" flight="" for="" high="" impractical="" is="" leg="" length.<="" make="" may="" modifications="" operation="" performance,="" procedure="" reasonable="" route="" such="" td="" the="" this="" to="" while=""></fl195)>
2079	
2080	4.3.3.1.2.1 Fly-By Turns
2081 2082 2083 2084 2085 2085 2086 2087 2088	DO-283() provides the requirements for the fly-by leg transition. DO-283() relates the radius of the turn to ground speed and bank angle and gives a theoretical transition area within which the aircraft should remain throughout the turn. Remaining within the transition area is dependent upon the course change assumptions noted above and the area may not apply if the course change is exceeded. In such exceedance cases, the path to be flown should be displayed to the flight crew. For normal fly-by transitions (i.e. course changes less than 135 degrees), the fix should sequence at the lateral bisector.
2089	
2090	COMMENTARY
2091 2092	When situations are encountered outside the DO-283() assumptions noted above, the following guidelines are offered:
2093 2094 2095 2096 2097 2098 2099 2099 2100	For fly-by turns with track changes less than 135 degrees, a circular transition path should be constructed tangential to the current and the next legs. The leg transition should occur at the bisector. For track changes greater than 135 degrees, a circular path should be constructed to be tangential to the current leg and a line normal to the current leg emanating from the waypoint. This path should be extended to provide a 40- to 50-degree intercept to the next leg. See Figure 4.3.3-1 below.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2101	The fly-by leg transition reduces track miles while also enhancing ride
2102	quality. However, enroute air traffic controllers have noted that some
2103	aircraft begin the turn initiation earlier than expected and in some
2104	cases have conflicted with other traffic. The criteria specified in DO-
2105	283() are minimum requirements and can result in a generous
2106	theoretical transition area. It is recommended that equipment
2107	manufacturers give ample consideration to airspace consumption
2108	when selecting nominal bank angles.
2109	when selecting horninal bank angles.



Figure 4.3.3-1 Fly-By Turn > 135 Degrees

- 2110 2111
- 2112

2113 4.3.3.1.2.2 Fly-Over Turns

- 2114When a fly-over waypoint is specified, the leg transition should occur at the2115waypoint prior to transitioning to the next leg. For fly-over waypoints, the next leg2116type should define the transition path. When the fly-over waypoint is sequenced, the2117lateral guidance function should command an intercept to capture the next leg. The2118intercept should be based upon aircraft performance and geometry parameters2119such as ground speed, leg length, and bank angle limitations.
- 2120

4.0 FLIGHT MANAGEMENT FUNCTIONS

COMMENTARY

- 2122DO-283() discourages the use of fly-over waypoints since the path is2123not repeatable and RNP containment cannot be assured. If fly-over2124transitions are used, for example at the missed approach point, the2125leg following the fly-over fix is assumed not to have the requirements2126of RNP applied to it. It is recognized, however, that some terminal2127area operations may require the use of fly-over waypoints followed by2128a defined leg to the next waypoint.
- 2129

2138

2139 2140

2141

2142

2143 2144

2145

2146

2147

2149 2150

2151

2152

2153

2154 2155

2156 2157

2158

2121

2130 4.3.3.1.2.3 Fix Radius Transitions (FRT)

2131The FRT is intended to define a fixed radius transition path between airway legs in2132the enroute sector when parallel routes are closely spaced at the transition waypoint2133and the fly-by turn is not compatible with separation criteria. DO-283() specifies the2134geometry and method of computing the fixed turn radius. The FRT is defined in2135terms of the track change, turn radius, and lead distance. For those enroute airways2136using an FRT, the turn radius is coded in the ARINC 424 navigation database for2137the respective airway where the FRT is specified.

COMMENTARY

ICAO Doc 9613: *Performance-Based Navigation Manual*, lists two possible radii, 22.5 NM for high altitude routes (≥FL 195) and 15 NM for low altitude routes. Although these radii are suggested and the actual radii coded in the navigation database could vary, it is expected that airspace designers will abide by these guidelines so that aircraft bank angle limitations in current systems will be respected.

2148 Special Lateral Path Construction

All procedural paths such as hold patterns, procedure turns and procedure holds should be continuous paths that allow accurate reference paths to be constructed for the complete flight plan. The construction of these paths must meet the airspace limitation and path geometry requirements specified in DO-236().

For hold pattern entries, these paths contain all the geodesic and curved segments of the entry (including transition from the prior leg) and may optionally be displayed on the ND before the entry maneuver. After the entry is complete, subsequent path updates should account for changes in airspeed, wind speeds and altitude of the airplane. Hold entry paths must conform to the airspace limitations specified in DO-236().

For holding pattern exits which require a sequence of the hold fix, the lateral path should be updated to include the appropriate fly-by transition to the following leg and the paths must conform to the airspace limitations specified in DO-236() for hold exits. For other holding pattern exits (e.g. a direct-to) the lateral path should be updated accordingly, without a return to the hold fix, and should comply with airspace limitations specified in RNP MASPS for those types of maneuvers.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2165 Similar path construction and path prediction techniques are used when procedure 2166 turns and procedure holds are part of the flight plan.

2167 4.3.3.1.4 Lateral Guidance Roll Command

2168Based on the aircraft current state provided by the navigation function and the2169stored reference path, lateral guidance should compute a roll steering command2170that is both magnitude and rate limited. This roll command is computed to capture2171and track the geodesic and curved path segments that comprise the reference path2172as displayed on the ND.

2173 4.3.3.1.5 Lateral Guidance Output Parameters

- 2174Lateral guidance should compute and output the following parameters related to the2175active flight plan:
- Roll command
 - Distance to go (active waypoint)
 - Bearing to go (active waypoint)
- Desired Track
- Cross track error
 - Track angle error

2182 4.3.3.1.6 Lateral Capture Path Construction

2183At engagement, a capture path may be constructed that guides the airplane to the2184active leg. This capture path should capture the active guidance leg such that2185smooth path acquisition occurs without excessive roll activity or turns in the wrong2186direction.

2187 4.3.3.1.7 Localizer/MLS Capture

[Deleted by Supplement 5]

2189 4.3.3.1.8 Earth Reference Model

- 2190A WGS-84 based earth model is the standard reference earth model. If geodesic2191path definition based on WGS-84 is not employed (e.g. spherical earth model), any2192differences between the selected earth reference model and the WGS-84 earth2193model must be included as part as the path definition error.
 - Refer to DO-236() and/or DO-283() for additional details.
- 2195

2194

2177

2178

2181

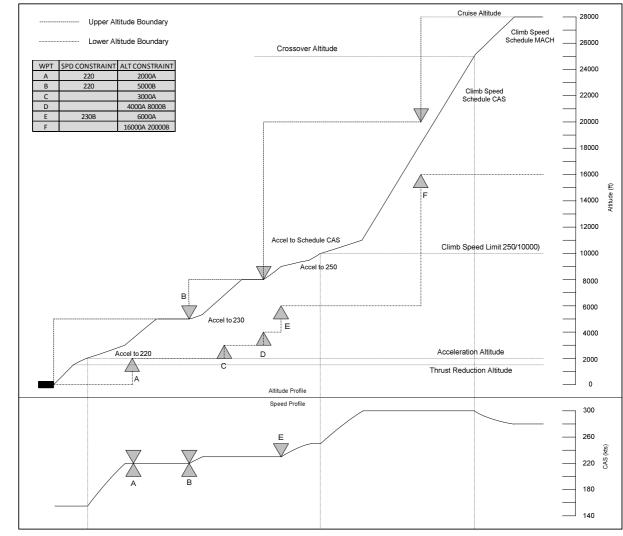
2188

2196 **4.3.3.2 Vertical Guidance and Trajectory Predictions**

2197 4.3.3.2.1 Trajectory Predictions

- 2198The Trajectory Predictions function computes and stores a 4D trajectory which2199represents a prediction of the aircraft state (e.g. distance, altitude, airspeed, fuel,2200time) at various points in the flight plan which is used for display and downlink.2201Trajectory Predictions also computes a reference descent and approach trajectory2202which is used by Vertical Guidance for control in descent and approach.
- 2203The system should compute a complete aircraft trajectory prediction along the2204specified lateral route. When in preflight and a destination exists in the flight plan,2205the trajectory should include a takeoff segment, a climb segment, a cruise segment

	4.0 FLIGHT MANAGEMENT FUNCTIONS
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219	which may include cruise altitude changes (cruise steps), a descent segment, and an approach segment to the destination. When enroute, the trajectory should include segments for the remaining phases of flight. The trajectory may include predictions of the missed approach when included in the flight plan. The trajectory should be continuous from the departure airport (or present position if enroute) to the destination airport. The takeoff, climb, and cruise segments should be a prediction (i.e. model) of how lateral guidance and vertical guidance will guide the aircraft from present position along the specified route toward the cruise altitude. The descent and approach segments should be defined in two parts: (a) a reference descent and approach path that defines a Top of Descent location as well as reference altitudes and airspeeds for all points between Top of Descent and the destination and (b) a prediction of how VNAV will guide the aircraft to acquire and track this descent and approach reference path (both altitude and airspeed) once the aircraft is in descent or approach.
2220	COMMENTARY
2221	COMMENTARY
2222 2223 2224 2225 2226 2227 2228 2229	The descent/approach may be thought of as two separate trajectories, one which is a reference and defines <i>path</i> altitudes and speeds (i.e. where the aircraft should be) and one which is a prediction based on the aircraft present position and defines <i>predicted</i> altitudes and speeds (i.e. where the aircraft will be if prediction assumptions are valid). It should be noted that some systems display the predicted descent altitudes and speeds while others display the reference path altitudes and speeds.
2230	
2231	The system should compute a vertical trajectory for the following flight plans:
2232	Active
2233	Modified
2234	Secondary
2235	
2236 2237	For each point in the vertical trajectory predictions, the following data should be computed, stored, and made available to other functions:
2238	Predicted Altitude
2239	Predicted Speed
2240	 Estimated Time of Arrival (ETA) or Estimated Time Enroute (ETE)
2241	Predicted Fuel Remaining
2242	
2243	Refer to Section 4.3.3.2.3 for accuracy requirements related to the ETA.
2244	
2245 2246 2247	In addition, for each point between Top of Descent and the destination (inclusive), the following data should be computed, stored, and made available to other functions:
2248	Reference Path Altitude


2249	Reference Path Speed
2250	
2251	The vertical trajectory predictions should include points at:
2252 2253 2254 2255	 the lateral sequence point of each waypoint in the primary flight plan speed change points (start and end of an acceleration/deceleration) Crossover Altitude Top of Climb
2256 2257 2258 2259 2260	 Step Climb End of Descent Top of Descent Level-Off Start Level-Off End
2261	 Descent Path Intercept Point (when off-path in descent)
2262	
2263	COMMENTARY
2264 2265 2266 2267 2268	The above points are the minimum required to support display and datalink requirements including ADS-C Extended Projected Profile. Additional points may be necessary to support specific capabilities or to obtain a desired accuracy via linear interpolation at any arbitrary point in the vertical trajectory.
2269	
2270	The vertical trajectory predictions should be based on the following inputs:
2271 2272 2273	 Lateral flight plan elements (Section 4.3.2.4) Vertical flight plan elements (Section 0 Measured and forecast winds/temperatures (Section 4.3.2.5.1)
2274 2275	 Lateral path including curved transitions between legs, holding pattern entries and lateral offsets (Section 4.3.3.1)
2276	 Models of the airframe lift and drag characteristics
2277 2278	 Models of airframe speed and altitude limitations (e.g. stall, buffet, VMO, MMO)
2279	 Models of the engine thrust and fuel flow characteristics
2280	Aircraft weight and center of gravity
2281	Crew selected and preselected guidance modes
2282	
2283 2284 2285	The vertical trajectory predictions should be updated when an edit is made to a flight plan element or other input into vertical trajectory predictions. Refer to Section 3.4.2 for specific response time requirements related to these modifications.
2286 2287	The vertical trajectory predictions should be updated on a periodic basis to account for tactical interventions as well as wind, temperature, and other modeling errors.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2288 The vertical trajectory should be integrated with the lateral trajectory such that the climb rate and lateral leg distances used to compute the vertical trajectory account 2289 for smooth (curved) transitions between lateral legs. 2290 2291 2292 COMMENTARY 2293 The above requirement is not intended to preclude assumptions in 2294 the vertical trajectory when lateral discontinuities and manually terminated legs (i.e. HM, VM, and FM legs) are encountered in the 2295 2296 flight plan. In these situations, the lateral trajectory is ill-defined and 2297 the vertical and lateral trajectory assumptions may differ in order to provide a more reasonable prediction of destination time and fuel. 2298 2299 Users of 3D/4D trajectory information should keep these scenarios in mind when using the trajectory information and designing interfaces. 2300 2301 2302 The vertical predictions should comply with all waypoint altitude and speed 2303 constraints as specified in Sections 4.3.2.5.2 and 4.3.2.5.3. When this is not 2304 possible due to aircraft performance or a conflict in the constraints, appropriate 2305 indications should be provided to inform the crew of the specific issue. As with 2306 vertical guidance, vertical trajectory predictions should prevent a descending 2307 maneuver in a climbing segment in order to satisfy a climb altitude constraint. 2308 Likewise, it should prevent an ascending maneuver in a descending segment in 2309 order to satisfy a descent altitude constraint. Similarly, vertical predictions should produce a speed profile that is monotonic during a single phase of flight in the 2310 presence of speed constraints. The predicted speed profile should remain within the 2311 operating envelope of the specific aircraft. It should take into account aircraft/engine 2312 2313 performance, flap configuration changes, selected speed schedules, and speed constraints/limits. The trajectory predictions and associated advisories should be 2314 consistent with vertical guidance when the vertical guidance function is engaged. 2315 Refer to DO-283() for specific VNAV performance and operational requirements. 2316 2317 2318 4.3.3.2.1.1 Takeoff Phase Predictions 2319 The takeoff phase may be constructed based on a simple model or more complex first principle models using takeoff thrust, flap setting and other vertical flight plan 2320 parameters including derated takeoff off thrust, thrust reduction height/altitude and 2321 2322 acceleration height/altitude. The takeoff model should support the overall accuracy requirements and system level advisories. 2323 2324 Refer to Climb Phase Predictions for an example of a typical takeoff segment. 2325 4.3.3.2.1.2 Climb Phase Predictions 2326 2327 The climb phase is typically predicted based on climb thrust, which may be a 2328 derated and/or noise abatement climb thrust, and a speed schedule for optimized 2329 operations. When constraints are encountered as part of the vertical flight plan, these constraints take precedence over the optimal climb profile. Waypoint altitude 2330 constraints are referenced to baro altitude. Predictions may assume a transition to 2331 STD pressure at the transition altitude. AT or BELOW and AT altitude constraints 2332

4.0 FLIGHT MANAGEMENT FUNCTIONS

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342	apply as an upper limit altitude before the associated waypoint. AT or ABOVE and AT altitude constraints apply as a lower limit altitude after the associated waypoint. Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as an upper and/or lower speed limit. AT or BELOW and AT waypoint speed constraints apply as an upper speed limit before the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a lower speed limit after the associated waypoint until climb mach is achieved or cruise altitude is captured. A series of identical AT speed constraints forms a constant speed segment in the climb speed profile. Altitude associated speed limits are referenced to calibrated airspeed and apply below the specified altitude.
2343	
2344	Figure 4.3.3-2 depicts an example of a climb phase prediction.

2349	COMMENTARY
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362	In this example, the predicted climb profile, which is based on the selected climb thrust limits and climb speeds, meets all the ABOVE altitude constraints. However, factors such as aircraft characteristics and actual wind conditions may cause an ABOVE altitude constraint violation. If an ABOVE altitude constraint cannot be satisfied with the selected thrust limits and climb speeds, the crew should be informed of the situation prior to committing to the procedure so a different thrust/speed climb can be attempted. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of departure procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during a departure so the aircraft can perform a Continuous Climb Departure (CCD) for fuel/time efficient climb operation.
2363 2364	4.3.3.2.1.3 Cruise Phase Predictions
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379	The cruise phase is typically predicted based on an optimal speed profile at a specified cruise altitude. When a step climb is active or the aircraft is in cruise below the cruise altitude, the system should predict a climb to cruise altitude assuming engagement of the vertical guidance function. Likewise, when a step descent is active or the aircraft is in cruise above the cruise altitude, the system should predict a descent to cruise altitude assuming engagement of the vertical guidance function. The system may provide for one or more preplanned and/or optimal cruise steps. Preplanned cruise steps may be a climb/descent at a specified waypoint or an optimal step where the system determines the optimal location and/or altitude to change cruise altitude. Similarly, the system may provide for a drift up cruise capability ("cruise/climb mode" in ARINC 660B) which allows the system to perform a drift up maneuver within a specified altitude block to better achieve optimal operation as fuel is burned off and aircraft weight decreases. When present, these preplanned maneuvers should be reflected in the cruise predictions.
2380 2381 2382 2383 2384 2385 2386	The cruise speed is based on the selected cruise performance mode. When an active RTA exists in the flight plan, the cruise speed profile should reflect the speeds that will be flown in an attempt to achieve the RTA. Similar to preplanned cruise steps, the system may provide for one or more preplanned cruise speed or performance mode changes (e.g. constant mach segments). When present, these preplanned cruise speed changes should be reflected in the cruise predictions.
2387 2388 2389 2390	The system should provide an indication when a destination exists in the flight plan and predictions determine the cruise altitude is unachievable due to aircraft performance limitations and/or insufficient route distance.
2391	4.3.3.2.1.4 Descent Phase Path Construction and Predictions
2392 2393 2394	For the descent phase, the system should construct a reference descent path that vertical guidance can use as a target path. During the descent phase, tactical situations may divert the aircraft from the descent reference path, so the system

- 2395 should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed). 2396
- 2397

2420 2421

2422

2423 2424

2426

2427

2428

2429

2430

2431

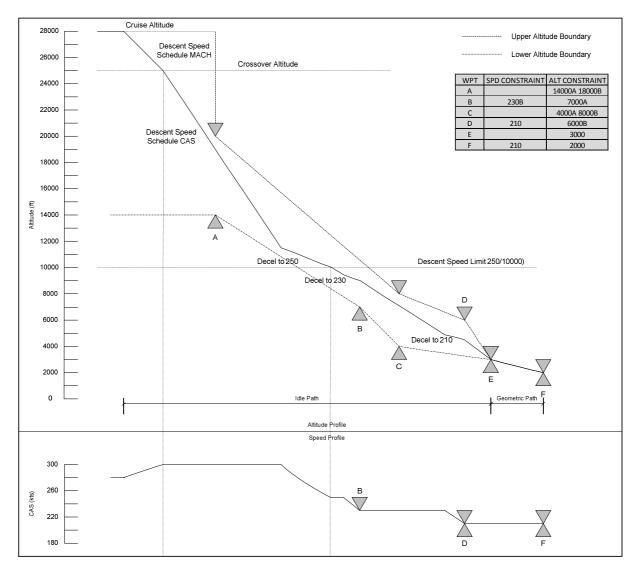
2432

2433

2434

2437

2398 4.3.3.2.1.4.1 Descent Phase Path Construction


2399 The descent path should be constructed based on idle or near idle thrust and a 2400 speed schedule for optimized operations. When altitude constraints are 2401 encountered in the vertical flight plan and the idle path does not satisfy one or more constraints, the constraints take precedence over the optimal descent profile and a 2402 2403 geometric descent path constructed. The resultant vertical trajectory should be 2404 flyable by the aircraft. When this is not possible, appropriate indications should be 2405 provided. Waypoint altitude constraints are referenced to baro altitude and apply at the associated waypoint. A series of altitude constraints form a geometric boundary 2406 that the descent path must stay within beyond the first constrained waypoint, 2407 2408 excluding small excursions for idle path decelerations (see Figure 3). Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as an 2409 2410 upper and/or lower speed limit. AT or BELOW and AT waypoint speed constraints apply as an upper speed limit after the associated waypoint. AT or ABOVE and AT 2411 waypoint speed constraints apply as a lower speed limit before the associated 2412 2413 waypoint but do not apply to the descent mach and/or extend into the cruise phase. 2414 A series of identical AT speed constraints forms a constant speed segment in the descent speed profile. Altitude associated speed restrictions are referenced to 2415 calibrated airspeed and apply below the specified altitude. To honor these 2416 2417 constraints, the vertical path must anticipate the altitude/speed constraint prior to 2418 reaching the associated waypoint/altitude. 2419 When conflicts exist between different types of constraints or the aircraft

- performance cannot satisfy all constraints, the descent path construction should give priority to one constraint over another as follows:
 - 1. Altitude constraints
 - 2. Vertical angle (FPA) constraints
 - 3. Speed constraints
- 2425 4. Time constraints (RTA)

COMMENTARY

A conflict between an altitude constraint and an FPA constraint can only exist for an ABOVE altitude constraint. In the case of a BELOW constraint, a level segment should be inserted to satisfy both constraints (see Figure 4.3.3-9). An altitude constraint should never cause construction of the vertical path for the leg to be shallower than the FPA constraint. The above requirement does not preclude insertion of a vertical discontinuity as a means to ensure some measure of speed control and/or minimum deceleration capability.

- 2435 2436
- Figure 4.3.3-3 depicts an example of a descent path construction.

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.3-3 Descent Path Construction Example #1

COMMENTARY

In this example, the descent path fits within the constraint boundaries. There may be procedures or conditions where the descent path follows a boundary. In some cases, factors such as aircraft characteristics and meteorological conditions may dictate if a descent path is flyable (per the rules) for a given aircraft on a given day. When a continuous, flyable descent path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of arrival procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during an arrival so the aircraft can perform a Continuous Descent Operation (CDO) for fuel/time efficient descent operation.

Cruise Altitude 28000 --- Upper Altitude Boundary Descent Speed Schedule MACH Lower Altitude Boundary 26000 Crossover Altitude ALT CONSTRAINT SPD CONSTRAINT WPT 24000 14000A 18000B А 230B В 7000A 22000 4000A 8000B С D 210 6000B Descent Speed Schedule CAS 3000 20000 F 210 2000 E 18000 16000 Altitude (ft) 14000 Δ Α 12000 Excursion Below Lower Boundary for Deceleration Decel to 250 Descent Speed Limit 250/10000) 10000 Decel to 230 8000 D 6000 в Decel to 210 4000 С 2000 0 Idle Path Geometric F Altitude Profile Speed Profile 300 260 в CAS (kts) 220 180

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.3-4 Descent Path Construction Example #2

COMMENTARY

In this example, a shallow idle deceleration segment is constructed to facilitate a short, efficient deceleration to the descent speed limit. Per DO-283(), to facilitate decelerations within curvilinear (idle) paths, small excursions below the lower altitude boundary are allowed and expected when an idle path is constructed to satisfy a series of AT or BELOW, AT or ABOVE, and WINDOW constraints. Excursions below the lower altitude boundary for step-down or dive-and-drive descent path strategies (Figure 4.3.3-5) or above the upper altitude boundary for stay-high descent path strategies (Figure 4.3.3-6) are prohibited.

2469

2470

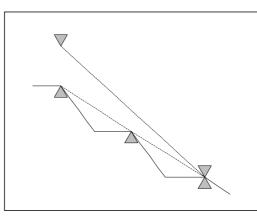


Figure 4.3.3-5 Step-Down Idle Descent (Prohibited)

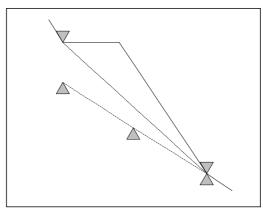


Figure 4.3.3-6 Stay-High Idle Descent (Prohibited)

The descent path is typically constructed using a series of straight line segments which comply with the altitude boundary rules as described above. When the descent path is flown using the Vertical Guidance function, systems may cross above or below the altitude constraint value due to a vertical fly-by transition. DO-283() defines the acceptable altitude deviation for a vertical fly-by transition.

When the crew initiates a vertical direct-to to a vertically constrained fix in descent, the system should construct a geometric descent path from the aircraft position to the vertically constrained fix.

COMMENTARY

The above requirement is not intended to take precedence over normal geometric path construction rules. In other words, the system is not required to build an unflyable descent path nor one that violates a vertical angle constraint.

2474 2475

2476 2477

2478

2479 2480

2481

2482 2483 2484

2485

2486 2487 2488

2489

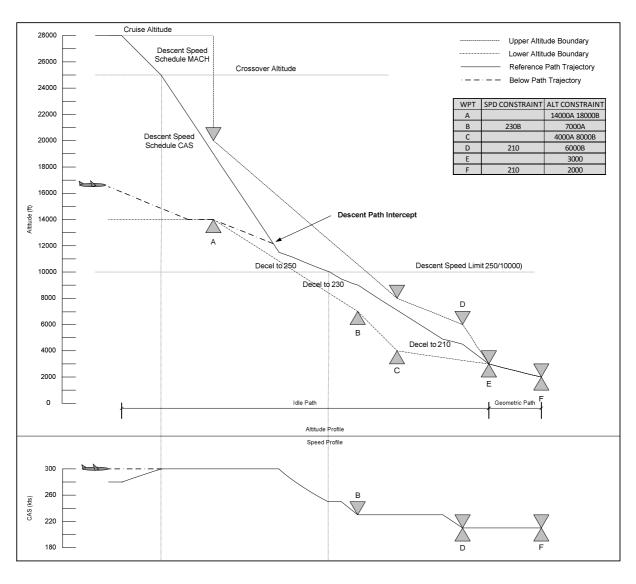
2490

2491

4.0 FLIGHT MANAGEMENT FUNCTIONS

2494 4.3.3.2.1.4.2 Descent Phase Predictions

2495 During the descent phase, situations may arise which divert the aircraft from the desired reference path/speed profile. These include: not being cleared to descend 2496 2497 at the predicted top of descent, being instructed to descend prior to the top of 2498 descent, unforecasted meteorological conditions and flight plan edits. The system should provide vertical predictions (altitude, speed, time, and fuel) that model how 2499 vertical guidance will attempt to capture and track the descent reference path. 2500 2501 These predictions should be available for display and datalink in order to support 2502 situational awareness and advisories to the crew. When descent predictions 2503 determine that a constraint will be violated, appropriate indications should be given 2504 to the crew.



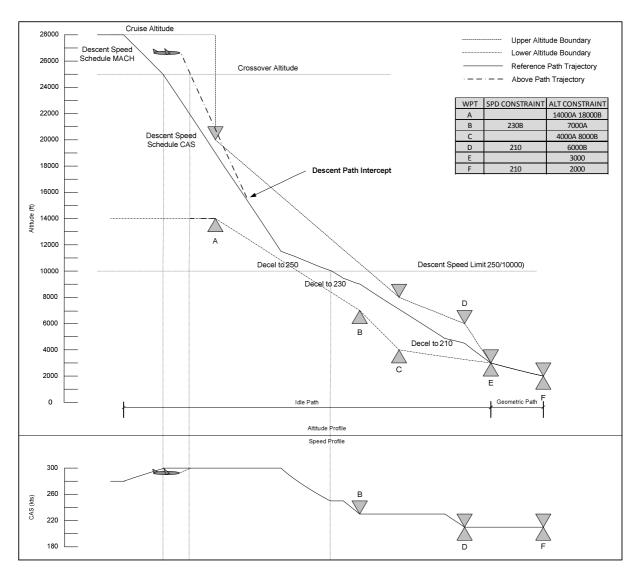


Figure 4.3.3-7 Below-Path Descent Prediction Example

4.0 FLIGHT MANAGEMENT FUNCTIONS

COMMENTARY

In this descent scenario, predictions model the vertical guidance below-path descent control strategy. A level-off is performed at 14000 feet to honor the ABOVE altitude constraint at WPT A. Upon sequence of WPT A, a partial power descent resumes until intercept of the descent reference path.

2516

2509

2510

2511 2512

2513

2514

2515

- 2517
- 2518
- 2519

2522 2523

2524

2520 2521

Figure 4.3.3-8 Above-Path Descent Prediction Example

COMMENTARY

In this descent scenario, predictions assume vertical guidance will attempt to recapture the descent reference path by descending steeper than the planned descent rate. The above-path descent predictions predict the aircraft will cross WPT A at 19000 feet and violate the 18000 BELOW constraint.

2525	
2526	4.3.3.2.1.5 Approach Phase Path Construction and Predictions
2527 2528 2529 2530 2531 2532	Similar to descent phase, the system should construct an approach path for use by vertical guidance as a reference or target path. As with takeoff, the approach path may be constructed using a simple model or more complex first principle models using idle thrust, aeroconfiguration setting, and other vertical flight plan parameters. The approach model should support the overall accuracy requirements and system level advisories.
2533 2534 2535	During approach phase, tactical situations may divert the aircraft from the reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).
2536	
2537 2538 2539 2540 2541 2542 2543	The vertical approach path consists of two portions: an initial approach path followed by a final approach path. In the initial approach path, the aircraft decelerates from a flaps-up target speed toward a configured landing speed. The initial approach path terminates upon reaching the start of the final approach path. The final approach path extends from the final approach capture point (intercept of final approach vertical angle) to the destination and is typically constructed at a constant landing configuration speed and vertical angle.
2544	
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558	The final approach path should be constructed based on the vertical angle coded on the destination runway, Missed Approach Decision Point (MAP), or Final End Point (FEP). In the case of a MAP beyond the Landing Threshold Point (LTP), the system may compute the FEP and associated angle or may obtain the FEP and angle from the navigation database. Refer to ARINC 424 for additional details on non-precision approach codings. For the final approach, the system should not construct a vertical path shallower than the specified vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). A few typical final approach path geometries are illustrated in Figure 4.3.3-9 and Figure 4.3.3-10 below. A final approach path which ends at a FEP coded in the navigation database is illustrated in Figure 4.3.3-11 below.
2000	

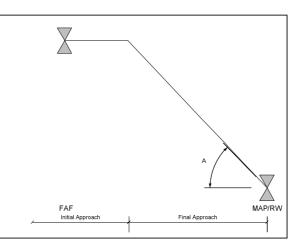


Figure 4.3.3-9 Typical Final Approach #1

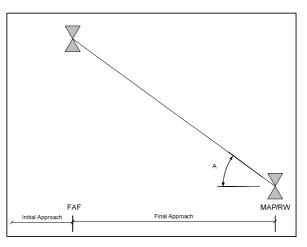


Figure 4.3.3-10 Typical Final Approach #2

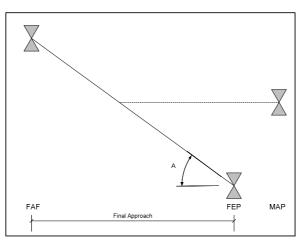


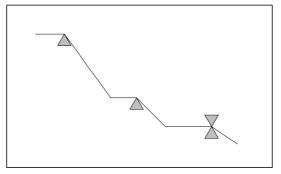
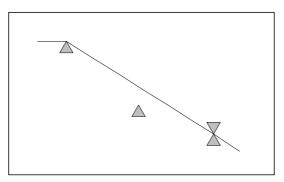
Figure 4.3.3-11 MAP Beyond Landing Threshold Point

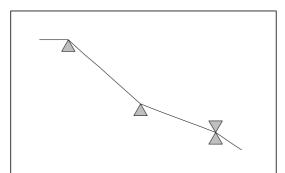
2559 2560 2561

2562 2563

4.0 FLIGHT MANAGEMENT FUNCTIONS

2568	
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582	In the presence of vertical angle constraint, the initial approach path for the vertical angle leg should be constructed using the vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). In the absence of a vertical angle constraint, the initial approach path may be constructed as a stepdown or "dive and drive" approach in accordance with VFR flight rules as shown in Figure 4.3.3-12. However, it is preferable the initial approach path be constructed as a "Continuous Descent Approach" (CDA) path as shown in Figure 4.3.3-13 and Figure 4.3.3-14. A CDA path is a more stabilized and fuel efficient approach path and generally safer. It aligns with industry recommendations and trends. In either case, when a continuous, flyable approach path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew.
2583	


Figure 4.3.3-12 Step-Down Initial Approach

2587 2588 2589

Figure 4.3.3-13 Continuous Descent Approach #1

4.0 FLIGHT MANAGEMENT FUNCTIONS

2590 2591 Figure 4.3.3-14 Continuous Descent Approach #2 2592 2593 4.3.3.2.1.6 Missed Approach Phase Prediction 2594 The system may provide a missed approach prediction aligned with the lateral missed approach path. If a vertical trajectory is predicted it should be based on go 2595 around thrust limits and flap placard speeds and is predicted much like the climb 2596 profile. Typically, the prediction starts at the missed approach point or when the 2597 crew initiates the missed approach and terminates at an altitude constraint defined 2598 2599 in the missed approach procedure. Any remaining descent path altitude and speed constraints are ignored. 2600 2601 2602 COMMENTARY 2603 Typically, the missed approach speed is limited by flap configuration. In the case where the aircraft is in a clean configuration, the speed target should not be 2604 released to the airport altitude speed restriction. It is recommended that the speed 2605 2606 should be limited to a minimum clean speed or low altitude best hold speed. 2607 4.3.3.2.2 Vertical Guidance 2608 The Vertical Guidance function defines vertical guidance targets and, when in 2609 descent, reference parameters to be used by the autopilot and autothrottle to fly the vertical flight plan. 2610 2611 When vertical guidance is engaged, depending on the aircraft architecture, the vertical guidance function should request or select a control mode for the elevator 2612 and throttle and generate altitude, airspeed, thrust, vertical speed, pitch targets, 2613 2614 and/or load factors in accordance with the requested and selected control mode(s). An alternative design may provide vertical segment(s) and/or capture trajectory as 2615 part of vertical parameters. 2616 2617 Depending on the autopilot interface, these targets and parameters are used by 2618 control laws in either the FMS or the autopilot to generate pitch and thrust 2619 commands. 2620 In addition, Vertical Guidance is responsible for automatically updating the phase of 2621 flight and providing vertical situational awareness in the form of vertical deviation 2622 and advisory messages. 2623 When the autopilot interface is a target interface, the system should provide the requested elevator control mode to the autopilot and provide targets for the both the 2624 requested and selected (i.e. engaged) elevator control mode. With this interface, 2625

4.0 FLIGHT MANAGEMENT FUNCTIONS

2626vertical guidance requests and targets are analogous to the crew mode and target2627selections on the AFCS Control Panel.

- 2628When the autopilot interface is a pitch command, the system should compute a2629pitch command in accordance with the selected internal control mode. With this2630interface, vertical guidance always computes a pitch command whether the internal2631control mode is speed on elevator, vertical speed, altitude hold, or (descent) path on2632elevator. When the autopilot interface is a pitch command, the system should also2633perform the mode transition and path capture of the vertical guidance altitude target.
- 2634The system should provide a requested autothrottle control mode along with an2635EPR/N1 command (if appropriate).
- 2636 The vertical guidance function should provide for auto switching of the flight phase 2637 during a flight. This flight phase should be used as the basis for altitude, speed, and thrust target selection and should be made available to the AFCS. At a minimum, 2638 the system should provide logic for the automatic transition between flight phases of 2639 preflight, climb, cruise, and descent. The preflight flight phase should apply when 2640 2641 the aircraft is on the ground. When in preflight, the system should allow for access 2642 and entry of all route and performance initialization data. After liftoff, the flight phase should switch to climb and the climb phase should remain active until the aircraft 2643 2644 acquires the initial cruise altitude, at which point the phase should switch to cruise. The flight phase should then switch from cruise to descent when the aircraft 2645 reaches the top of descent and the descent phase should remain active for the 2646 remainder of the flight. 2647

COMMENTARY

2649 The logic discussed above is general and applies to a minimum set of flight phases. In general, systems will provide additional flight phases to 2650 2651 facilitate specific functionality defined for a particular aspect of the aircraft's operation. Some of the additional phases which should be 2652 considered are Takeoff, Approach, Go-Around, and Done. The specific 2653 2654 logic for the transition between phases is implementation dependent since the conditions are generally application specific and are a function 2655 2656 of the flight control system modes, aircraft dynamics and performance 2657 characteristics and aircraft operations.

2658 4.3.3.2.2.1 Climb Phase Operation

2648

2659 The system should provide for guidance to the selected performance mode speed 2660 schedule applied to the climb trajectory and should provide the appropriate speed 2661 target and thrust command (or target) required to achieve the associated trajectory. 2662 In addition, an altitude command (or target) for the next target altitude (level off) in the vertical trajectory should be provided. The target altitude should be a function of 2663 the flight plan altitude constraints and the crew selected (clearance) altitude. The 2664 2665 profiles are constrained by the altitude selected by the pilot on the AFCS Control 2666 Panel, cruise altitude, and waypoint altitude constraints.

2667 4.3.3.2.2.2 Cruise Phase Operation

2668The system should provide for guidance to the selected performance mode2669speed/schedule applied to the cruise phase of the flight and should provide the2670appropriate speed target and altitude command (or target). The target altitude2671should be the cruise altitude or step altitude. Entry of a higher or lower cruise

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 2672 altitude results in a step climb or step descent respectively, with guidance 2673 commands consistent with the selected operation.
- 2674The system may also provide vertical guidance for a drift-up cruise climb mode2675when ATC has provided a block altitude clearance.

2676 4.3.3.2.2.3 Descent Phase Operation

- The system should provide for guidance to the selected performance mode speed 2677 2678 schedule applied to the descent trajectory and should provide, through the use of both a path and speed (airmass) mode of control, the appropriate speed target, 2679 thrust command (or target), pitch command, or vertical speed command (or target) 2680 required to achieve the associated trajectory. In addition, an altitude command (or 2681 2682 target) for the next target altitude in the vertical trajectory should be provided. The 2683 target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude. 2684
- 2685When tracking the descent path, a pitch command (or target) or vertical speed2686command (or target) should be computed to allow capture and track of the2687reference descent path. Overspeed protection in the form of vertical mode reversion2688logic should be provided to enable guidance to switch from path control to speed2689control if conditions are such that both path and speed cannot be maintained.2690Annunciation may also be provided prior to mode reversion for predicted overspeed2691or speed/altitude constraint violations.
- 2692When the crew causes a transition to descent flight phase prior to reaching the2693planned Top of Descent point, the system should default to its below-path descent2694control strategy. Systems typically command a shallow rate of descent until the2695reference descent path is intersected, at which time the originally planned descent2696profile is resumed.
- 2697The system should switch the speed target to the approach speed at a point that is2698either, constructed in the trajectory and displayed to the crew, or as a result of the2699crew selection of an approach configuration. Once targeted, the approach speed2700should be limited to the speed related to the current configuration of the aircraft,2701switching to the landing speed when landing configuration is selected.
- 2702Vertical deviation information based on the difference between the reference2703descent/approach path and the actual aircraft altitude should be provided2704throughout the descent/approach phase of flight.

2705 4.3.3.2.2.4 Selected Altitude Compliance

2706 Since altitude clearances are difficult to pre-plan using flight plan altitude 2707 constraints, a crew selected altitude, usually provided by the flight controls panel, should be used as a tactical altitude limiter by the flight management function. The 2708 aircraft, under vertical guidance control, should not be allowed to ascend through 2709 2710 the selected altitude during a climb, or descend through the selected altitude during a descent. During approach operations, this general rule may be suspended to 2711 2712 allow the crew to pre-select the altitude clearance to arm a missed approach. The 2713 selected altitude may also be used to arm an automatic transition to descent or to enable step climbs and descents during cruise phase operations. 2714

4.0 FLIGHT MANAGEMENT FUNCTIONS

2715 **4.3.3.2.2.5** Altimeter Barometric Correction for Terminal Area Operations

- 2716Generally, altimeter barometric settings are utilized during terminal area operations2717to account for the local pressure deviation in the air data system, making the2718barometric altitude a more accurate ground reference
- 2719Moreover, the local altitude reference may be either Altimeter sub-scale setting to2720obtain elevation when on the ground (QNH) or atmospheric pressure at runway2721(QFE) based (sea level equals zero for QNH, runway elevation equals zero for2722QFE). Vertical guidance should accept an indication of which reference is being2723used and apply the appropriate adjustments.

2724 4.3.3.2.2.6 Altitude Constraints

2735

2736 2737 2738

2739

2740

2741

2742 2743

2744

2745 2746

2747 2748

2749

2750

2751

2752 2753

- 2725 The Vertical Guidance function of the system should prevent the aircraft, when in 2726 takeoff or climb and under vertical guidance control, from ascending through the upper bound of a climb AT, AT or BELOW, or WINDOW altitude constraint. 2727 2728 Likewise, it should prevent the aircraft, when in descent or approach and under 2729 vertical guidance control, from descending through the lower bound of a descent 2730 AT, AT or ABOVE, or WINDOW altitude constraint. Aside from altitude captures, it 2731 should be a basic philosophy that the Vertical Guidance function should never descend in takeoff or climb flight phase in order to satisfy an altitude constraint; 2732 2733 likewise, it should never ascend in descent or approach in order to satisfy an altitude constraint. 2734
 - Refer to 4.3.2.5.2 for the definition of climb and descent altitude constraints.

COMMENTARY

- In takeoff or climb, upon engagement or insertion of a flight plan with an altitude constraint below the aircraft, the Vertical Guidance function may find the aircraft is in violation to (i.e. above) a subsequent BELOW climb altitude constraint. The Vertical Guidance behavior in this situation differs between systems. Some systems will prevent engagement of Vertical Guidance into an altitude constraint violation while others allow engagement into a violation. Some systems prevent engagement into a violation and also disengage when a violation occurs while the Vertical Guidance function is engaged. On those systems where Vertical Guidance can engage or be engaged in a violation condition, some will provide an indication and level-off to minimize the violation of the altitude constraint whereas others will provide an indication and maintain a climbing attitude. An analogous situation exists in descent for ABOVE altitude constraints.
- 2754When under vertical guidance control and in violation to an ABOVE constraint, the2755Vertical Guidance function should level-off to minimize the violation of the altitude2756constraint as the constraint may exist for obstacle clearance.
- 2757When below-path and under vertical guidance control and flying a lateral leg with a2758procedural vertical angle, the Vertical Guidance function should level-off as the2759vertical angle may exist for obstacle clearance.

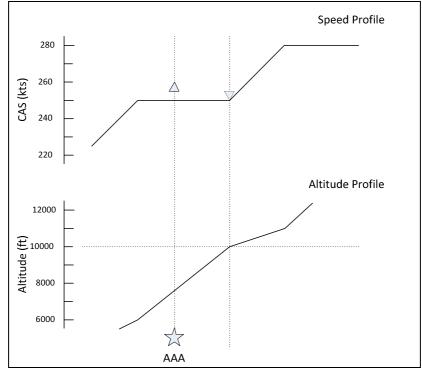
4.0 FLIGHT MANAGEMENT FUNCTIONS

2760 Refer to 4.3.3.2.1 for more details regarding use of altitude constraints in the descent path construction and trajectory predictions.

4.3.3.2.2.7 Speed Restrictions

The system should honor altitude-based speed limits such as airport speed limits (e.g. 250/10000) and ICAO limits for procedure legs. For airport speed limits and other limits which apply to a region or block of airspace, the aircraft airspeed should remain AT or BELOW the speed limit while the aircraft is below the specified altitude. For ICAO limits, the aircraft should remain AT or BELOW the speed limit while the aircraft and the speed limit while the aircraft is both flying the procedure leg and below the specified altitude.

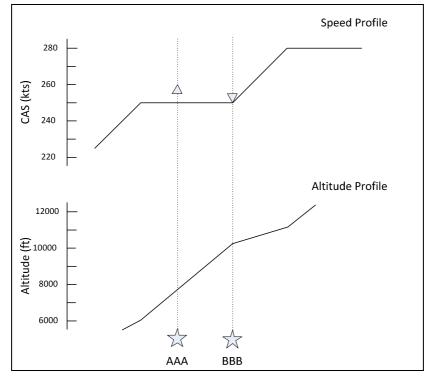
In the case of descent AT and AT or BELOW restrictions, sufficient deceleration distance should be provided in order to cross the speed restriction at or below the restriction speed. Once the descent speed restriction has been sequenced, it should be latched such that the descent target speed does not exceed the restriction speed unless the crew deletes the latched speed restriction or the aircraft transitions back to climb flight phase.


Refer to 4.3.2.5.3 for the definition of climb and descent waypoint speed constraints and their applicability in various flight phases.

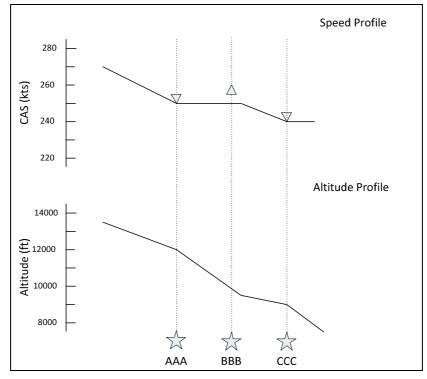
In general, the system should compute the target speed at any given point in the flight plan as the speed schedule limited to the lowest AT/BELOW of applicable speed restrictions. This target speed should always be limited to the speed envelope (e.g. VMO, MMO, stall, buffet, and placard limits) of the aircraft for the given or assumed aerodynamic configuration. The Vertical Guidance function of the system should accelerate or decelerate as necessary to capture and track the limited target speed.


COMMENTARY

Historically, all speed constraints in the navigation database and entered by the crew were treated as AT or BELOW speed constraints by the FMS. Indeed, most of the optimizations performed by the FMS were accomplished using speed schedules optimized for some criteria (e.g. fuel, time, cost, maximum angle/rate); the philosophy of the FMS was to reach the optimum speed with speed restrictions preventing it from doing so. DO-283() mandated support for an AT and AT or ABOVE speed constraint capability, and the ARINC 424 source now includes a speed descriptor field with each waypoint speed constraint. While DO-283() defines a minimal set of requirements, it does not provide guidance in terms of what takes precedence when an ABOVE speed constraint conflicts with the speed schedule and other speed constraints and limits. To ensure a measure of interoperability as this capability is incorporated into flight management systems, the following requirements and guidance are offered.


2806	
2807 2808	When in conflict, the system should always give priority to altitude-based speed limits over waypoint-based speed constraints.
2809	
2810	COMMENTARY
2811 2812 2813 2814 2815 2816 2817	Altitude-based limits are AT or BELOW speed limits which may be lower than a preceding AT or ABOVE climb waypoint speed constraints and/or subsequent AT or ABOVE descent waypoint speed constraint. In such cases, the altitude-based limit(s) should take priority. Airport speed limits are in place to ensure safety with slower moving VFR traffic while ICAO limits ensure aircraft remain within the designated airspace.
2818	
2819 2820	When in conflict, the system should give priority to BELOW speed constraints over ABOVE speed constraints.
2821	
2822	COMMENTARY
2823 2824 2825 2826 2827 2828	In descent, a deceleration point should occur prior to an ABOVE speed constraint if necessary in order to ensure a safe, continuous deceleration to the landing speed. Moreover, altitude-based limits are BELOW speed constraints that are associated with airspace limitations and thus should take precedence.
2829 2830 2831	The figures below illustrate various conflicts and the speed profiles that result given the rules in this section.
2832 2833 2834 2835 2836 2837 2838 2839	For the descent scenario illustrated in Figure 4.3.3-18, an alternative is to insert a speed discontinuity into the theoretical descent path (at AAA) and provide appropriate indications to the crew. This is deemed less preferable as it may lead to unrealistic deceleration assumptions which are only apparent once the ABOVE speed constraint is sequenced. Moreover, in the absence of special considerations, insertion of a speed discontinuity creates an inherent ETA error and may cause poor guidance behavior as the reference path speed profile is often used as a reference for advisories and mode reversion logic.
2840	
2841	
2842	

4.0 FLIGHT MANAGEMENT FUNCTIONS



2844 2845

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.3-16 250B at BBB takes priority over 260A at AAA (climb)

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.3-17 250B at AAA takes priority over 260A at BBB (descent)

2851 2852

2850

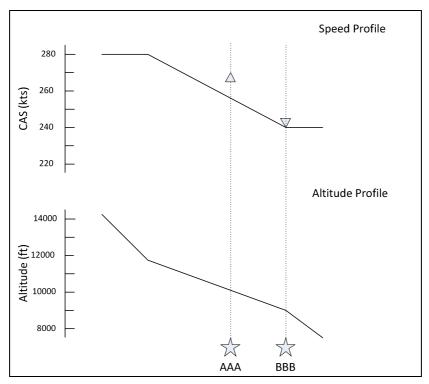


Figure 4.3.3-18 Decel to 240B AT BBB takes priority over 270A at AAA (descent)

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2866	In general, in the absence of edits and tactical speed interventions, the system should produce a speed profile that is monotonic during a single phase of flight. For takeoff and climb, the speed target should continuously increase until reaching the climb speed schedule. For descent and approach, the speed target should continuously decrease from the descent speed schedule until reaching the landing speed. As such, the system should compute a climb speed schedule which is the maximum of the mode-based climb speed and the highest ABOVE climb speed constraint; the system should compute a descent speed schedule which is the maximum of the mode-based descent speed and the highest ABOVE descent speed constraint. This limitation should be applied to both the speed schedule CAS and MACH (when applicable).
2868	COMMENTARY
2869 2870 2871 2872 2873 2874 2875	Without the MACH limitation, a higher ABOVE speed constraint will produce a lower crossover altitude at which point the ABOVE speed constraint will cease to apply. For this reason, it is suggested that the MACH equivalent of the ABOVE speed constraint evaluated at 25000 feet be used as the lower limit MACH value. This ensures that ABOVE speeds are maintained until at least 25000' for most aircraft.
2876 2877 2878	It is assumed that ABOVE speed constraints would not be applied when in performance modes designed to maximize climb rate or angle.
2879	
2880	The system should not apply ABOVE speed constraints to hold speed schedules.
2881	
2882 2883	Refer to 4.3.3.2.1 for more details regarding use of speed restrictions in the descent path construction and trajectory predictions.
2884	
2885	4.3.3.2.3 Estimated Time of Arrival (ETA)
2886 2887 2888 2889	The system should be capable of providing an ETA for every flight plan fix in the primary flight plan. For modifications to the active flight plan, each flight plan fix ETA should be available within 30 seconds (15 seconds typical) of the completion of entries required to perform the calculations.
2890	
2891 2892 2893	The accuracy of the ETA should be within +/- 1 percent of the time of flight remaining to the fix, or +/- 10 seconds, whichever is greater, for the entered conditions.
2894 2895	
2896	COMMENTARY
2897 2898	It is understood that additional data is required (e.g. forecast wind and temperature) to improve the operational accuracy of the predicted

	4.0 FLIGHT MANAGEMENT FUNCTIONS
2899 2900	ETA. Such entries can be made manually by the flight crew or uplinked via AOC or ATS datalink.
2901	
2902	4.3.3.2.4 Required Time of Arrival (RTA)
2903 2904 2905 2906 2907 2908 2909 2910 2911	The system should provide a control mode such that the aircraft will be controlled to arrive at any specified waypoint in the primary flight plan at a specified arrival time (RTA). The system should support a resolution of 1 second for entry and display of the RTA time. Accuracy of this function should be ± 30 seconds at enroute fixes and and ± 10 seconds at descent fixes. If the RTA is predicted to be unachievable, an indication of this condition should be provided to the crew. The condition should be continually reassessed until such time as the RTA is achievable. All RTA calculations should respect the speed envelope as well as all flight plan constraints. The RTA control band should be designed to limit throttle activity to a minimum.
2912 2913 2914	The RTA function should accommodate ATS data link consistent with industry standards (e.g. DO-258(), DO-350()) including constraint types AT, AT or BEFORE, and AT or AFTER.
2915 2916 2917	Systems may provide predictions of the earliest and latest arrival times for the candidate RTA waypoint and/or active RTA waypoint. Consideration of fuel reserves in the prediction of RTA feasibility may be provided.
2918 2919 2920 2921	While in preflight, the system may compute a recommended takeoff time which allows an RTA to be achieved using the crew entered cost index or planned speed schedules. While in preflight, the system may also compute the earliest and latest takeoff times which allow an RTA to be achieved.
2922	
2923	4.3.3.2.5 Time of Arrival Control (TOAC)
2924	
2925	COMMENTARY
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937	As detailed in DO-236() and DO-283(), the TOAC function is a performance-based operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs. The accuracy requirement is dependent upon current and accurate performance data inputs and uncertainty models. TOAC is intended to support/enable future advanced air traffic management (ATM) operations such as time-based trajectory operations (4DTBO) by providing a performance-based time management capability. The requirement for a performance-based time function that enhances predictability, similar in concept to performance requirements of RNP, is a new model upon which to enable future air traffic sequencing and flow management.
2938	
2939 2940 2941 2942 2943	The equipment should provide a Time of Arrival function which supports a specified arrival time (RTA) at a fix within the range of achievable ETAs. The range of achievable ETAs at the specified fix is computed by the system based upon entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models.

2944 2945	The TOAC function should be operational in both enroute and descent phases of flight.
2946	COMMENTARY
2947 2948 2949 2950 2951 2952	Additionally, it is expected that procedure designs will implement speed and altitude constraints (when required) that are compatible with a time-based system such as TOAC by not overly constraining the path. For example, a speed-constrained descent and a time- constrained descent may not be compatible except under specific conditions.
2953 2954 2955 2956	The system should be capable of providing the range of achievable ETAs for at least one fix in the primary flight plan for display in the flight deck and communication to the traffic management facility. For fixes after an RTA constrained fix, the range of achievable ETAs should be based on the ETA at the RTA fix.
2957	
2958 2959 2960 2961	When the RTA is selected from within the range of achievable ETAs computed by the system, the total time error (TTE), in the presence of the uncertainty model described in DO-283(), should be less than or equal to the required accuracy in 95 percent of the attempts.
2962 2963	The equipment should control to the accuracy requirement while also considering the adverse flight deck effects of large speed and thrust fluctuations.
2964	
2965	COMMENTARY
2966 2967 2968 2969	It is expected that the essential information such as current and accurate wind and temperature forecasts are provided and used by the system such that the performance requirements for the TOAC function can be met.
2970	
2971	DO-283() specifies the functional requirements of a TOAC function.
2972	
2973	4.3.3.3 Three-Dimensional RNAV Approach
2974	[Deleted by Supplement 5]
2975	4.3.4 Performance Calculations Function
2976 2977 2978	The performance function should use information from the flight plan and the performance data base (See Section 9.4) to generate performance related data for display on the MCDU.
2979	4.3.4.1 Performance Modes
2980 2981 2982 2983 2984	One performance mode that should be common to all flight phases is the economy speed mode which should calculate the associated speeds and speed schedules which minimize the total cost of operating the airplane on a given flight. This mode should use a Cost Index, which is the ratio of time-related costs (crew salaries, maintenance, etc.) to fuel cost.

2985	This is expressed as:
2986	Time Cost
2987	Cost Index (CI) =
2988	Fuel Cost
2989 2990 2991 2992	Typical Cost Index entries vary from zero to 999, with the minimum trip fuel cost occurring with the Cost Index set to zero. Cost Index values above zero result in increased trip speeds and varying aircraft vertical trajectories. At the proper Cost Index, the increased fuel cost will be offset by the reduced time cost.
2993	4.3.4.1.1 Climb Mode
2994	Speed modes supported may include:
2995 2996 2997 2998 2999	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation Pilot-entered CAS/Mach – Manual selection (or pre-selection) Maximum angle climb – Maximum climb rate with respect to distance Maximum rate of climb – Maximum climb rate with respect to time Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3000	4.3.4.1.2 Cruise Mode
3001	Speed modes supported may include:
3002 3003 3004 3005 3006	 Economy CAS or Mach (based on Cost Index) – Lowest cost of operation Pilot-entered CAS or Mach – Manual selection (or pre-selection) Maximum endurance – Maximum time endurance Long Range Cruise – Maximum range Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3007	4.3.4.1.3 Descent Mode
3008	Speed modes supported may include:
3009 3010 3011 3012 3013	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation Pilot-entered CAS/Mach – Manual selection (or pre-selection) Maximum descent rate – Maximum descent rate with respect to time Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3014	4.3.4.2 Maximum and Optimum Altitudes Calculation
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024	The performance function should compute both optimum and maximum altitude for the aircraft/engine type, weight, atmospheric conditions, bleed air settings, and the other vertical flight planning parameters. The optimum altitude algorithm should compute the most cost effective operational altitude and the maximum altitude algorithm should compute the highest attainable altitude (up to maximum certified altitude) while satisfying maneuver margin and minimum climb rate(s) criterion. Optimum altitude should be limited by maximum altitude. Consideration should be given in the algorithm design to eliminate the sensitivity and therefore possible erratic behavior that can occur because of the flatness of the performance characteristics. Maximum altitude for engine out should also be computed.

4.0 FLIGHT MANAGEMENT FUNCTIONS

3025 4.3.4.3 Trip Altitude Calculations

3026 The performance function should compute a recommended cruise altitude for a 3027 specified route. This altitude may be different from the optimum altitude in that for 3028 short trips the optimum altitude may not be achievable because of the trip distance. 3029 This algorithm searches for the altitude that satisfies the climb and descent while preserving a minimum cruise time specified by the crew or airline policy. Some 3030 designs may elect to integrate this computation as part of the optimum altitude 3031 algorithm. All the vertical flight planning parameters should be considered in this 3032 3033 algorithm.

3034 4.3.4.4 Alternate Destinations Calculation

3035 The performance function should perform alternate destination calculations. The 3036 computations should be based on the selected flight plan routing to the alternate destination, typically either a direct route from current position to the alternate 3037 3038 destination or a route that proceeds to the current destination and assumes 3039 execution of a missed approach at the destination followed by a direct to the 3040 alternate destination. Distances, fuel, and ETA, and optionally best trip cruise 3041 altitude should be computed for each alternate destination and made available for display. Available holding time at present position, given the current fuel state 3042 3043 versus the fuel required to fly to the alternate destination, may also be computed. 3044 Besides the alternate destination prediction, this function should provide for the retrieval of the airports nearest the aircraft at crew request. 3045

3046 4.3.4.5 Step Climb/Descent

3047The performance function should include a prediction of the optimum point(s) at3048which a step climb/descent maneuver may be initiated to provide for more cost-3049effective operation. This algorithm should consider all the vertical flight planning3050parameters as well as entered wind data. The time and distance to the optimum3051step point to the specified step altitude should be made available for display. Also,3052the percent savings/penalty for the step climb or descent versus the current flight3053plan may be computed and displayed.

3054 4.3.4.6 Cruise Climb

3064

3055The performance function may compute an optimum or drift-up cruise climb3056guidance which tracks the optimum altitude. This algorithm should take into account3057fuel burn (weight decrease) and the predicted wind altitude profile..

3058 4.3.4.7 Vertical Advisory Calculations

- 3059The performance function should provide advisories of distance and time (ETA or3060ETE) to the next waypoint altitude and/or speed target change. This information is3061based on the stored trajectory prediction and the current state of the aircraft. It3062should also provide advisories of distance and time to vertical points which do not3063correspond to waypoints. These points include:
 - Top of Climb (T/C)
- Top of Descent (T/D)
- Start of Climb (S/C)
- Start of Descent (S/D)
- 3068• Level-Off Start

4.0 FLIGHT MANAGEMENT FUNCTIONS

3069 Level-Off End 3070 Bottom of Descent (B/D) • End of Descent (E/D) 3071 • 3072 **Descent Path Intercept** • 3073 **Deceleration or Target Speed Change Point** 3074 3075 At a minimum, the performance function should compute distances to the top of 3076 climb (T/C) and top of descent (T/D) points for display on the MCDU. 3077 These vertical points should be displayed on the Navigation Display (ND) and Vertical Situation Display (VSD); the advisory distances and times displayed on the 3078 MCDU should be consistent with the location on the ND and VSD. 3079 3080 4.3.4.8 Thrust Limit Data Calculations 3081 The thrust limits for takeoff, climb, cruise, go around, and continuous modes of operation should be computed (if applicable for the installation) for the current 3082 3083 atmospheric conditions and type of engine/aircraft and bleed settings. Moreover, derates for takeoff and climb thrust should be available for selection as well as 3084 3085 selected temperature derates for takeoff thrust. The crew can manually select the 3086 thrust limit mode that is output as the current thrust limit or an auto mode can be selected that makes the choice based on logic between the flight control computer 3087 3088 and the FMC. COMMENTARY 3089 3090 In some designs, the thrust limit function is performed by a Thrust Control Computer (TCC). For these designs, the thrust limit 3091 computation in the FMC is only required for the purpose of trajectory 3092 3093 predictions and support of other performance calculations. 4.3.4.9 Takeoff Reference Data 3094 The performance function should provide for the entry of V1, VR, and V2 speeds. 3095 Computation of V-speeds for selected flap setting and runway, weight, CG, and 3096 atmospheric conditions may be implemented for the purpose of selection and/or 3097 3098 reasonableness checks. The entered or selected V-speeds should be output for 3099 display on the flight instruments. Flap/slat retraction speeds may optionally be computed and displayed for reference. 3100 3101 4.3.4.10 Approach Reference Data 3102 Landing configuration selection should be provided for each configuration 3103 appropriate for the operation of the specific aircraft. The crew should be allowed to select the desired approach configuration and the state of that selection should be 3104 made available for output to other systems. Selection of an approach configuration 3105 3106 should also result in the computation of a landing speed based on a manually entered wind correction for the destination runway. In addition, approach 3107 3108 configuration speeds should be computed and displayed for reference. 4.3.4.11 Reserve Fuel Calculation 3109 3110 When the system supports a default reserve fuel, the default reserve fuel should be computed based on the estimated fuel burn for the given flight plan, the entered or 3111

3112

4.0 FLIGHT MANAGEMENT FUNCTIONS

measured total fuel quantity, and additional entered parameters such as assumed

- fuel flow percent error. Manual entry of a reserve fuel quantity should be provided 3113 and should override the default value (if any). The system should provide an 3114 3115 indication to the crew when the predicted fuel at destination is below the reserve fuel. 3116 4.3.4.12 Engine-Out Performance Calculation 3117 3118 Systems should provide engine-out performance predictions for the case of the loss of at least one engine. These predictions may include: 3119 3120 Climb at engine-out climb speed Cruise at engine-out cruise speed 3121 • 3122 Driftdown to engine-out maximum altitude at driftdown speed • 3123 Use of maximum continuous thrust • Two-engine-out predictions when applicable on three and four engine 3124 3125 aircraft 3126 4.3.4.13 Other Predictions 3127 A number of other predictions and computed performance parameters can be 3128 provided by flight management systems. The following are a few of these optional 3129 functions: 4.3.4.13.1 3130 **Maximum Range Computation** Capability to compute the maximum range of the aircraft based on the 3131 entered/measured fuel quantity and the specified reserves should be provided. Both 3132 3133 range to reserves and range to empty may be displayed as appropriate. 3134 4.3.4.13.2 **Maximum Endurance Computation** 3135 The maximum endurance time of the aircraft can be computed based on the 3136 entered/measured fuel quantity and the specified reserves. Both endurance time to 3137 reserves and time to empty can be provided. 4.3.4.13.3 **Descent Energy Circles** 3138 3139 For a selected fix point and associated altitude constraint, the distance required to 3140 descend from current altitude to the constraint altitude can be computed for both 3141 clean and full drag aircraft configurations. This data can be available for display on 3142 both the MCDU and as range circles centered on the specified fix on the navigation 3143 display. 4.3.5 Printer Functions 3144 Capability may be provided to print various data such as data link messages, flight 3145 3146 plans, and maintenance information. 3147 4.3.6 AOC Function 3148 3149 The system should provide for a data link interface with Airline Operations Communication. This interface should allow for uplink and crew controlled insertion 3150
- of parameters that are enterable through the MCDU. This should include: 3151 3152
 - User preferred flight plans defined by the airline dispatch office

3153		• Wind and Temperature entries at multiple altitudes (Section 4.3.2.5.1)
3154		 Waypoints where automatic position reports are required
3155		Performance initialization data
3156		Navigation data base amendments
3157 3158		Likewise, this interface should provide for the downlink of entered and computed data, including flight plan requests and waypoint reports.
3159		Refer to Section 8.0 and ATTACHMENT 7 for interface details.
3160		
3161	4.3.7	ATS Datalink
3162 3163 3164 3165		Air Navigation Service Providers (ANSPs) are implementing, or have plans to implement, Air Traffic Services Datalink functions using existing and future data link systems whose requirements are defined according to the DO-264/ED-78 safety and performance requirements process. These include:
3166 3167 3168		 FANS 1/A+ Interoperability and Accommodation (DO-258 FANS Interoperability, DO-305 Accommodation in Domestic Airspace, and DO-306 Oceanic Safety and Performance Requirements)
3169		• Link 2000+ (subset of Baseline 1, DO-280/290/EUROCONTROL spec-0116)
3170		 Baseline 2 Rev A or B (DO-350 through DO-353/ED-229)
3171		
3172		COMMENTARY
3173		Rev A is planned for Europe and Rev B is planned for the US
3174		
3175 3176 3177 3178 3179 3180 3180 3181		The FMS system should support these datalink systems. FANS 1/A was originally utilized primarily in trans-oceanic ATC environments (mandated in the North Atlantic) but is being expanded into US and European domestic airspace. Link 2000+ is the datalink system in Europe. Baseline 2 is applicable to domestic airspace in North America and will eventually replace Link 2000+ in domestic European airspace. Some aircraft avionics implementations have elected to support multiple ATS datalink systems (oceanic and domestic).
3182 3183 3184 3185		All these ATS datalink systems provide the capability to establish a direct message exchange between the pilots and controllers, using datalink messages instead of voice and may provide other functions such as downlink of position reports and aircraft state and intent information.
3186 3187		The datalink communication architecture on the aircraft has evolved with variation in the allocation of the datalink subfunctions to physical units.
3188		

	ATS End System
0.400	FMS Data Autoload Message Processing Autoload Peer/Peer Fight Data Flight Data Air/Ground
3189 3190	Figure 4.3.7-1 Functional Breakdown of ATS Datalink Airborne Architecture
3191	
3192 3193 3194 3195 3196 3197 3198 3199	Some system integrators have chosen to allocate the ATS end system into the FMS, some have chosen to allocate the ATS end system to a different unit and establish a significant data interface with the FMS to support the various datalink functions. Some implementations have a minimal interface with the FMS and depend on the crew to manually support the data needs of the datalink function. The following sections describe all the potential FMS requirements for the datalink functions without regard to the functional allocation of the specific airborne architecture.
3200	
3201 3202	It is imperative for stakeholders to understand the specific airborne architecture and which requirements are applicable in their particular architecture.
3203	
3204	4.3.7.1 Future Air Navigation System 1/A (FANS 1/A)
3205 3206 3207 3208	The ATS applications used in FANS 1/A are Air Traffic Services Facilities Notification (AFN), Automatic Dependent Surveillance-contract (ADS-C), Controller Pilot Data Link Communication (CPDLC) as defined in DO-258/DO 290 and ARINC 622. These applications enable the following ATS services:
3209 3210 3211 3212 3213 3214 3215 3216	 Data Link Initiation (DLIC) ATC Communications Management (ACM) Clearance Request and Delivery (CRD) ATC Microphone Check (AMC) Pre-Departure Clearance Information Exchange and Reporting (IER) Position Reporting (PR) In Trail Procedure (ITP)
3217	
3218	4.3.7.1.1 Air Traffic Services Facilities Notification (AFN)
3219 3220 3221 3222 3223 3223 3224	The AFN logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use, along with the current position as required by the ground system. In response, the ground provides an application name and version number for each application that the ground supports. AFN enables and precedes the use of CPDLC, ADS-C and associated services.
3225 3226 3227 3228	To support auto transfer from one center to the next, the contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the next ATS ground system. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was

3229 3230	successful. The AFN logon messages and sequence are detailed in DO-258 and ARINC 622.
3231 3232	For architecture with dual datalink systems (dual stack), the AFN function should support the auto transfer from one datalink system to another datalink system.
3233	
3234	4.3.7.1.2 Controller/Pilot Data Link Communication (CPDLC)
3235 3236	The CPDLC specific messages supported should be those defined by ICAO Doc 4444: PANS-ATM and DO-258()/ED-100() to enable the following services:
3237 3238 3239 3240 3241 3242	 ATC Communications Management (ACM) Clearance Request and Delivery (CRD) ATC Microphone Check (AMC) Pre-Departure Clearance Information Exchange and Reporting (IER) Position Reporting (PR)
3243 3244 3245 3246 3247 3248 3249 3250	These messages include some which are loadable and others which are display only. The FMS exchanges these messages with the communication management function which provides for the capability to receive and send these messages over the data link network. The FMS should provide the capability to interface with the network protocol and integrity checking as defined by ARINC 622, These data link messages will be identified with an Imbedded Message Identifier (IMI) of ATx and Message Format Identifier (MFI) of AA/BA to distinguish them from AOC messages and take priority over any other pending data link messages.
3251 3252 3253 3254 3255 3256 3256 3257	Interpretation of the message is based on the CPDLC application defined by RTCA DO-258/290 message element number. Upon receipt of an ATC uplink, the system should annunciate an alerting level message in the primary field of view and set an output discrete that will be used to control an aural warning. The system should also provide for a crew interface that details these messages for crew review along with the appropriate prompts for crew responses such as accept, reject, standby, or response data that may be required.
3258 3259	As a minimum, the FMC functions should provide the capability to load (autoload) the following message types:
3260 3261	Cross position BEFORE, AT, or AFTER timeRoute Clearances
3262 3263	For all load functions, the changes should be displayed for review by the flight crew. The changes should be initiated and activated by the flight crew.
3264	
3265	4.3.7.1.3 Automatic Dependent Surveillance - Contract (ADS-C)
3266	This function should provide for uplink messages to establish the following:
3267 3268 3269 3270 3271	 Periodic Contract On Demand Contract Event Contract Cancel Contract Cancel All Contracts

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 3272 It should also provide Acknowledgment, Negative Acknowledgment, Noncompliance 3273 Notification, and data downlink messages as defined in RTCA DO-258.
- 3274This function should support at least 5 connections (four typically used for ATC and3275another for AOC). Each connection is associated with the ATC center address and3276may have any contract type.
- 3277The ADS-C contracts should be established automatically by the contract protocol3278defined in DO-258 without the need for crew intervention. Each contract specifies3279the data groups as well as the report interval and other report downlink triggers that3280are desired. Each contract request can specify the data groups to be transmitted:
 - Basic ADS-C
- Flight ID
 - Airframe ID
 - Air vector
 - Ground vector
- Aircraft Intent
 - Projected profile
 - MET data
 - All time stamps associated with data groups should be based on the UTC received from the GNSS. UTC based on aircraft clocks should only be used in case of GNSS outage or failure.
- 3293 4.3.7.2 Link 2000+
- 3294The ATN applications used in Baseline 1 Link 2000+ are subsets of context3295management (CM), and Controller Pilot Data Link Communication (CPDLC), as3296defined in DO-280/290/EUROCONTROL spec-0116. These applications support3297the following ATS Services:
- 3298
- Data Link Initiation (DLIC)
 ATC Communications Management (ACM)
 - Air Traffic Clearance (ACL)
 - ATC Microphone Check (AMC)

3301 3302

3299

3300

3281

3283

3284

3285

3287

3288

3289

3290

3291 3292

3303 4.3.7.2.1 Context Management (CM)

- 3304The Baseline 1 Link 2000+ CM logon function can only be aircraft initiated. The3305aircraft system uses the logon function to provide an application name, address,3306and version number for each application that the aircraft wishes to use that can be3307ground initiated, along with the Origin and Destination airports as required by the3308ground system. In response, the ground provides an application name and version3309number for each ground-only initiated requested application.
- 3310To support auto transfer from one center to the next, the Link 2000+ CM contact3311function provides a method for the ATS ground system to request the aircraft3312system to initiate the logon function with the ATS ground system indicated in the3313CM contact. The ATS ground system initiates this function with a contact request3314specifying the ATS ground system CM application address with which to logon. The3315aircraft initiates a logon and provides the information indicating whether or not the

4.0 FLIGHT MANAGEMENT FUNCTIONS

For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.

- requested contact was successful. The Context Management logon messages and 3316 sequence are detailed in the Baseline 1 ATN Interoperability DO-280. 3317

3320

3322

3325

3326

3327 3328

3329

3330

- 3318 3319
- 4.3.7.2.2 Controller Pilot Data Link Communication (CPDLC) 3321
- The Link 2000+ CPDLC is a subset of the ATN Baseline 1 CPDLC as defined in RTCA DO-280/290/ EUROCONTROL spec-0116. The ATN Baseline 1 Link 2000+ 3323 controller-pilot message exchange function defines a method for a controller and 3324 pilot to exchange information via data link as detailed in DO-280/ 290/EUROCONTROL spec-0116. This function provides messages for the following:
 - ATC Communication Management (ACM) •
 - Air Traffic Clearance (ACL)
 - ATC Microphone Check (AMC) •
- The ATN Baseline 1 Link 2000+ CPDLC message elements encompass level 3331 3332 assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests 3333 3334 for information. The pilot has the capability to respond to messages, request clearances and report information. An uplink "free text" capability is also provided to 3335 exchange information not conforming to defined formats and to append information 3336 3337 explaining error reasons. A downlink "free text" capability is provided to append information explaining error reasons. 3338
- 3339 The Baseline 1 transfer of data authority function provides the capability for the current data authority (CDA) to designate another air traffic service unit (ATSU) as 3340 the next data authority (NDA). A CPDLC connection can be established by the NDA 3341 3342 at a time before becoming the CDA. This capability is intended to prevent a loss of communication that would occur if the NDA were prevented from actually setting up 3343 a connection with an aircraft system element until it became the CDA. 3344
- 3345

3346

4.3.7.3 Baseline 2 (B2)

3347 The ATS applications used in Baseline 2 are Context Management (CM), Automatic Dependent Surveillance-Contract (ADS-C) and Controller Pilot Data Link 3348 Communication (CPDLC) as defined in DO-350 through DO-353 and ED-229. 3349 These applications support the following ATM functions: 3350 3351 • Data Link Initiation (DLIC) ATC Communications Management (ACM) 3352 • Clearance Request and Delivery (CRD) 3353 • ATC Microphone Check (AMC) 3354 • 3355 • Departure Clearance (DCL) Data Link Taxi (D-TAXI) 3356 • • In Trail Procedure (ITP) 3357 3358 Advanced Interval Management (A-IM) • Oceanic Clearance Delivery (OCL) 3359 • 3360 Information Exchange and Reporting (IER)

3361 3362 3363 3364		 Position Reporting (PR) 4-Dimensional Trajectory Data Link (4DTRAD) Dynamic Required Navigation Performance (DRNP)
3365	4.3.7.3.1	Context Management (CM)
3366 3367 3368 3369 3370 3371		The CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.
3372 3373 3374 3375 3376 3377 3378 3379		To support auto transfer from one center to the next, CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in DO-350 and ED-229.
3380 3381		For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.
3382 3383	4.3.7.3.2	Controller Pilot Data Link Communication (CPDLC)
3384 3385 3386		The ATN Baseline 2 controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in DO-350 and ED-229. This function provides messages for the following:
3387 3388 3389 3390 3391 3392 3393 3394 3395		 General information exchange Clearance delivery, request, and response Departure Clearance Taxi Instructions Separation Assurance Route modification Advanced Interval Management 4D trajectory based operation Dynamic RNP
3396 3397 3398 3399		The aircraft system should allow the flight crew to view the message with no more than a single action and allow the flight crew to access the list/queue of unread messages with no more than a single action. The aircraft system should display the messages on a display in the primary field of view.
3400 3401 3402 3403		The aircraft data link system should provide the flight crew with the capability to load designated CPDLC uplink messages into the FMS to avoid hazards associated with human entry errors and/or increased workload. The following clearance messages are prone to these hazards:

3404 3405 3406 3407 3408 3409	 A clearance that will require the creation, in the resulting flight plan, of more than one waypoint unless the route is described by a procedure name that can be loaded from the navigation database, A clearance that will require the creation, in the resulting flight plan, of one waypoint specified by place-bearing-distance or latitude/longitude with a resolution smaller than whole degrees.
3410 3411 3412 3413	The aircraft data link system will provide the flight crew with assistance to create CPDLC downlink messages to avoid any safety implications (i.e., human entry errors and/or significant increased workload). The following downlink messages are prone to these hazards:
3414 3415 3416 3417	 request messages which contain more than one waypoint report messages of the present aircraft position or containing one (or more) waypoint(s) from the FMS active flight plan.
3418	4.3.7.3.3 Automatic Dependent Surveillance (ADS-C)
3419 3420 3421	The ADS-C application provides automatic reports from an aircraft system to an ATSU as detailed in DO-350. The ATSU is capable of requesting the aircraft system to provide the ADS-C reports to the ATSU system in three ways:
3422	on demand
3423	on a periodic basis
3424	when triggered by an event
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443	Only one contract of a given type is permitted at one time per ATSU. When the ATSU sends a contract request to an aircraft system for a periodic or event contract, and either of these two contracts already exists with that aircraft, then the new contract will override the previous contract for that type. Acceptance of an event or periodic contract request implicitly cancels an existing respective event or periodic contract. Since the demand contract is satisfied by sending a single report, any number of demand contracts may be sequentially established with a given aircraft. The ATSU is capable to cancel either a single contract or all contracts in operation that it has established with an aircraft. The ATSU specifies either which contract(s) to cancel by identifying the contract type(s), or specifying to cancel all contracts. The aircraft system acknowledges the cancellation and ceases sending the ADS-C reports for the cancelled contract requests. The ADS-C reports content and the conditions under which the report is sent vary depending on the type of contract request and the conditions specified in the request. The aircraft system is capable of supporting contract requests with at least five ground systems simultaneously. In addition, when in emergency mode, the aircraft system provides an emergency/urgency indication as part of each downlink ADS-C messages including the ADS-C report.
3444	Each contract request can specify the data groups to be transmitted:
3445 3446 3447 3448 3449 3450	 Basic ADS-C air vector ground vector projected profile MET data RTA status data

3451 3452 3453 3454 3455 3456	 extended projected profile planned final approach speed RNP status COMMENTARY The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the predicted reference path altitude.
3455	The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the
	The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the
3456	the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the
3457 3458 3459	
3460	
3461 4.3.8	Airport Surface Guidance
3462	[Deleted by Supplement 5].
3463 4.3.9	Ferrain and Obstacle Data
3464	[Deleted by Supplement 5].
3465 4.3.10	Electronic Map Interfaces
3466 4.3.10.1	Navigation Display Interface
3467 3468 3469 3470 3471 3472	The system should support an interface with a Navigation Display (ND) in order to provide lateral situational awareness (e.g. aircraft position, lateral trajectory, nearby navaids, etc). RTCA DO-257() defines requirements for the ND Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661.
3473 3474 3475	In addition to the map background data and the aircraft position, the system should supply a number of other dynamic data items that are contribute to lateral situation awareness. These may include:
3476 3477 3478 2470	 Wind (either cross wind and headwind components or magnitude and bearing) Time and distance to go to the next waypoint
3479 3480	Ground speedVertical deviation when guiding to the descent path
3481	 Trend vector showing current rate and direction of turn
3482 3483	The system should support independent ND displays such that each pilot may select different map ranges, modes, or options.
3484 4.3.10.2	Vertical Situation Display Interface
3485 3486 3487 3488 3489 3490 3491	The system may support an interface with a Vertical Situation Display (VSD) to provide vertical situational awareness (e.g. vertical aircraft position, AFCS Control Panel Altitude, altitude constraints, descent reference path, vertical trajectory predictions, terrain, etc). RTCA DO-257() defines requirements for the VSD. Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The CDS interface is in ARINC 661.

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 3492In addition to the map background data, vertical aircraft position, and AFCS Control3493Panel Altitude, the system should supply a number of other dynamic data items that3494contribute to vertical awareness. These may include:
- Vertical speed
 - Vertical deviation when guiding to the descent path
 - Trend vector showing current flight path angle
- 3498The system should support independent VSD displays such that each pilot may3499select different map ranges, modes, or options.

3500 **4.3.11 CMU Interface**

3496

3497

3501The system should provide for an interface with a CMU for the purpose of3502supporting all data link functionality described in this characteristic. The standard3503interface between the CMU and the flight management function, detailing the3504interface data and formats, may be found in Section 8.0 of this characteristic.3505Message formats for AOC communications are defined in ATTACHMENT 7.

3506 4.3.12 Predictive Receiver Autonomous Integrity Monitoring (RAIM)

3507Optional capability may be provided for the FMS to transmit the selected destination3508latitude, longitude, and ETA to the GNSS when a flight plan has been activated and3509predicted. The purpose of this capability is for the prediction of the availability of3510GNSS satellite coverage for the approach phase of the flight. The GNSS should3511respond to whether adequate satellite coverage is anticipated. If not, the system3512should immediately alert the crew. Interface requirements for this capability are3513defined in ARINC Characteristic 743A, Appendix C.

3514 4.3.13 Precision-Like Approach Guidance

- 3515With the advent of advanced navigation sensors and airborne systems, two3516methods have been developed that allow non-precision approaches to be flown like3517an ILS, MLS, or GLS precision approach: LP/LPV Approaches and FMS Landing3518System (FLS)
- 3519 LP/LPV Approaches are analogous to GLS approaches. Both LP/LPV and GLS are satellite-based operations using an augmented GNSS solution. In a GLS approach, 3520 a ground station transmits both (a) corrections to a GNSS signal, and (b) a Final 3521 Approach Segment (FAS) Data Block which defines the localizer and glideslope 3522 3523 beams. When tuned to the GLS channel number, a receiver onboard the aircraft receives those signals and computes ILS look-alike deviations for use by the 3524 autoflight and display systems. In an LP/LPV approach, a receiver onboard the 3525 aircraft receives corrections to the GNSS signal from a satellite-based system 3526 (SBAS) rather than a ground-based system (GBAS); it typically receives the FAS 3527 3528 Data Block from the onboard Flight Management System.
- 3529For any non-precision approach, some Flight Management Systems support an FLS3530guidance mode where the onboard FMS navigation solution may be used to provide3531the autoflight and display systems with ILS look-alike deviations.
- 3532 3533

4.3.13.1 LP/LPV Approach Guidance

3534On some installations, the system supports LP/LPV approach capability when used3535in conjunction with an ARINC 743B GNSS Landing System Sensor Unit (GLSSU)

3536 3537 3538 3539	(RTCA DO-229 Delta-4 SBAS receiver) or an ARINC 755 Multi-Mode Receiver (MMR) supporting the GLS function. The GLSSU (or MMR) provides the lateral and vertical deviations (ILS look-alike) and guidance during the final approach segment.
3540 3541 3542 3543 3544 3545 3545	On those installations, upon crew selection of the desired LP/LPV approach, the system should extract the Final Approach Segment (FAS) data block from its navigation database and transmit it to the GLSSU/MMR. The protocol to exchange the FAS data block is described in ARINC 743B Appendix D and ARINC755 Appendix A. The Final Approach Segment (FAS) data block includes a 32-bit Cyclic Redundancy Check (CRC) value ensuring the integrity of the data from the time of the original packet generation.
3547 3548 3549 3550	Upon crew activation of a new approach where the previously selected Final Approach Segment is no longer applicable, the system should invalidate the previously sent Final Approach Segment Data Message (FASDM).
3551	4.3.13.2 FMS Landing System (FLS)
3552 3553 3554	The system may support a virtual ILS guidance capability which can be used to fly a non-precision final approach segment. This capability is referred to as FMS Landing System (FLS).
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3566 3567	When an FLS capability is provided and the crew has selected a non-precision approach, the system should provide a means for the crew to select or de-select FLS guidance for the final approach. When FLS is selected and lateral guidance is not already being provided by a ground-based localizer (if allowed), the system should compute a virtual localizer path. When FLS is selected, the system should compute a virtual glideslope path. For the virtual glideslope path, the anchor point should be located such that the aircraft can maintain a constant vertical angle to the landing threshold point (LTP), even in cases where the MAP is not located at the runway or there is a curved lateral path to the runway. When FLS guidance is selected, the system should interface to the autoflight and/or display systems to allow the virtual localizer and/or glideslope to be flown. When the system should prohibit selection of FLS guidance and/or provide an indication to the crew.
3568 3569	COMMENTARY
3570 3571	FLS guidance must comply with the Temperature Compensation Requirements in Section 4.3.2.5.4.
3572	4.2.4.4 Interview Merstering and Alexting
3573 3574	4.3.14 Integrity Monitoring and Alerting 4.3.14.1 Sensor Status
3575 3576	Sensor warning inputs will be implemented as specified in ARINC Specification 429, Section 2.1, in that validity status is contained within the digital word format.
3577 3578	In all cases of sensor input failure, suitable sensor failure warning and degraded status annunciation should be provided.

4.0 FLIGHT MANAGEMENT FUNCTIONS

3579 4.3.14.2 System Status Alert

3580 3581 3582 3583 3584 3585	Any change of status that results in reduced system operational capability or availability should be annunciated to the pilot on, or adjacent to, primary flight instruments. Additional data for use in diagnosing the reason for the change will be of value if it can be displayed on the MCDU or output to an onboard printer of data collection system (e.g., through the data loader interface). Means should be provided to cancel the alert.
3586	COMMENTARY
3587 3588 3589 3590 3591 3592	The system status alert is designed only to attract the attention of the pilot to the fact that something has happened either within the system or to one of the sensors that has degraded or will degrade the operational viability of the system. It will be necessary for the pilot to look for further signs to determine the actual problem and whether or not he can correct it.
3593 3594 3595	System integrity monitoring and failure warning discrete outputs are described in Section 5.3 of this Characteristic. All other such alerts and warnings are included in the transmitted digital word as specified in ARINC Specification 429, Section 2.1.
3596	

4.0 FLIGHT MANAGEMENT FUNCTIONS

3597 4.3.14.3 Self-Test

3598The FMC should be designed to perform automatic self-tests of its internal3599operation, and reasonableness tests on input data during normal operation. The3600FMC will generate digital output buses which will include malfunction codes to3601indicate the FMC's assessment of its health, and the status of its interfaces.

3602 4.3.14.4 Failure Response

3603 The system should monitor its own health and processing for integrity. When an error is detected, the system should record the failure in a nonvolatile BITE log and 3604 3605 attempt to recover from or correct the error if possible. If an attempted fault recovery is unsuccessful, the system should prevent further processing in the affected 3606 3607 partition. 3608 COMMENTARY 3609 The airlines desire a high degree of fault tolerance in the FMS. System recovery logic for intermittent faults should be designed to 3610 3611 minimize visible flight deck effects and loss of system availability.

3612 **4.4 Training Simulator Support Functions**

- 3613FMS requirements for simulator support functions are defined in ARINC Report3614610().
- 3615

3616 **5.0 STANDARD INTERFACES**

3617 5.1 FMC Digital Data Input Ports

3618This section describes the digital interfaces to the FMC. It is unlikely that all of these3619inputs will be employed in a given installation. Those not used in a particular aircraft3620type need not be implemented in the FMC. However, hardware, software, and3621computer cycle time capacity should be available to allow all of them to be activated3622when needed.

COMMENTARY

- 3624Data signaling for inputs and outputs to the FMC should be in the3625ARINC 429 low-speed rates, except where otherwise specified. The3626data signals are defined in Attachment 4 of this document.
- 3627Providing for FMC interchangeability across different aircraft types in
a user's fleet may generate the need for the computer to offer more
input capacity than needed on any one of those types.

3630 5.1.1 VOR Input Ports

Two ARINC 429 input ports are provided to receive data from dual ARINC 711 VOR receivers.

3633 5.1.2 DME Input Ports

Two ARINC 429 input ports are provided to receive data from dual ARINC 709 DME interrogators.

COMMENTARY

3636 5.1.3 ILS/MMR Input Port

- 3637One ARINC 429 input port will receive data from an ARINC 710 ILS receiver or an3638ARINC 755 Multi-Mode Landing System Receiver (MMR).
- 3639

3623

3631 3632

3634 3635

3640

3641

These ports are used to support LP/LPV approaches when interfacing to an ARINC 755 MMR

- 3642 5.1.4 Air Data Input Ports
- 3643Two ARINC 429 input ports will receive data from dual ARINC 706 Air Data3644Systems or ARINC 738 Air Data Inertial Reference Unit (ADIRU).

3645 5.1.5 IRS/AHRS Input Ports

3646Three ARINC 429 input ports will receive data from ARINC 704 IRS, ARINC 7053647AHRS or ARINC 738 ADIRU systems. These are ARINC 429 high-speed inputs.

3648 **5.1.6 GNSS Input Ports**

- 3649Two ARINC 429 input ports should receive data from an ARINC 743 GNSS Sensor.3650These may be ARINC 429 high-speed or low-speed inputs. The ARINC 743 GNSS3651Sensor is capable of providing ARINC 429 data in high-speed or low-speed format.
- 3652
 COMMENTARY

 3653
 These ports are used to support LP/LPV approaches when interfacing to an ARINC
- 3654 743B GLSSU or an ARINC 755 MMR

5.0 STANDARD INTERFACES

3655 5.1.7 Flight Control System Input Ports

3656 3657

3673

3679 3680

3681

One ARINC 429 input port will receive data from an ARINC 701 Flight Control System glare shield controller.

3658 **5.1.8 MCDU Input Ports**

3659Two ARINC 429 input ports are provided to receive data from one or two MCDUs.3660One of these ports is designated the "on-side" port and the other is designated the
"off-side" port (see Attachment 3 of this document).

3662 5.1.9 Data Loader Input Ports (ARINC 615)

3663One ARINC 429 input port is dedicated to receive data to update bulk storage3664integral to the FMC. This port is intended for an interface with a loading device of3665the type described in ARINC 615. The characteristics of the digital data3666transmission on this bus are defined to the extent necessary in that document.

3667 5.1.10 Data Link Input Ports

- 3668The FMC should provide two ARINC 429 high-speed input ports to receive data3669from up to two ARINC 758 CMUs.
- 3670The FMC should provide two ARINC 429 low-speed input ports to receive data from3671up to two ARINC 724B ACARS Management Units or to support existing ACARS3672functionality integrated into the ARINC 758 CMU.

COMMENTARY

3674Dual ACARS low-speed inputs can be accommodated by using a3675software selectable speed input for at least one of the CMU inputs.

3676 5.1.11 Intersystem Data Input Port

- 3677One ARINC 429 input port provides the intersystem comparison data received from3678a second FMC.
 - COMMENTARY
 - As an alternative to ARINC 429, a faster intersystem data bus may be necessary. Refer also to Sections 5.2.1 and 5.4.

3682 5.1.12 Propulsion/Configuration Data Input Ports

3683Six ARINC 429 input ports are provided for engine and fuel flow and quantity3684parameters and data received from the Thrust Control Computer (TCC).

3685 COMMENTARY

3686It is intended that four of these ports should be assigned for receiving3687individual engine and fuel flow data from up to four engines or fuel3688systems. The remaining two ports would normally receive other data3689such as thrust limit, fuel quantity, and TCC data.

3690 5.1.13 Electronic Flight Instrument System Input Ports

3691Two ARINC 429 input ports are provided for data from an Electronic Flight3692Instrument system. This interface may provide interface capability to the Cursor3693Control Device (CCD). This capability may be provided by a separate input as3694defined in Section 5.1.19.

	5.0 STANDARD INTERLACES
3695	5.1.14 Printer
3696 3697	One ARINC 429 input port is provided for data from an ARINC 740 or ARINC 744 airborne printer.
3698	5.1.15 Digital Clock Input
3699 3700 3701	One ARINC 429 input port is provided for data from a digital clock. The clock input may be provided from a GNSS source, in which case the GNSS input is utilized per Section 5.1.6. In this case a dedicated clock input port is not required.
3702	5.1.16 Maintenance Input
3703 3704	One ARINC 429 low-speed input port is provided for interface to an ARINC 604 or 624 maintenance system.
3705	5.1.17 WBS Input
3706 3707	One ARINC 429 input port is reserved for input of data from an ARINC 737 On- Board Weight and Balance System (WBS).
3708	5.1.18 Simulator Input
3709 3710 3711	A serial digital input is required to support ARINC 610B simulator functions. As a manufacturer option, this input may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.
3712	5.1.19 Pointing Device
3713 3714	Two high-speed ARINC 429 input ports are reserved for input from dual cockpit pointing devices.
3715	COMMENTARY
3716 3717 3718	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.
3717	should they exist. It is expected that all future systems will receive
3717 3718	should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.
3717 3718 3719 3720	should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft
3717 3718 3719 3720 3721	should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system.
3717 3718 3719 3720 3721 3722 3723	 should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software
3717 3718 3719 3720 3721 3722 3722 3723 3724	 should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs.
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726	 should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. 5.2 FMC Digital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727	 should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. 5.2 FMC Digital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data.
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3726 3727 3728 3729 3730	 should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. 5.2 FMC Digital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data. 5.2.1 FMC Intersystem Output The FMC should provide an output bus which can be used for intersystem communication from one FMC to another. Section 5.4 of this document provides
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3728 3729 3730 3731	should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5.1.20 ASAS Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. 5.1.21 Reserved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. 5.2 FMC Digital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data. 5.2.1 FMC Intersystem Output The FMC should provide an output bus which can be used for intersystem communication from one FMC to another. Section 5.4 of this document provides guidance on intersystem communications.

- 3735 data bus may be used. Any alternative data bus should meet the same EMI requirements of ARINC 429. 3736 5.2.2 General Data Output 3737 3738 Two ARINC 429 outputs provide data to flight instruments, to radio receivers or frequency management unit for tuning, to the Thrust Control Computer System, 3739 Flight Control Computer System, and other users. They may also provide 3740 initialization data to the IRS. Optionally, they may include the FAS data block to an 3741 ARINC 743B GLSSU or ARINC 755 MMR. 3742 3743 COMMENTARY 3744 The amount of data to be carried may require the use of ARINC 429 3745 high-speed buses. 3746 5.2.3 Primary Display Data Output 3747 Two ARINC 429 high-speed outputs are dedicated to supplying data for the Electronic Flight Instrument systems. 3748 3749 COMMENTARY 3750 The specialized design of the FMC/EFI interface makes these outputs unsuitable for supplying other displays such as digital electromechanical instruments. The general 3751 data outputs should be used for these purposes. See Section 7.0 of this document. 3752 3753 5.2.4 MCDU Output Ports 3754 Two ARINC 429 outputs provide the means for the FMC to supply data to the MCDUs for the system. 3755 3756 5.2.5 **Data Loader Output** 3757 One ARINC 429 output is provided for interface to an ARINC 615 data loader. 3758 5.2.6 Data Link Output Ports 3759 One ARINC 429 high-speed output is provided for connection to an ARINC 758 CMU. 3760 3761 One ARINC 429 low-speed output is provided for connection to an ARINC 724B ACARS Management Unit, or to support existing ACARS functionality integrated 3762 into the ARINC 758 CMU. 3763 3764 5.2.7 Autothrottle (Reserved) 3765 One ARINC 429 output is reserved to supply data to an Electronic Engine Control 3766 (EEC) computer. 3767 5.2.8 Printer One ARINC 429 high-speed output is reserved for the output of data to an ARINC 3768 740 or ARINC 744 printer. 3769 3770 5.2.9 Onboard Maintenance 3771 One ARINC 429 output is reserved for the output of data to an ARINC 604 or 624 onboard maintenance system. 3772 5.2.10 Programmable Data Output 3773
- 3774 One ARINC 429 high-speed output is provided to support flight test data collection.

3775 5.2.11 Simulator

3776A serial digital output is required to support ARINC 610B simulator functions. As a3777manufacturer option, this output may be shared with other interfaces not requiring3778simultaneous use, such as maintenance or data loader inputs.

3779 5.2.12 Aircraft State and Intent Path Output (Trajectory Bus)

- The FMC should include an ARINC 429 high-speed bus to provide Position Velocity 3780 3781 Time (PVT) and intent data from the FMC. This data may be used for surveillance applications such as ADS-B, Terrain Awareness and Warning System (TAWS), 3782 3783 Terrain/Obstacle avoidance, and other situational awareness systems. The interface definition is comprised of present aircraft state data that is broadcast at a 3784 half second (2 Hz) update rate. The FMS should comply with the requirements of 3785 3786 RTCA DO-229C that specifies that the data defining the position shall be output prior to 200 milliseconds after the time of applicability. 3787
- 3788Additionally, trajectory intent data for the active flight plan, modified flight plan, or3789other specified flight plan, assumed to be flown in FM managed mode, is3790transmitted as a block data transfer. This data may be used for all types of ATM3791applications.
- 3792As an option, the Aircraft State and Trajectory output may be provided by an ARINC3793664 Ethernet interface. The intention is that the same data items are provided; only3794the transfer mechanism(s) are different. The Ethernet Aircraft State is specified in3795Section 5.2.12.1.2 and the Ethernet Trajectory output is specified in Section37965.2.12.2.2. There are no pin assignments in this Characteristic for an ARINC 6643797Ethernet bus. These interfaces may be aircraft specific.
- 3798The list of ARINC 429 data words used for the broadcast data is included in ARINC3799Specification 429: Digital Information Transfer System (DITS).

3800 **5.2.12.1 Aircraft State Data**

- 3801The aircraft state data from the FMS should include the parameters in Table 5-1 or3802Table 5-2. Trajectory intent status data should be included as an FMC output based3803on determination if the aircraft is following its FMC specified flight plan. Separate3804discrete bits (label 270 bits 27, 28, 29) are provided to the user to aid in the3805interpretation of trajectory data. These discrete bits indicate whether the airplane is3806being flown to the vertical, lateral, and speed/time targets for the trajectory provided3807with the appropriate automation engaged, as necessary.
- 3808This list of data represents information that is expected to be made available on the
38093809Trajectory intent data bus from the FMC to support multiple functions. It is not
intended to specify what should be transmitted from the airplane.
- 3811 5.2.12.1.1 A429 Aircraft State
- 3812
- 3813

Table 5-1 A429 Intent Aircraft State Labels

Label	Parameter	Update Rate
102	FMS Selected Altitude	0.5 sec
103	FMS Selected Airspeed	0.5 sec
106	FMS Selected Mach	0.5 sec
114	FMS Desired Track	0.5 sec
116	Cross Track Distance	0.5 sec

3814 3815 3816

3817

3818 3819

3820

3821

3822

3823

3824

3825

3826

3827

Label	Parameter	Update Rate
117	Vertical Deviation	0.5 sec
135	Current Vertical Path Perf Limit (Vert RNP)	0.5 sec
136	Current Vertical Path Perf (Vert ANP ⁽¹⁾)	0.5 sec
150	UTC	0.5 sec
167	Estimated Position Uncertainty (or ANP)	0.5 sec
171	Current RNP	0.5 sec
233-237	Flight ID	0.5 sec
310	Present Position Latitude	0.5 sec
311	Present Position Longitude	0.5 sec
312	Ground Speed	0.5 sec
313	Track Angle True	0.5 sec
314	True Heading	0.5 sec
315	Wind Speed	0.5 sec
316	Wind Direction	0.5 sec
204	Baro-Corrected Altitude (pass through from ADC)	0.5 sec
203	Pressure Altitude (pass through from ADC)	0.5 sec
206	Calibrated Airspeed (pass through from ADC)	0.5 sec
205	Mach (pass through from ADC)	0.5 sec
210	True Airspeed (pass through from ADC)	0.5 sec
213	Static Air Temperature (pass through from ADC)	0.5 sec
320	Magnetic Heading (pass through from IRS)	0.5 sec
325	Roll Data (pass through from IRS)	0.5 sec
335	Track Angle Rate (pass through from IRS)	0.5 sec
365	Inertial Vertical Velocity (pass through from IRS)	0.5 sec
366	N/S Velocity	0.5 sec
367	E/W Velocity	0.5 sec
270	Intent Status bit 29-speed/time controlled bit 28-lateral controlled bit 27-vertical controlled bit 26-no active flight plan intent data bit 25-desired track mag/true ref (1 = true) bit 24-indicates when bus is guidance master	0.5 sec

5.0 STANDARD INTERFACES

level and barometric altitude when above transition altitude.

COMMENTARY

Table 5-1 provides FMS data parameters for surveillance and fully recognizes that other data parameters necessary for surveillance may be provided by other systems (e.g., GPS, inertial system, air data system, Flight Controls system).

The integrity data is Estimated Position Uncertainty and Current Vertical Path Performance. It is expected that surveillance systems using this data to transmit an integrity parameter outside the airplane would use these data items (or the appropriate integrity parameters when using data from another source, such as GPS) to compute the

5.0 STANDARD INTERFACES

requisite integrity parameter as specified by the RTCA MOPS for that particular surveillance application. 3828 3829 3830 5.2.12.1.2 Ethernet Aircraft State

3831 3832 The format of the aircraft state consists of a single block coded in big endian mode. This block should nominally be sent at 2 Hz rate.

- 3833
- 3834

Table 5-2 Ethernet Intent Aircraft State Format

Ethernet Aircraft State						
Data	Туре	Size (bits)	Units	Comments		
Start of Block		8		Start of application block. Code hx53		
Block Size	Integer	8	Bytes	Size in bytes of aircraft state data block		
Pad	Integer	16	-	hx0000		
FMS Selected Altitude	Float	32	ft	Label 102, Note 2		
FMS Selected Airspeed	Float	32	kt	Label 103, Note 2		
FMS Selected Mach	Float	32	-	Label 106, Note 2		
FMS Desired Track	Float	32	deg	Label 114, Note 2		
Cross Track Distance	Float	32	NM	Label 116, Note 2		
Vertical Deviation	Float	32	ft	Label 117, Note 2		
Vertical RNP	Float	32	ft	Label 135, Note 2		
Vertical ANP	Float	32	ft	Label 136, Notes 1 & 2		
UTC	Float	32	sec	Label 150, Note 2		
Estimated Position Uncertainty (or ANP)	Float	32	NM	Label 167, Note 2		
Current RNP	Float	32	NM	Label 171, Note 2		
Flight ID	String	m * 32	-	Label 233 – Label 237, Note 3		
Present Position Latitude	Float	32	deg	Label 310, Note 2		
Present Position Longitude	Float	32	deg	Label 311, Note 2		
Ground Speed	Float	32	kt	Label 312, Note 2		
Track Angle True	Float	32	deg	Label 313, Note 2		

True Heading Float 32 Label 314, Note 2 deg Wind Speed 32 Float kt Label 315, Note 2 Wind Direction 32 Float deg Label 316, Note 2 ADC Baro-Corrected Altitude Float 32 ft Label 204, Note 2 ADC Pressure Altitude Float 32 ft Label 203, Note 2 ADC Calibrated Airspeed Float 32 kts Label 206, Note 2 ADC Mach Float 32 Label 205, Note 2 _ Float 32 ADC True Airspeed kts Label 210, Note 2 ADC Static Air Temperature Float 32 Label 213, Note 2 degC 32 Label 320, Note 2 **IRS Magnetic Heading** Float deq **IRS Roll Angle** Float 32 Label 325, Note 2 deg **IRS Track Angle Rate** Float 32 deg/sec Label 335, Note 2 **IRS Vertical Velocity** Float 32 ft/min Label 365, Note 2 N/S Velocity Float 32 kt Label 366, Note 2 E/W Velocity Float 32 kt Label 367, Note 2 Intent Status 32 Integer Label 270 End of Block End of application block. Code hx45 8 Pad hx000000 24

5.0 STANDARD INTERFACES

Notes:

3835 3836

3837 3838

3839 3840

3841

3842 3843

3844

- 1. Vertical ANP is applied to baro-corrected altitude when below transisiton altitude. Vertical ANP is applied to transition flight level and barometric altitude when above transition altitude.
- 2. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.
- Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bits unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).

5.0 STANDARD INTERFACES

3846 **5.2.12.2 Trajectory Intent Data**

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3856 3857 3858	In addition to the aircraft state data defined above, the FMC should provide an output of the flight path trajectory for each flight plan (i.e. active, modified, secondary, and ATC flight plans). This may be used to support predictive functions such as real time traffic conflict probes, airspace traffic situational awareness, strategic traffic coordination, and terrain/obstacle avoidance. The data should consist of a string of points that describe the predicted trajectory of the aircraft along with the point type and data associated with the flight path transition. This data forms the basis for a using function to be able to unambiguously reconstruct the predicted flight trajectory. This block transmission is for the entire flight trajectory even though a using function may only be interested in a part of the active trajectory. For the active flight plan, this data should be updated on the following events:
3859	Whenever an active flight plan change occurs.
3860	When a lateral waypoint is passed.
3861 3862	 When a defined period has elapsed (on the order of one minute) since the last transmission.
3863	COMMENTARY
3864 3865 3866 3867	Other events might require data to be updated. For example, it may be desirable to update the data when there has been a significant change to the predicted trajectory caused by tactical operations or unforecast environmental conditions.
2060	For the modified secondary and data link flight plans, this data should be undated

3868For the modified, secondary and data link flight plans, this data should be updated3869(at a minimum) when the plan is created, deleted or modified.

3870 5.2.12.2.1 A429 Trajectory Intent File Transfer Format

3871The A429 Trajectory Intent File Transfer Format is an encapsulation of the Ethernet3872Trajectory Intent File Transfer Format (5.2.12.2.2). The Ethernet file, including the3873header and footer, is encapsulated in a series of A429 words as outlined in the table3874below.

3875

3876

Table 5-3 A429 Trajectory Intent File Transfer Format

Word Type Bits 31, 30	Parameter	Bit 29 Format Bits 28-9		Label Bits 8-1			
Start Of Transmission 1 1		0 Bits 28-25 (Note 2) Bits 24-17 word count Bits 16-9 LDU sequence		232 for Active Intent (Note 3)			
Full Data Word 0 1 (frame start)	Version	Bits 29-13 Pad 0 Bits 12-9 Version/Compatibility (Note 4)			232		
Full Data Word 0 0	Trajectory File	Bits 29-9 Trajectory File Content (5 nibbles)		232			
Repeat Full Data Word group starting with frame start (01) as necessary to the end of trajectory. After 253 Full Data Words a new LDU must be started.							
End Of Transmission 1 1		1 Bits 28-26 0 0 0 Bits 25 final LDU = 1 Bits 24-9 CRC		232			

5.0 STANDARD INTERFACES

3878 3879 3880	1.	Because of multiple users (sink) of this file, no RTS, CTS, ACK, or NAK protocol is provided. Receivers must be capable of handling the block file transfer when the transmitter sends it.
3881 3882	2.	Start of transmission word, Bits 28-25 describe provisions for alternate content.

3. The following labels are used for different flight plan types:

Label	Flight Plan Type
232	Active
242	Modified
252	Secondary
262	Data Link

3885

3883 3884

3888

4. Version/Compatibility codes are as follows:

Bits 12-9	Version
0000	ARINC 702A-2 (2005)
0001	ARINC 702A-3 (2006)
0010	ARINC 702A-4 (2014)
0011	ARINC 702A-5 (2018)
	Reserved
1111	Reserved

3890

1

5.0 STANDARD INTERFACES

3892 5.2.12.2.2 Ethernet Trajectory Intent File Transfer Format

3893 3894

The format of the trajectory data uses blocks containing a header, body, and footer. All elements shall be coded in big endian mode.

3895 3896

Г

Table 5-4 Ethernet Trajectory Intent File Transfer Format

Data	Туре	Size (bits)	Comments
Start_of_block		8	Start of application block. Code hx53
Flight Plan type	Integer	8	(Note 1)
Trajectory_sequence_number	Integer	8	From 1 to 255 (0 reserved for special use) (Note 9)
Header_size	Integer	8	Size in byte of the header including pad
Trajectory_file_size	Integer	32	Size in byte of the file (does not include header nor footer)
Block_number	Integer	8	Number of application block starting with "0"
Number_of_blocks	Integer	8	Total number of application blocks for the transmitted file
Pad		16	hx0000
Block_size	Integer	32	Size in byte of application block including header and footer
Transition_altitude	Signed Integer	32	Initial climb transition altitude in feet (Note 6)
Climb_baro_setting	Float	32	Climb baro setting in hPa. (Note 6)
Transition_FL	Signed Integer	32	Descent transition FL in feet (converted by FL x 100) (Note 6)
Descent_baro_setting	Float	32	Descent baro setting in hPa (Note 6)
Climb Speed Schedule CAS	Float	32	Climb Speed Schedule CAS in knots (Note 6)
Climb Speed Schedule MACH	Float	32	Climb Speed Schedule MACH (Note 6)
Cruise Speed Schedule CAS	Float	32	Cruise Speed Schedule CAS in knots (Note 6)
Cruise Speed Schedule MACH	Float	32	Cruise Speed Schedule MACH (Note 6)
Descent Speed Schedule CAS	Float	32	Descent Speed Schedule CAS in knots (Note 6)
		T	

5.0 STANDARD INTERFACES

Data	Туре	Size (bits)	Comments
Geometry	Integer	3	Always included. (Note 2)
Data Type	Integer	5	Always included. (Note 3)
Characteristics	Integer	24	Always included. (Note 4)
Path RNP	Float	32	Always included. (Note 6) RNP in NM.
Point Latitude	Float	32	Always included. (Note 6) Latitude in degrees.
Point Longitude	Float	32	Always included. (Note 6) Longitude in degrees.
Turn Radius	Float	32	Only included if geometry is arc to point. (Note 6) Radius in NM.
Turn Center Latitude	Float	32	Only included if geometry is arc to point. (Note 6) Latitude in degrees.
Turn Center Longitude	Float	32	Only included if geometry is arc to point. (Note 6) Longitude in degrees
Point Altitude	Signed Integer	32	Always included. See bit 1 and 2 of characteristics (Note 4, Note 5) for altitude reference. (Note 6) Altitude in feet.
Point ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC)
Point Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Mach if value between 0-10 CAS in kt if value greater than 10
Point Wind Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Speed in kt.
Point Wind Direction	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Direction in degrees.
Point Name	String	m * 32	Only included as specified in Data Type Table. (Note 3, Note 6, Note 7)
Ref Latitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Latitude in degrees.
Ref Longitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Longitude in degrees.
Altitude Constraint, Lower Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.
Altitude Constraint, Upper Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.
Earliest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6)

			ETA in seconds (UTC).
Latest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).
Data Type Extension	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 8)
Point Fuel	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Fuel in lbs
Point Temperature	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in °C
Point Path Altitude	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6? Altitude in feet.
Point Path Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Mach if value between 0-10 CAS in kt if value greater than 10
Speed Constraint Type	Integer	8	0 = NONE 1 = AT or BELOW 2 = AT 3 = AT or ABOVE
Speed Constraint Value	Integer	24	Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt
RTA Constraint Type	Integer	8	0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER
RTA Constraint Value	Integer	24	Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC).
FOOTER			
Data	Туре	Size (bits)	Comments
End of block		8	End of application block. Code hx45
Pad		24	hx000000

5.0 STANDARD INTERFACES

3897 3898

3899

Notes:

1. The following coding is used for different flight plan types:

Integer Value	Flight Plan Type
0	Reserved
1	Partial Portion of Active
2	Active

5.0 STANDARD INTERFACES

3	Secondary
4	Data Link
5	Modified/Temporary
6 - 255	Spare

3900

2. Geometry codes are as followed:

Integer Value	Geometry
0	Not Used
1	Start Point 3D
2	Line to point 3D
3	Arc to point 3D
4 - 7	

3901

3. Data Type codes are as follows:

Data Type Integer Value	Data Includes ETA	Data Includes point speed, wind speed, wind direction	Data Includes point name, ref latitude, ref longitude	Data Includes Iower altitude constraint, upper altitude constraint	Data Includes earliest ETA, latest ETA	Data Includes extension field
0						
1	YES					
2	YES	YES				
3			YES			
4	YES		YES			
5	YES	YES	YES			
6			YES	YES		
7	YES		YES	YES		
8	YES	YES	YES	YES		
9	YES	YES	YES		YES	
10	YES	YES	YES	YES	YES	
11-15				SPARE		
16						YES
17	YES					YES
18	YES	YES				YES
19			YES			YES
20	YES		YES			YES
21	YES	YES	YES			YES
22			YES	YES		YES
23	YES		YES	YES		YES
24	YES	YES	YES	YES		YES
25	YES	YES	YES		YES	YES
26	YES	YES	YES	YES	YES	YES
27-31				SPARE		

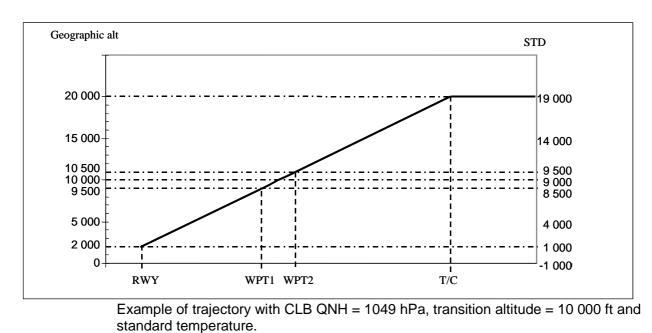
3902

4. Characteristic codes are as follows:

Bits 1-24	Characteristics	Description
1-24	Start of climb	The point where the trajectory will begin a climb segment
		following a level (intermediate or cruise) segment.
2	Top of climb	Where the trajectory arrives at the cruise flight level. There will
		be one top-of-climb point for each cruise flight level (step climbs).
3	Top of descent	The point where the trajectory begins a descent from the cruise flight level.
4	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.
5	Start of descent	A point where the trajectory will begin a descent segment following a level (intermediate or cruise) segment.
6	Runway	Indicates that the point corresponds to a runway.
7	Level-Off Start	A point in climb or descent where a (intermediate) level segment begins
8	Level-Off End	A point in descent where a (intermediate) level segment ends
9	Aircraft projection	Indicates that the point corresponds to the projection of the airplane's present position onto the current flight plan leg.
10	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.
11	Non-flyable	Indicates that the trajectory from the previous point to this one is unflyable.
12	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.
13	Current or next leg	Indicates that the segment belongs at least partially to the active or the next leg.
14	Reserved	, , , , , , , , , , , , , , , , , , ,
15	Reserved	
16	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics listed that are necessary to describe the vertical trajectory.
17	Baro ref 1	Note 5
18	Baro ref 2	Note 5
19	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.
20	Transition altitude or Transition level	The point where the trajectory reaches the transition altitude (in climb) or transition level (in descent).
21	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.
22	Reserved	
23	Reserved	
24	Reserved	

5.0 STANDARD INTERFACES

3903


5. Altitude Reference

Baro ref 1 (bit1)	Baro ref 2 (bit2)	Description
0	0	Reserved

(0		The altitude is baro referenced for a segment in climb with baro correction = Climb_baro_setting (if available)
	1	0	The altitude is baro referenced for a segment in descent with baro correction =
			Descent_baro_setting correction (if available)
	1	1	The altitude is STD referenced

5.0 STANDARD INTERFACES

Note that two codings may be used to code the same trajectory:

Note: Geographic altitude is true height above the earth (tape measure), with Mean Sea Level as the "0" reference. Geographic altitude is independent of atmospheric pressure or temperature.

				Codi	ng with "STD	" only		oding with "S aro" referenc	
	Geo Altitude	Std Altitude (1013 hPa)	ATC Altitude	Altitudes coded in "format"	Baro_ref1	Baro_ref2	Altitudes coded in "format"	Baro_ref1	Baro_ref2
T/C	20 000	19 000	FL 190	9 000	1	1	19 000	1	1
WPT2	10 500	9 500	FL 095	9 500	1	1	9 500	1	1
Trans ALT	10 000	9 000	10 000 ft	9 000	1	1	10 000	0	1
WPT1	9 500	8 500	9 500 ft	8 500	1	1	9 500	0	1
RWY	2 000	1 000	2 000 ft	1 000	1	1	2 000	0	1

		0	-1 000	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3912	2									
3913 3914			6.	hxFF 80 (paramete	00 00 code er.	is reserved	to indicate	e invalid / u	ndefined	
3915 3916 3917 3918	,		7.	ASCII cha unsigned	re defined a aracters, 8- integer, an adding for 32	bits encode d is immed	ed. Number	n is encod	ed as a 16 n bytes of t	5-bits
3919			8.	Data Typ	e Extensior	n codes are	as follows:			
			E	Bits 1-32	Parameter	Provided ()	(= 1, N = 0)			
				1			Point Fue			
				2			oint Temper			
				3			oint Path Alt			
				4			Point Path Sp			
				5			onstraint (Ty			
			-	6 7		RTA CO	nstraint (Typ Spare	be & value)		
			-	8			Spare			
				9			Spare			
			F	10			Spare			
				11			Spare			
				12			Spare			
				13			Spare			
				14			Spare			
				15			Spare			
				16			Spare			
				17			Spare			
			-	18 19			Spare			
			-	20			Spare Spare			
			- F	20			Spare			
				22			Spare			
			F	23			Spare			
			F	24			Spare			
			F	25			Spare			
				26			Spare			
				27			Spare			
				28			Spare			
				29			Spare			
				30			Spare			

31

32

5.0 STANDARD INTERFACES

9. For the transmission of a single trajectory, this number will remain unchanged for all application blocks (i.e. this number is attached to

Spare

Spare

5.0 STANDARD INTERFACES

3922 3923 3924 3925 3926 3927 3928 3929	the trajectory file transmitted). This number is incremented when transmitting a new trajectory (i.e. upon refresh whether the trajectory has changed or not) and will return to 1 after 255. This will allow the received to ensure that the blocks received correspond to the same trajectory. It should be noted that, for a single channel, this number could be identical but the Flight Plan Type different, depending on the implementation. The code 0 (zero) is reserved for special use.
3930	5.0.40. Deserved Devis for Orecuth
3931	5.2.13 Reserved Ports for Growth
3932 3933	Four ARINC 429 output ports should be reserved for growth. These ports should be programmable for high-speed or low-speed operation.
3934	5.3 Discrete Inputs and Outputs
3935 3936 3937	Digital discrete inputs may be provided by discrete program pins or by coded digital configuration inputs, such as a configuration data base or Airplane Personality Module (APM). Discrete program pins are defined in Attachment 2-3.
3938	5.4 FMC/FMC Intersystem Communications
3939 3940 3941	FMC-to-FMC intersystem communications are not defined in this document. The formats and data content should be optimized by the system implementer to support system synchronization, including, but not limited to, the following:
3942 3943	Navigation Cross Check – used to monitor independent navigation calculation and improve the integrity of the navigation solution.
3944 3945	Data Entry Transfer – used to ensure that data entries and selections are reflected in all FMCs.
3946 3947	Radio Tuning Coordination – used to ensure that each FMC tunes a different set of radio sensors (if possible) to ensure navigation independence.
3948 3949	Status Information – used to synchronize mode of operation such as phase of flight, active flight plan leg, navigation status and other events.
3950 3951	Sensor Data – used to transfer data from some inputs, cross check discretes, confirm sensor faults, etc.
3952 3953	Crossloading of data bases and software - intersystem communications can be utilized to facilitate data loading in a dual FMS installation.
3954	5.5 Ethernet Interface (ARINC 646)
3955 3956 3957 3958 3959	Two ARINC 646 Ethernet interfaces are provided for dual interface capability to peripheral devices such as ARINC 615A data loader, ARINC 744A printer, and ARINC 758 CMU. This should not be confused with ARINC 664 Ethernet operating in a switched network topology (typical).

6.0 CONTROL DISPLAY UNIT INTERFACE

Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A.

3960 6.0 CONTROL DISPLAY UNIT INTERFACE

- 3961 6.1 General
- 3962
- 3963 3964

COMMENTARY

The Control Display Unit (CDU) design should be a Multi-Purpose Control and

3965	It is expected that the MCDU installed in this configuration will
3966	provide a shared control and display resource used by both the FMC
3967	and the data link management unit. This is especially true where ATC
3968	data link communications are used. Depending on the chosen
3969	architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A
3970	MCDU one key access to the Communications Management Unit
3971	(CMU) may be required as opposed to the standard log-on/log-off
3972	menu style selection.

3973 6.2 Standby Navigation

3974	In order to initialize the MCDU flight plan for standby navigation, the FMC should
3975	provide the MCDU with an ordered list defining the current active flight plan legs.
3976	Any leg whose type is not compatible with the MCDU flight plan, as described in
3977	ARINC 739, should be replaced with a flight plan discontinuity. This initialization
3978	should occur as required to ensure the MCDU has current data at the time of
3979	transition to standby navigation.

3980 6.3 Self-Test

3986

3987

3988 3989

3990 3991

3992 3993

3994

3995

3996 3997

3998

3999

4000

3981The MCDU may include a pilot confidence test, initiated by a control on the MCDU,3982which will provide a visual indication that the display and any status annunciators3983are operating correctly. This test should in no way affect the on-line performance,3984navigation and guidance computations, or the FMC interfaces.

3985 6.4 MCDU Annunciators

- The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following:
 - MSG (Message) illuminates when FMC generated messages are displayed in the MCDU scratchpad
 - DSPY (Display) illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode
 - FAIL illuminates in case of selected FMC failure
 - OFST (Offset) illuminates when a parallel offset is in use
 - IND (Independent) illuminates in case of independent dual system operation
 - MENU illuminates when the FMC is the active subsystem and a non-active subsystem requests MCDU access

4001 6.5 MCDU Alerting

4002The MCDU may display a number of messages on the bottom line of the display4003known as the scratchpad. These messages may be of several types, indicating

6.0 CONTROL DISPLAY UNIT INTERFACE

4004 4005 4006 4007 4008	different priorities or originating conditions. Specific message definitions, classes, and display logic are dependent on overall flight deck display/annunciation design and operational philosophy, and are not specified in this document. The following paragraphs provide a description of typical message classes and logic design considerations.
4009 4010 4011 4012 4013	High priority messages, referred to as Alerting or Type I messages, are typically displayed in response to a significant status change or operational condition of the system. Lower priority messages may be referred to as Advisory, Type II, or Entry Error messages, and usually indicate a condition of lesser importance, or prompt the pilot to enter required data or correct a previous entry through the MCDU.
4014	Considerations for design of MCDU alerting include the following:
4015 4016	 Priority of scratch pad messages over other classes of messages and MCDU scratchpad alpha-numeric data entries
4017 4018	 Relationship of scratchpad messages to EFIS messages or other dedicated annunciators in the pilot's forward field of view
4019 4020	 Message clearing logic. Messages may be cleared by keyboard action, or automatically by a change in system status
4021	 Inhibition of MCDU messages during critical flight phases
4022	 Stack operation of multiple messages
4023	6.6 MCDU Color and Font Usage
4024 4025 4026 4027 4028 4029	The MCDU may utilize variation in display color and character font size to convey additional information to the flight crew. Designers should consider priority of the displayed information and consistency with color usage on other display devices in defining MCDU color usage standards. Character font size may be used to indicate data attributes such as computed versus pilot-entered data.
4029 4030	

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4031 **7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE**

4032 7.1 Introduction

4033The navigation data base stored in the ARINC 702A Advanced Flight Management4034Computer may, together with computed guidance data, be used to support the4035operation of a map display on an electronic horizontal situation indicator or other4036electronic display in the cockpit. This section of this Characteristic describes4037interface standards which will enable any manufacturer's FMC to be used with any4038manufacturer's electronic display. The term Electronic Flight Instrument (EFI) will be4039used to describe such displays generically.

4040 7.2 FMC Outputs to EFI

4041 Two high-speed ARINC 429 data output ports are provided on the FMC for 4042 instrumentation supply. All of the map background and position updating (dynamic) data for two EFIS will be supplied from both of these ports. In an installation 4043 4044 comprising one FMC and two EFIS, the FMC's #1 Instrumentation Output should be connected to the captain's EFI, and its #2 Instrumentation output to the first officer's 4045 4046 EFI. A possible interconnection scheme in an installation comprising two FMCs and 4047 two EFIS is to connect the #1 output of FMC #1 and the #2 output of FMC #2 to the captain's EFI and the #1 output of the FMC #2 to the #2 output of FMC #1 to the 4048 4049 first officer's EFI.

COMMENTARY

4051 The foregoing data output arrangements permit one FMC to supply 4052 independently organized data to each of two EFIS. While the word formats of the individual data elements crossing the interface are not 4053 4054 map scale dependent, the total number of data words needed to construct the map does vary with the map scale selected. The FMC 4055 4056 can thus accommodate the generation of maps on both sides of the 4057 cockpit even when the captain and the first officer have selected different scales. 4058

4059 7.3 FMC Inputs from EFI

- 4060The FMC provides two low-speed ARINC 429 data input ports through which map4061mode, scale and symbol option selections are transferred from the EFIS to the4062FMC.
- 4063

4065

4050

4064 7.4 EFI Design Features

- The following EFI design features impact the design of the FMC/EFI interface.
- 4066 **7.4.1 Map**
- 4067The EFI will generate a dynamic map positioned relative to the aircraft. The map4068may be oriented with respect to aircraft track or heading.

4069 **7.4.2 Plan**

4070The EFI may also generate a north-oriented static map positioned relative to4071reference points selected at the FMC Multi-Purpose Control Display Unit (MCDU).4072This may be used by the flight crew to verify the correct insertion of flight plan4073waypoints and other data.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4074 7.4.3 HSI Mode

4075The FMC/EFI interface may provide outputs of desired track (course), track angle4076error, drift angle, and lateral and vertical deviations to support the generation of a4077HSI (rose mode) type of display. If provided, the lateral and vertical deviation4078outputs should support the use of variable sensitivities (full scale deflection) in4079accordance with the requirements of RTCA/EUROCAE SC-181/WG-13 RNP4080MASPS.

4081 7.4.4 Map Scales

4082EFI map scales for map and plan modes will be a compatible subset of the ARINC4083708A Weather Radar, which has selectable ranges, from 5 to 640 nautical miles of4084look-ahead. Additional low range capability may be required for incorporation of4085surface map display capability.

4086 7.4.5 Map Projection

- 4087The EFI will transform earth coordinate data received from the FMC into flat plane4088coordinates for the map display. The accuracy of this transformation will be such4089that the EFI can be used as a primary instrument for guiding the aircraft along4090geodesic and circular transition flight paths, and provide accurate registration of4091planar weather radar data on the map display. The map projection method chosen4092is expected to permit worldwide EFI usage without latitude restrictions.
- 4093The EFI will also ensure that vector lines and conics which cross display editing4094boundaries are correctly terminated to ensure a continuous and accurate4095presentation on the display. The EFI will translate the map background to account4096for aircraft motion between map background data block transmissions based on4097aircraft position and angular data received from the FMC and other systems.

4098 7.4.6 Option Selection

4099The EFI will provide for symbology option selections, including weather radar data4100overlay on the map. These will allow the flight crew to declutter the map by4101selectively removing different categories of data, e.g., Navaids, Airfields,4102Geographic Reference Points, Waypoint Definition Data, etc.

4103 7.4.7 Symbol Repertoire

4108

4109

4110

- 4104 Each category of data shipped from the FMC for display on the EFI will call for a 4105 distinctive symbol on the display. A list of potential data categories includes, but is 4106 not necessarily limited to, the following:
- 4107
 Active flight plan path
 - Secondary flight plan path
 - Modified flight plan path
 - Altitude Intercepts
- RTA symbology
- Waypoints
 - Waypoint data (altitude, speed, time)
- Origin and destination airports

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4115		FIR boundaries
4116		 Special reference points (T/C, T/D, S/C, energy circles)
4117		Runway Data
4118		Marker Beacons
4119		Tuned Navaids
4120 4121		 Navaids, including (co-Located VOR and TACAN (VORTAC), VOR, DME/ TACAN (high altitude and low altitude)
4122		VOR radials
4123		Airports
4124		Geographic reference points
4125		Non-directional beacons
4126		 Navigation data (e.g., sensor positions)
4127		Terrain/obstacle data (MSA, MEA, MORA)
4128		Special use airspace
4129 4130 4131 4132		The data available for display in a particular installation will depend on the navigation data base content of the FMC. The above data categories fall into the following general symbology types, each of which requires different data parameters for definition via the FMC/EFI interface.
4133		Vectors (geodesic lines)
4134		Conics (circular arc lines)
4135		Upright symbols
4136		Rotated symbols
4137		Dynamic symbols
4138		Alpha/numeric data readouts
4139	7.4.8	EFI Data Conditioning
4140 4141		The EFI will perform any input data filtering needed to produce a smoothly changing map display, and will condition data used to update readouts on the display.
4142	7.4.9	Pointing Device
4143		[Deleted by Supplement 5]
4144	7.4.10	Surface Map Mode
4145		[Deleted by Supplement 5]
4146	7.5 FN	IC Design Features
4147		The following FMC design features impact the design of the FMC/EFI interface.
4148	7.5.1	Flight Plans
4149 4150 4151 4152 4153		As part of its guidance function, the FMC will have flight plans assembled in its guidance buffers by pilot data entry or data link and selection through the MCDU. Such flight plans will define paths in the sky in two, three and ultimately four dimensions. Accurate representation of aircraft position with respect to the flight plan path is essential when the EFI is used as the primary instrument by which the

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

- 4154 flight crew controls the aircraft laterally and vertically with respect to a three-4155 dimensional path, and along that path to make good assigned times at waypoints.
- 4156 Flight plan paths can be presented on the EFI as sequences of lines and conics representing geodesic paths between waypoints and curved transitions between 4157 path legs. Circular path legs consisting of DME arcs, RF legs, holding patterns, and 4158 procedure turns can also be displayed. The FMC generates the necessary data to 4159 define four-dimensional flight plans in its guidance buffers. The guidance algorithms 4160 in the FMC calculate the position, speed and time differences between the aircraft 4161 4162 state vector and the flight plan, and hence generate the guidance commands to the 4163 automatic flight control system (including the auto-throttle) to make good the flight 4164 plan.
- 4165 The guidance data can be used to define the vector lines and conics needed to 4166 represent the flight plan path and other guidance symbology on the EFI.

4167 7.5.2 Map Display Edit Areas

- 4168The FMC should, to the extent of the limitations imposed by the size of the data4169block (see Section 7.6.2), supply map background data for an area large enough to4170preclude the appearance of blank screen between transmissions. The EFI will limit4171the data displayed to that needed for the viewing window. This limit operation will4172include vector clipping to ensure the correct display of vector data and associated4173text.
- 4174 7.5.3 Pointing Device
 - [Deleted by Supplement 5]

4176 7.6 Interface Design

The design of the FMC/EFI interface is described in the following paragraphs.

4178 7.6.1 General

4175

- 4179Map background data and position updating and other dynamic data should be4180interleaved on the FMC instrumentation output buses. The FMC should specify the4181data type to be displayed and the associated positioning and rotation data. The EFI4182will control symbology color, size, brightness, blinking and related parameters, and4183transform map position data received from the FMC into screen coordinates.
- 4184The FMC should extract the information necessary for the map background from its4185navigation data base and flight plan buffers. Position data transmitted to the EFI4186should be in latitude and longitude coordinates. The types of data transmitted4187should respond to mode symbology options and display range selected by the flight4188crew on the EFI control panel. The order of the data on the bus should be in general4189accordance with the priority in which it is to be displayed.
- 4190The FMC/EFI dynamic data interface should be designed to permit updating of the4191map background data positions between background data block transmissions4192without the need for a hand-shaking relationship between the FMC and the EFI4193symbol generator. FMC/EFI dynamic data is defined in Attachment 4.
- 4194The FMC/EFI interface design and map background and dynamic data bus4195implementation should be such that the EFI can provide a valid map display if map4196background data transmissions are lost or invalid for periods of up to 10 seconds4197duration.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4198The display mechanization should accommodate a worldwide map projection. This4199may result in the need to provide additional and/or special software to project map4200data in the vicinity of the earth's poles.

4201 7.6.2 Map Data Updating

- The FMC should supply map data to the EFI in alternating 64-word blocks of background and dynamic data until a complete map background data block has been transmitted (see Attachment 6, Figure 2). The maximum size of the background data block should be programmable up to a maximum of 1023 words. After completion of the map background data transmission, the dynamic data should continue to be updated at a rate of 20 times per second (nominal) until a new map background data block is to be transmitted. Map background data should be updated and transmitted once every three seconds (nominal), except that when a mode, scale or option change is made on the EFI, the FMC should update and transmit new map background data within one second (maximum).
- 4212

COMMENTARY

4213 4214

4216

4217 4218

4219

4221

4222

4223

4224

4225

4227

4228

4229

4230

4231

4232 4233

4234

4235

4202

4203 4204

4205 4206

4207

4208 4209

4210 4211

Dynamic data update at a rate greater than 16 times per second is needed to avoid undesirable visual effects on the display.

4215 7.6.3 Background Data Prioritizing

- To ensure that writing time or other internal data processing limitations in the EFI do not result in most wanted map background data not appearing on the display, the FMC should prioritize the information as follows. The EFI should truncate the data, if necessary, in the reverse order of this prioritization.
- 4220 1. Flight plan data
 - a. Active flight plan
 - b. Secondary flight plan
 - c. Flight plan changes
 - d. Waypoints
 - e. Waypoint data
- 4226 f. Offsets
 - g. Altitude intercepts
 - h. Flight plan events
 - i. RTA symbology
 - 2. Selected reference points
 - 3. Runway Data (may be edited out in some flight phases but should not disappear because of truncation of the data stream)
 - 4. Origin and destination airports
 - 5. Tuned navaids
 - 6. Navigation data (may be dynamic rather than background)

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

- 4236 7. Non flight plan navaids
 - 8. General reference points (position ordered)

4238 **7.6.4 Background Data Editing**

4237

4255 4256

4257

4259

4260

4263

4264

4265

4267

4268

4270

4271

4272 4273

- 4239An example of the background data editing process is shown in Attachment 6,4240Figure 1. The FMC should, as a minimum, transmit data for the displayed area plus4241the area which could appear on the display as a result of aircraft translation and4242rotation between map background data updates.
- 4243Because the density of data needed for terminal operations could saturate the4244display at the higher map scales and the volume of data within the edit area4245overload the EFI symbol generator buffers, the FMC should determine the amount4246of data it supplies to the EFI from an analysis of the map scale and mode selection4247information it receives from the EFI.
- 4248Typically, the high map scales are used in cruise and the low map scales are used4249for terminal area operations. Therefore, only high altitude chart data need be4250transferred across the interface for the larger map scales.

4251 7.6.5 Mode Change Response

- 4252The FMC should respond to a mode, scale or symbology option selection change4253received from the EFI such that the desired data transmission occurs within one4254second maximum.
 - COMMENTARY
 - Airlines desire the overall (FMC and EFI) response time of a practical system to be less than two seconds.

4258 7.6.6 Map Translation and Rotation Data

- The FMC should provide the following data to the EFI to support map projection and rotation functions:
- 4261 <u>Map Projection</u>
- 4262 Map background data
 - Map reference latitude (plan mode only)
 - Map reference longitude (plan mode only)
 - Map mode/scale
- 4266 Map Position Data
 - Aircraft present latitude
 - Aircraft present longitude
- 4269 Map Rotation
 - Map Position Data
 - Track (true)
 - Track (magnetic)

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4274 **7.6.7 Resolution**

4275The resolution of data used to position symbology on the display should be such4276that a change of binary state of the least significant bit of a position data word4277produces no visible step movement on the display.

4278 7.6.8 Interface Data Errors

4279The mechanization of the FMC/EFI interface should minimize the visual effects on
the map display of occasional data errors.

4281 7.6.9 FMC-to-EFI Data Transfer Protocol

4282Because the FMC/EFI interface is dedicated to the transfer of data between the4283FMC and the EFI symbol generator(s), not all of the formatting and protocol4284standards of ARINC Specification 429: Digital Information Transfer System (DITS)4285will be applied. The following sections indicate where these departures from ARINC4286429 have been made. Although not mentioned hereafter, the electrical and timing4287standards set forth in ARINC 429 for high-speed operation (100 kbps) and the4288standard broadcast protocol do apply.

4289 7.6.9.1 Data Block Format

- 4290 The first word of each 64-word data block should be a Start of Transmission word 4291 containing octal code 301 in its label field (bits 1 through 8) if the block contains 4292 map background data and octal code 303 in this field if the block contains dynamic 4293 data. Bits 9 through 13 of each map background data block Start of Transmission 4294 word should contain a binary number indicating the position of the block in the 4295 sequence of such blocks into which the transmission is divided. In addition, the first 4296 such Start of Transmission word of a transmission should contain in bits 20 through 4297 29 a binary count of the total number of usable background data words to be 4298 contained in the transmission. (This count should not include Start of Transmission, 4299 End of Transmission, or fill-in words.) This field should contain binary zeros in all 4300 subsequent background data block Start of Transmission words of the transmission. All background data block Start of Transmission words should contain binary zeros 4301 4302 in bits 14 through 19, while bits 30 and 31 should contain the control word code 4303 defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.
- 4304The Start of Transmission word of each dynamic data block should contain binary4305zeros in bits 9 through 29 and the control word code defined in Section 7.6.9.2 in4306bits 30 and 31. Bit 32 should be set to render word parity odd.
- 4307The last word of each 64-word map background data block should be an End of4308Transmission word containing octal code 302 in its label field. Bits 9 through 29 of4309this word should contain binary zeros. Bits 30 and 31 should contain the control4310word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity4311odd.
- 4312 The 62 usable data words of each map background data block should contain the 4313 positional, character, and control information used by the EFI to construct the map 4314 background. The label codes and word formats defined in Attachment 6 to this document should be used. Bits 30 and 31 should be encoded to indicate word type 4315 per Section 7.6.9.2 and bit 32 should be set to render word parity odd. If the final 4316 4317 block of the transmission contains less than 62 useful words, it should be padded to this length with fill-in words (binary zeros in bit positions 1 through 32) and 4318 4319 terminated with the End of Transmission word at position 64.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

- 4320Dynamic data blocks should be interleaved with map background data blocks as4321described in Section 7.6.2. Dynamic data blocks should contain data words labeled4322and formatted per ARINC Specification 429.
- COMMENTARY 4323 4324 The interleaving on the same bus of blocks of data labeled per ARINC 429 standards and blocks of data labeled per other standards 4325 4326 requires the EFI to be capable of changing from one set of standards to the other at appropriate instants during the data transmissions. 4327 4328 The EFI is expected to make use of the two Start of Transmission words and the background data block End of Transmission word in 4329 deciding when to make these changes. 4330

4331 7.6.9.2 Data Type Word Formats

4332The general word format defined in ARINC Specification 429 should be employed.4333Words transmitted by the FMC for which standards are defined in ARINC 4294334should employ those standards and their ARINC 429 labels. Formats of symbol4335word groups, vector word groups, map reference word groups, and dynamic symbol4336words should differ from ARINC 429 standards in that the label field should be used4337to encode data type and the sign/status matrix to designate multiple word records4338within a data type group as follows:

BI	Т	
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol
		rotation and vector conics)
1	0	Last word of data type group

4339Attachment 6 to this document sets forth the formats of these FMC-specific ARINC4340429 words.

4341 7.6.10 EFI-to-FMC Data Transfer

- 4342The data sent from the EFI to the FMC will consist of the map mode, scale and4343symbol option selections made by the flight crew at the EFI control panel. These4344selections will be encoded into one or more discrete words, as defined in ARINC4345Specification 429, Part 2 and in ARINC Characteristic 725: Electronic Flight4346Instruments (EFI).
- 4347

8.0 COMMUNICATIONS MANAGEMENT UNIT INTERFACE

4348 8.0 COMMUNICATIONS MANAGEMENT UNIT INTERFACE

4349 8.1 General

- The Communications Management Unit (CMU) interface is defined in ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2. Specific 4350
- 4351 4352 details are implementation dependent.
- 4353

9.0 DATA BASE STORAGE CONSIDERATIONS

4354 9.0 DATA BASE STORAGE CONSIDERATIONS

4355 9.1 Introduction

4356 The FMC will contain a number of data bases and configuration tables which 4357 provide the data and definitions required to support the functions defined in Section 4. The data bases are stored in non-volatile memory and may be periodically 4358 updated or modified via the data loader. The individual data bases should be 4359 separately loadable. Designers should provide significant growth capacity when 4360 sizing data base memory storage. Mechanisms should be provided to ensure the 4361 4362 integrity of the stored data such that the data cannot be modified by the crew or 4363 system.

4364 9.2 Navigation Data Base

- 4365The navigation data base is stored in non-volatile memory in two parts: a body of4366active permanent data which is effective until a specified expiration date and a set4367of data revisions or active data for the next period of effectivity. The effectivity dates4368for both sets of data are displayed for reference on the system's configuration4369definition page. Data base updates are to be accomplished at appropriate intervals4370by loading the next cycle via means of a data base loader.
- 4371The navigation data base contains all current information required for operation in a4372specified geographic area. The data base should be consistent with the4373requirements of **RTCA DO-201A:** Standards for Aeronautical Data. It includes the4374following data:

VOR, ILS, DME, VORTAC, and TACAN navigation aids

4375

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4388

4389

4390

4391

4392

4393

- 4376 NDBs
 - Waypoints
 - Airports and runways
 - Standard Instrument Departures (SIDs)
 - Standard Terminal Arrival Routes (STARs)
 - Enroute airways
 - Charted holding patterns
 - Approaches (GNSS, ILS, VOR, NDB, LOC, LDA, etc., types)
 - Approach and departure transitions
 - Final Approach Segment (FAS) Data Block (for LP/LPV approaches)
 - Company route structure
- Terminal gates
 - Alternates
 - Minimum Safe Altitude (MSA)
 - Minimum Enroute IFR Altitude (MEA)
 - Minimum Obstruction Clearance Altitude (MOCA)
 - Grid Minimum Off-Route Altitudes (MORAs)
 - FIR/Upper Flight Information Region (UIR) Boundaries
 - Special Use Airspace
- Effectivity dates

9.0 DATA BASE STORAGE CONSIDERATIONS

4396 Airline customized data . RNP 4397 • The data base is capable of supplying all of the information required for the 4398 4399 assembly of a complete flight plan for the selected route via MCDU data entry and 4400 selection. 4401 9.3 Airline Modifiable Information (AMI) Data Base 4402 The Airline Modifiable Information data base is capable of defining those items 4403 which may be individually selectable by the airline operator. These may include the 4404 following: 4405 Performance management options Airport speed restrictions 4406 AOC data link parameters 4407 • Tailorable CDU page formats 4408 • 4409 Flight test bus definitions • 4410 The Airline Modifiable Information may also contain: special operations information, 4411 trigger events, special airline specific messages, and/or parameters. 4412 9.4 Performance Data Base 4413 The performance data base will contain the data necessary to allow the FMS to 4414 provide the vertical trajectory predictions (Section 4.3.3.2.1), performance calculations (Section 4.3.4), and vertical guidance (Section 4.3.3.2.2) functions. The 4415 4416 data will consist of tables, coefficient for polynomials or any other convenient means of representing the data, but will not include any executable code. The data 4417 contained in the Performance Data base may include elements of the following: 4418 4419 Aerodynamic Data 4420 Drag polars (clean and high-lift) 4421 Reynolds number drag correction 4422 Compressibility drag 4423 • Trim drag (clean and high-lift) 4424 Windmill drag 4425 Spoiler/speed brake drag 4426 Buffet onset mach number/lift coefficients 4427 Stall speeds (clean and high-lift) 4428 Bank angle limits 4429 **Propulsion Data** 4430 o Data to compute each thrust limit (Takeoff, Max Continuous, Max Cruise) 4431 Data to compute de-rate and flex take-off rating 4432 Bleed effects 4433 Idle thrust setting 4434 Relationship between thrust, fuel flow, ram drag and thrust setting parameter (EPR or N1) 4435 4436 Performance Data 4437 Economy climb speed data (all-engine and one engine inoperative)

9.0 DATA BASE STORAGE CONSIDERATIONS

4438	 Economy cruise speed data (all-engine and one engine inoperative)
4439	 Economy descent speed data (all-engine and one engine inoperative)
4440	 Drift-down speed data
4441	 Hold speed data
4442	 Maximum endurance speed data
4443	 Long Range Cruise (LRC) speed data
4444	 Maximum angle climb speed data
4445	 Maximum rate of climb speed data
4446	 Flap/slat/gear placard speeds
4447	 Maximum altitude (all engine and one engine inoperative)
4448	 Take-off time, fuel, distance data
4449	 Go-around time, fuel, distance data
4450	 Alternate flight plan time, fuel, distance data
4451	 Optimum altitude/optimum step weight data
4452	 Relationship between fuel weight/C.G.
4453	Take-off/approach data
4454	 Data to compute V1, VR, and V2
4455	 Approach speed data
4456	 Climb-out speed data
4457 4458 4459 4460 4461	This is not an all-inclusive list. Some of the data in the list may not be applicable to a specific airplane/system and some additional data may be necessary in some applications, particularly as additional capability is added to the system. The format of the data is not specified in this document, but manufacturers are encouraged to use a standard format that will allow use of the FMS across multiple airplane types.
4462 4463 4464 4465	Data for the Performance data base is developed from data supplied by the airplane manufacturer, and may include off-line data reduction and modeling before loading into the FMS. It should be consistent with the data contained in that airplane's Airplane Flight Manual (AFM) and Flight Crew Operations Manual (FCOM).
4466 4467 4468 4469 4470	The data base should contain sufficient data to allow identification of its part number and to which airplane model(s) it is applicable. Loading and use of the data in the FMS should include positive means of verifying that the appropriate data has been loaded, and that data pertaining to a particular model airplane is not being used on an airplane to which it does not apply.
4471	A particular data base may contain data for more than one airplane model. In this
4472	case, positive means to preclude the wrong data being used should be provided.
4473	9.5 Magnetic Variation Data Base
4474 4475 4476 4477	The magnetic variation data base will support the determination of magnetic variation for any Lat/Long, Navaid, Waypoint, Airport, etc. The format of the data stored in this data base is a manufacturer option, but should be flexible to accommodate periodic update of the magnetic variation data reference.
4478	COMMENTARY
4479 4480	The use of current MagVar throughout the flight deck is desired to minimize confusion. However, for those aircraft configurations which

9.0 DATA BASE STORAGE CONSIDERATIONS

- 4481cannot be updated, system designers should give consideration to4482providing a means to harmonize MagVar tables with other aircraft4483equipment, such as the inertial reference system, to provide a4484consistent display of magnetic bearings in the flight deck.
- 4485

4486 9.6 Terrain and Obstacle Data

- 4487 [Deleted by Supplement 5].
- 4488

9.0 DATA BASE STORAGE CONSIDERATIONS

4489	9.7 Airport Surface Map Data
4490	[Deleted by Supplement 5].
4491	
4492	9.8 Configuration Data Base
4493 4494	The configuration data base defines parameters specific to an individual system application or installation.
4495	COMMENTARY
4496 4497	These items are type certification driven. Changes to these items will require re-certification.
4498	These items may include the following:
4499	 Tables containing ATS data link parameters
4500	Transport and network protocols
4501	FMS configuration
4502	Available functional options
4503	Interface variations
4504	CMU specific configuration variations
4505	 Optional maintenance configurations
4506	Weight variants definitions
4507	
4508	

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4509	10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS
4510	10.1General Discussion
4511 4512 4513	Since the FMC may be the primary means of navigation on some aircraft, the utmost attention should be paid to the need for reliability and maintainability in all phases of system design, production, and installation.
4514	COMMENTARY
4515 4516 4517 4518 4519 4520 4521	It is also important to remember that all aspects of the testing program (BITE, ramp, and shop testing) contribute to the reliability and profitable operation of a system by the end users. The ability of the program to identify faults, and facilitate their repair, has a profound affect on maintainability and overall reliability. Attention to a close relationship between aircraft faults and shop testing will help in reducing the number of unscheduled removals.
4522	10.2 Fault Detection and Reporting
4523	10.2.1 General
4524 4525	The FMC should support at least one of the following Built-In Test Equipment (BITE) capabilities defined by AEEC:
4526	ARINC Report 624: Design Guidance for Onboard Maintenance System
4527 4528	 ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment
4529 4530 4531	MCDU maintenance pages should contain a fault log formatted in accordance with ARINC Report 624 or ARINC 604. This maintenance log should be able to be printed on the cockpit printer via selection on the MCDU.
4532	COMMENTARY
4533 4534	The option used should be compatible with the aircraft in which the FMC will be installed.
4535 4536 4537	BITE in the FMC should be capable of detecting at least 95% of the faults or failures which can occur within the FMS, and as many faults as possible associated with other interfaces.
4538 4539 4540	Where possible, optional functions present in the FMS that are not activated by the operator should be excluded from all on-board testing. The intent is to eliminate unnecessary removals.
4541 4542 4543	BITE should closely relate to bench testing. Error modes encountered on the aircraft should be reproducible in the shop. Error messages recorded by BITE should assist bench testing.
4544 4545	No failure occurring in the BITE subsystem should interfere with the normal operation of the FMC.
4546	10.2.2 Self-Monitoring
4547 4548 4549	The self-contained fault detection should incorporate nonvolatile memory and logic to identify true hardware faults based on the historical trends. This includes a flight hour monitor as well as air-ground logic to monitor installed time on the aircraft.
4550	

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4551 10.2.3 Debugging Tools

4552 FMC complexity is such that it may sometimes exhibit operational anomalies for 4553 which the root cause(s) are difficult to identify. To provide for quick in-service 4554 observation/evaluation of the FMC software anomalies, the FMC should provide password accessible MCDU pages for BITE, view latched fail code(s), memory 4555 4556 contents, etc. This feature would be usable by supplier/operator engineers as a debugging tool. Access to these pages should be categorized and leveled for line 4557 4558 maintenance or engineering use, as appropriate. This should be a certified 4559 configuration so as to allow engineering evaluations in-flight during revenue 4560 operations of the system.

10.2.4 Failure Rate Monitor 4561

- 4562 4563
- Reasonable failure rate thresholds for some significant faults should be incorporated such that the FMC would optionally set a flag when these thresholds 4564 are exceeded.
- COMMENTARY 4565 4566 Some hardware faults that would be reset during a ground check or 4567 power interruption may not be repeated immediately. This condition may allow the unit to remain on board the aircraft. A threshold 4568 4569 exceedance monitor would detect and set the flag when one of these transient faults exceeds an acceptable rate of occurrence. Some 4570 4571 airlines may choose to deactivate such a monitor.

4572 10.2.5 Fault Messaging

- 4573 The FMC will have a go/no-go light or indicator indicating overall unit performance ability. BITE fault messages (MCDU display, code lights or otherwise) will be as 4574 descriptive as possible (English language fault descriptions). When an external or 4575 4576 internal fault occurs, the FMC will alert maintenance personnel to the status of the specific system components, either as a displayed list, or on request. 4577
- System faults should be classified based on their effect on the system as 4578 debilitating or non-debilitating. Fault displays should also indicate the most probable 4579 correction of the problem. 4580
- A system debilitating failure is any non-recoverable failure which prohibits the FMC 4581 4582 from performing any basic required function: navigation, performance computations, flight planning, etc. Cockpit and/or LRU failure annunciation is provided for a system 4583 debilitating failure. A system debilitating failure will be logged in BITE memory. If 4584 4585 recoverable, crew action may be necessary.
- A non-system-debilitating failure is any BITE-detected failure which is auto-4586 recoverable within specified/acceptable operational limitations (of short duration and 4587 4588 requiring no crew action for recovery) and which has no adverse impact on the 4589 required functions of the FMC. A non-system-debilitating failure will be logged in 4590 BITE memory, but need not be cockpit and/or LRU annunciated.

10.3 Ramp Maintenance 4591

4592 10.3.1 Return to Service Testing

4593 When an FMC is installed on an air transport aircraft, some form of end to end testing should be available for two primary reasons: 4594

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4595 4596	 To provide an operational verification of the system function prior to return to service.
4597 4598	 To reduce unnecessary removals of the FMC when the fault was actually in another part of the system.
4599 4600 4601 4602 4603 4604	As an end-to-end test, the procedure should verify integrity of the LRU as well as interfaces with other systems. This maintenance test will provide test values on the digital outputs with the appropriate status matrix code for the test condition as defined in ARINC Specification 429. This test can also exercise internal monitoring and diagnostic routines and provide test formats on the MCDU and on a multifunction display.
4605	COMMENTARY
4606 4607 4608 4609	The airlines prefer test results to indicate the probable cause of failure. Emphasis on end to end system testing will lead to a desirable increase in the MTBUR, especially for removals that were not related to LRU faults.
4610 4611 4612 4613 4614	Means should be provided for initiating this maintenance test either through an externally supplied discrete input or an MCDU prompt. The FMC may also have the capability, via a switch on the front of the FMC, for initiating the maintenance test. If this switch is provided, an indicator should also be mounted on the FMC front panel to show the result of the test.
4615	10.3.2 Programmable Data Bus Interface
4616 4617 4618 4619	The system should provide output data to be recorded for analysis of system performance, including in-service operation. A list of available parameters, scaling, and label assignments should be determined by the manufacturer and made available for selection by the aircraft operator as required.
4620	10.3.3 Data Loading
4621 4622 4623 4624 4625 4625 4626 4627	It is expected that operational software (manufacturer and airline controlled software or tables) and data bases (e.g., navigation data, performance data) will be on-board loadable. The FMC should accept this data from a data loader in accordance with ARINC 615 or ARINC 615A. The standard interface from the data loader to the FMC is high-speed ARINC 429. The return interface to the data loader is low-speed ARINC 429. The FMC should also support high-speed data loading via Ethernet interface defined in ARINC 615A.
4628	COMMENTARY
4629 4630	It is recognized that some minimal level of boot software must be non-loadable to provide the basic loading interface.
4631 4632 4633	The FMC should provide compatibility testing to ensure that loadable software and data are compatible with the FMC hardware configuration. Mechanisms should be provided to ensure the integrity of the loaded data.
4634	10.3.4 Cross Loadable Software
4635 4636	All loadable software and data bases should be selectively cross loadable between two FMCs in a dual installation via the intersystem bus.

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4637COMMENTARY4638The objective of the cross loading capability is to reduce loading4639times. Since mixed cases of cross loadable and non-cross loadable4640software present many problems, operators prefer that all of the4641software be cross loadable.

4642 10.3.5 Data Loading Fault Recovery

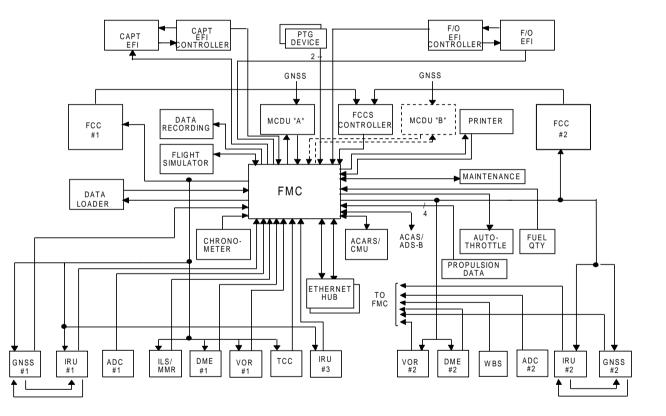
4643In all cases, when loading or cross loading software or data, the procedure must4644provide a method for recovering from faults. The FMC should be able to abort a4645software or data base loading process without a major disruption of the system4646(disruption requiring removal of the FMC from the aircraft).

4647 **10.4 Provisions for Automatic Test Equipment**

4648 **10.4.1 General**

4649 4650 4651	To enable Automatic Test Equipment (ATE) to be used in the bench maintenance, internal circuit functions not available at the unit service connector and considered by the equipment manufacturer necessary for automatic test purposes may be
4652	brought to pins on an auxiliary connector of a type selected by the equipment
4653 4654	manufacturer. This connector should be fitted an adequate number of contacts needed to support the ATE functions. The connector should be provided with a
4655 4656	protective cover suitable to protect these contacts from damage, contamination, etc. while the unit is installed in the aircraft. The manufacturer should observe ARINC
4657 4658	Specification 600 for unit projections, etc., when choosing the location for this auxiliary connector.

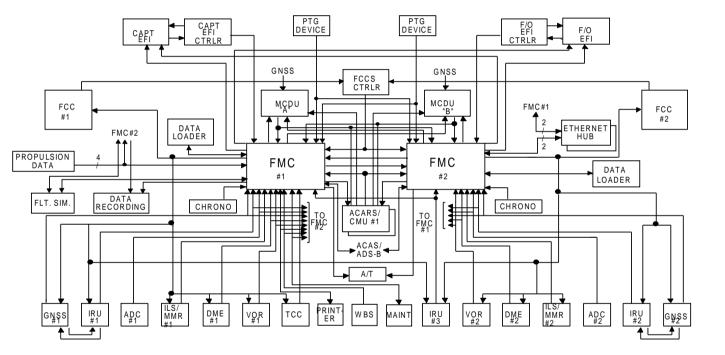
4659 **10.4.2 ATE Testing**


4660The FMC should be ATE testable and should have a test program written using the4661ATLAS language specified in **ARINC Specification 626:** Standard ATLAS Subset4662for Modular Test. Development of the test program set should consider and apply4663the quality characteristics set forth in ARINC Specification 625.4664

4665The airlines desire that the ATLAS test procedure be demonstrated to4666execute without modification on Automatic Test Systems defined in4667ARINC Specification 608A: Automatic Test Equipment Standards.

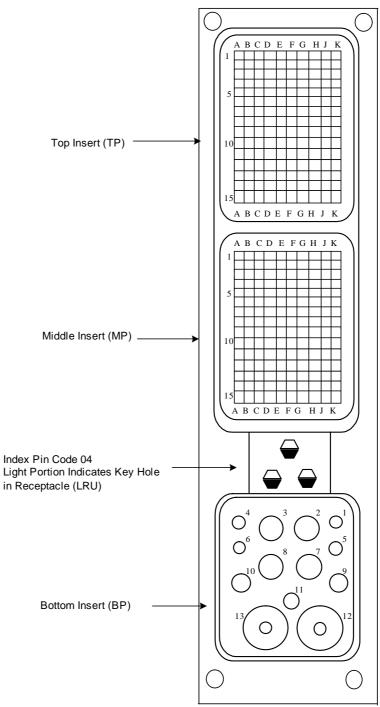
ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

4669 **ATTACHMENT 1** FLIGHT MANAGEMENT SYSTEM


CONFIGURATION 2 – SINGLE FMC/DUAL CDU INSTALLATION CONFIGURATION 1 – SINGLE FMC INSTALLATION

4672 4673

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM


CONFIGURATION 3 – DUAL FMC CDU INSTALLATION

ATTACHMENT 2-2 STANDARD INTERWIRING

4676 ATTACHMENT 2 FMC CONNECTOR AND INTERWIRING

4677 ATTACHMENT 2-1 FMC CONNECTOR POSITIONING

View From Rear of Connector

ATTACHMENT 2-2 STANDARD INTERWIRING

4681 ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	ŢΑ	TP1A	ARINC 711 VOR #1
ARINC 429 Input	ЬВ	TP1B	ARINC 711 VOR #1
Spare		TP1C	
ARINC 429 Input	ТА В	TP1D TP1E	ARINC 709 DME #1
ARINC 429 Input Spare	Ър	TP1E TP1F	ARINC 709 DME #1
Opare			
ARINC 429 Input	A	TP1G	ARINC 710 ILS
ARINC 429 Input	」в	TP1H TP1J	ARINC 710 ILS
Spare Discrete Input		TP1K	Oleo Strut Switch
Biodioto input			
ARINC 429 Output] A	TP2A	ARINC 758 CMU
ARINC 429 Output	_ B	TP2B	ARINC 758 CMU
Spare	¬ ^	TP2C	Tasis stars Dus
ARINC 429 Output ARINC 429 Output	ТА В	TP2D TP2E	Trajectory Bus Trajectory Bus
Spare] D	TP2E	Trajectory bus
ARINC 429 Output	ŢΑ	TP2G	Spare
ARINC 429 Output	Β	TP2H	Spare
Spare		TP2J	
Spare		TP2K	
ARINC 429 Input	ŢΑ	ТРЗА	ARINC 704A IRS
ARINC 429 Input	В	ТРЗВ	or ARINC 705 AHRS #1
Spare		TP3C	
ARINC 429 Input] A	TP3D	ARINC 743A/755 GNSS #1
ARINC 429 Input	ΔB	TP3E TP3F	ARINC 743A/755 GNSS #1
Spare ARINC 429 Input	ŢΑ	TP3G	ARINC 737 Weight and Balance System
ARINC 429 Input	B	ТРЗН	ARINC 737 Weight and Balance System
Spare		TP3J	ů ,
Discrete Input		ТРЗК	Self Test Switch
Spare		TP4A	
Spare		TP4B	
Spare		TP4C	
ARINC 429 Output	٦A	TP4D	Spare
ARINC 429 Output	JΒ	TP4E	Spare
Spare ARINC 429 Input	ТΔ	TP4F TP4G	ARINC 762 TAWS
ARINC 429 Input] A] B	TP4H	ARINC 762 TAWS
Spare	-	TP4J	
Discrete Input		ТР4К	Mag/True Input #1
ARINC 429 Input	ΓA	TP5A	EFI Data Source #1
ARINC 429 Input	B	TP5B	EFI Data Source #1
Spare	_	TP5C	
ARINC 429 Input	٦A	TP5D	ARINC 611 Fuel Quantity Data Source
ARINC 429 Input	」B	TP5E	ARINC 611 Fuel Quantity Data Source
Spare ARINC 429 Input	ŢΑ	TP5F TP5G	ARINC 703 TCC
ARINC 429 Input	B	TP5H	ARING 703 TCC
Spare	-	TP5J	

ATTACHMENT 2-2 STANDARD INTERWIRING

Discrete Input		TP5K		MCDU Select Switch	3
FUNCTION		FMC PIN		SOURCE/SINKS	NOTES
Spare Spare Spare ARINC 429 Output ARINC 429 Output Spare] A] B	TP6A TP6B TP6C TP6D TP6E TP6F		Spare Spare	N.I.
ARINC 429 Output ARINC 429 Outpu Spare Discrete Input] A] B	TP6G TP6H TP6J TP6K		ARINC 739A Offside MCI ARINC 739A Offside MCI Reserved Spare	
ARINC 429 Input A ARINC 429 Input B Spare ARINC 429 Input A ARINC 429 Input B Spare]]	TP7A TP7B TP7C TP7D TP7E TP7F		Propulsion Data Source #3 ARINC 706 Air Data System #1	
ARINC 429 Input A ARINC 429 Input B Spare Discrete Input		TP7G TP7H TP7J TP7K		ARINC 701 Glare Shield Controller	
Spare Spare Spare Spare Spare Spare Spare Spare Spare		TP8A TP8B TP8C TP8D TP8E TP8F TP8G TP8H TP8J TP8K			
ARINC 429 Input ARINC 429 Input Spare] A] B	TP9A TP9B TP9C TP9D		ARINC 739A Onside MCI ARINC 739A Onside MCI	DU
ARINC 429 Input ARINC 429 Input Discrete Input ARINC 429 Output ARINC 429 Output Spare] A] B] A] B	TP9D TP9E TP9F TP9G TP9H TP9J		ARINC 615 Data Loader ARINC 615 Data Loader Data Utilization Devices	6
Discrete Input Spare Spare Spare Spare Spare Spare Spare Spare Spare Spare Spare Spare		ТР9К ТР10А с ТР10В с ТР10С с ТР10С с ТР10Е с ТР10Е с ТР10Г с ТР10G с ТР10Н с ТР10J с ТР10К с		Man/Autotune Input #1	4

ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Output	ΓA	TP11A	EF/Instruments
ARINC 429 Output	ЬВ	TP11B	EF/Instruments
Spare		TP11C	
ARINC 429 Input	ΓA	TP11D	ARINC 739A Offside MCDU
ARINC 429 Input	」в	TP11E	ARINC 739A Offside MCDU
Spare		TP11F	
ARINC 429 Output	ΓA	TP11G	ARINC 615 Data Loader 6
ARINC 429 Output	В	TP11H	ARINC 615 Data Loader
Spare	-	TP11J	
Discrete Input		TP11K	Man/Autotune Input #2 4
Spare		TP12A	
Spare		TP12B	
Spare		TP12C	
Spare		TP12D	
Spare		TP12E	
Spare		TP12F	
Spare		TP12G	
Spare		TP12H	
Spare		TP12J	
Spare		TP12K	
	7 .	TD404	
ARINC 429 Output	A	TP13A	Other ARINC 702A FMC
ARINC 429 Output	J₿	TP13B	Other ARINC 702A FMC
Spare	٦.	TP13C	
ARINC 429 Output	A	TP13D	ARINC 739A Onside MCDU
ARINC 429 Output	JΒ	TP13E	ARINC 739A Onside MCDU
Spare	_	TP13F	
ARINC 429 Output	A	TP13G	Test Data Recording
ARINC 429 Output	JB	TP13H	Test Data Recording
Spare		TP13J	
Discrete Output		TP13K	Alert Annunicator
Spare		TP14A	
Spare		TP14B	
Spare		TP14C	
Ethernet Itf #1	ΓA	TP14D	615A Data Loader, 758 CMU, 6
Ethernet Itf #1	」в	TP14E	and/or 744A Printer via Ethernet Hub
Ethernet Itf #1	ЪГ	TP14F	615A Data Loader, 758 CMU, 6
Ethernet Itf #1	D	TP14G	and/or 744A Printer via
	7 6		Ethernet Hub
Ethernet Itf #1	E	TP14H	615A Data Loader, 758 CMU, 6
	_		and/or 744A Printer via Ethernet Hub
Spare		TP14J	
Spare		TP14K	
opale		IF 1411	

ATTACHMENT 2-2 STANDARD INTERWIRING

FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	ΓA	TP15A	ARINC 758 CMU #1
ARINC 429 Input	В	TP15B	ARINC 758 CMU #1
		TP15C	
Spare	۰ ٦		
ARINC 429 Input	A	TP15D	ARINC 704A IRS or
ARINC 429 Input	JВ	TP15E	ARINC 705 AHRS #3
Spare		TP15F	
ARINC 429 Input	ŢΑ	TP15G	Propulsion Data Source #1
ARINC 429 Input	」в	TP15H	Propulsion Data Source #1
Spare	-	TP15J	
Discrete Output		TP15K	
A PINC 420 Input	۸ ٦	MP1A	Bropulsion Data
ARINC 429 Input	A		Propulsion Data
ARINC 429 Input	Β	MP1B	Source #4
Spare	_	MP1C	
ARINC 429 Input	ΓA	MP1D	ARINC 711 VOR #2
ARINC 429 Input	ЪВ	MP1E	ARINC 711 VOR #2
Spare		MP1F	
ARINC 429 Input	ΓA	MP1G	Other ARINC 702A FMC
ARINC 429 Input	」 B	MP1H	Other ARING 702A FMC
Spare Discrete Input		MP1J MP1K	SDI Code Input #1 [5]
ARINC 429 Output		MP2A	Autothrottle System
ARINC 429 Output		MP2B	Autothrottle System
Spare		MP2C	
ARINC 429 Output		MP2D	ARINC 624 Maintenance System
ARINC 429 Output		MP2E	ARINC 624 Maintenance System
		MP2F	ARTING 024 Maintenance System
Spare			
ARINC 429 Output		MP2G	ARINC 740/744A Printer
ARINC 429 Output		MP2H	ARINC 740/744A Printer
Spare		MP2J	
Discrete Input		MP2K	
ARINC 429 Input	ΓA	MP3A	ARINC 704A IRS or
ARINC 429 Input	B	MP3B	ARINC 705 AHRS #2
Spare	76	MP3C	
	۸ ר	MP3D	APINIC 721 Digital Clock
ARINC 429 Input			ARINC 731 Digital Clock
ARINC 429 Input	ΔB	MP3E	ARINC 731 Digital Clock
Spare	_	MP3F	
ARINC 429 Input	Γ	MP3G	ARINC 724B ACARS
ARINC 429 Input	B	MP3H	ARINC 724B ACARS
Spare		MP3J	
Discrete Input		МРЗК	SDI Input #2 5
Spare		MP4A	
		MP4B	
Spare			
Spare	- -	MP4C	2
ARINC 429 Output	A	MP4D	Spare
ARINC 429 Output	」B	MP4E	Spare
Spare		MP4F	
ARINC 429 Input	ŢΑ	MP4G	ASAS Bus
ARINC 429 Input	B	MP4H	ASAS Bus
	U L		
Spare		MP4J MP4K	
Spare			

ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	ΓA	MP5A	Propulsion
ARINC 429 Input	В	MP5B	Data Source #2
Spare	_	MP5C	
ARINC 429 Input	Γ	MP5D	ARINC 706
ARINC 429 Input	ЬB	MP5E	Air Data System #2
Spare		MP5F	
ARINC 429 Input	Γ	MP5G	ARINC 740/744A Printer
ARINC 429 Input	ЬB	MP5H	ARINC 740/744A Printer
Spare		MP5J	
Discrete Input		MP5K	SDI Code Input #3 5
			•
ARINC 429 Input	ΓA	MP6A	ARINC 624 Maintenance System
ARINC 429 Input	」в	MP6B	ARINC 624 Maintenance System
Spare		MP6C	
ARINC 429 Input	ŢΑ	MP6D	ARINC 758 CMU #2
ARINC 429 Input	ΓB	MP6E	ARINC 758 CMU #2
Spare		MP6F	
ARINC 429 Input	Γ	MP6G	ARINC 724B ACARS #2
ARINC 429 Input	J₿	MP6H	ARINC 724B ACARS #2
Spare	_	MP6J	
Discrete Output		MP6K	
Biodioto Output			
ARINC 429 Input	ΓA	MP7A	ARINC 743A/755 GNSS #2
ARINC 429 Input	В	MP7B	ARINC 743A/755 GNSS #2
Spare	-	MP7C	
ARINC 429 Output	ΤA	MP7D	Data Utilization
ARINC 429 Output	В	MP7E	Devices
Spare	-	MP7F	
ARINC 429 Input	ΓA	MP7G	ARINC 709 DME #2
ARINC 429 Input	」в	MP7H	ARINC 709 DME #2
Spare	-	MP7J	
Discrete Output		MP7K	
ARINC 429 Input	ΓA	MP8A	Spare
ARINC 429 Input	」в	MP8B	Spare
Spare		MP8C	
ARINC 429 Input	ΓA	MP8D	Spare
ARINC 429 Input	」в	MP8E	Spare
Spare		MP8F	
ARINC 429 Input	ΓA	MP8G	Spare
ARINC 429 Input	В	MP8H	Spare
Spare		MP8J	
Spare		MP8K	
ARINC 429 Output	Γ	MP9A	ARINC 724B ACARS Data Link
ARINC 429 Output	B	MP9B	ARINC 724B ACARS Data Link
Spare		MP9C	
ARINC 429 Input	ΓA	MP9D	EFIS
ARINC 429 Input	JВ	MP9E	EFIS
Discrete Input		MP9F	
ARINC 429 Output	ΓA	MP9G	EFI Instrumentation
ARINC 429 Output	В	MP9H	EFI Instrumentation
Spare		MP9J	
Spare		MP9K	

ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
Spare		MP10A	
Spare		MP10B	
Spare		MP10C	
Ethernet Interface #2			6154 Data Loadar, 759 CMU
	٦A	MP10D	615A Data Loader, 758 CMU,
Ethernet Interface #2	_ B	MP10E	and/or 744A Printer via Ethernet Hub
Ethernet Interface #2	٦C	MP10F	615A Data Loader, 758 CMU,
Ethernet Interface #2	D	MP10G	and/or 744A Printer via
Ethernet Interface #2	LΕ	MP10H	Ethernet Hub
Spare		MP10J	
Spare		MP10K	
Discrete Input		MP11A	Data Loader Interface 6
Discrete Input		MP11B	Connector
Discrete Input		MP11C	Reserved for Application-
Discrete Input		MP11D	Unique Discrete Inputs
Discrete Input		MP11E	Reserved for Application-
Discrete Input		MP11F	Unique Discrete Inputs
Discrete Input		MP11G	Reserved for Application-
Discrete Input		MP11H	Unique Discrete Inputs
Discrete Input		MP11J	Reserved for Application-
Discrete Input		MP11K	Unique Discrete Inputs
Spare		MP12A	
Spare		MP12B	
Spare		MP12C	
-		MP12D	
Spare			
Spare		MP12E	
Spare		MP12F	
Spare		MP12G	
Spare		MP12H	
Spare		MP12J	
Spare		MP12K	
Discrete Input		MP13A	Reserved for Application-
Discrete Input		MP13B	Unique Discrete Inputs
Discrete Input		MP13C	Reserved for Application-
Discrete Input		MP13D	Unique Discrete Inputs
Discrete Input		MP13E	Reserved for Application-
Discrete Input		MP13F	Unique Discrete Inputs
Discrete Input		MP13G	Reserved for Application-
Discrete Input		MP13H	Unique Discrete Inputs
Discrete Input		MP13J	Reserved for Application-
Discrete Input		MP13K	Unique Discrete Inputs
Spare		MP14A	
Spare		MP14B	
Spare		MP14C	
Spare		MP14D	
Spare		MP14E	
Spare		MP14F	
Spare		MP14G	
Spare		MP14H	
Spare		MP14J	
Spare		MP14K	
opulo			

ATTACHMENT 2-2 STANDARD INTERWIRING

		1 2	
FUNCTION	FMC PIN	SOURCE/SINKS NC	DTES
Discrete Input	MP15A	Reserved for Application-	
Discrete Input	MP15B	Unique Discrete Inputs	
Discrete Input	MP15C	Reserved for Application-	
Discrete Input	MP15D	Unique Discrete Inputs	
Discrete Input	MP15E	Reserved for Application-	
Discrete Input	MP15F	Unique Discrete Inputs	
Discrete Input	MP15G	Reserved for Application-	
Discrete Input	MP15H	Unique Discrete Inputs	
Reserved	MP15J		
Reserved	MP15K		
115 VAC Primary Power (Hot)	BP1	115 VAC 5 A C/B	
Spare	BP2		
Spare	BP3		
Spare	BP4		
Spare	BP5		
Spare	BP6		
115 VAC Primary Power (Cold)	BP7	AC Ground	
Chassis Ground	BP8	DC Ground	
Spare	BP9		
Spare	BP10		
Spare	BP11		
Spare	BP12		
Spare	BP13		

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

4683 ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

- 4684 1. Standard Interwiring
- 4685The standard interwiring shown in this Attachment is for a single FMC installation comprised4686of one FMC and one CDU. For the sake of completeness, however, wiring is also shown to4687enable the FMC to operate with a second CDU and one for a cross-talk bus between this4688FMC and another one.
- Because of the variety of interwiring characteristics of aircraft installations utilizing the 702A
 FMC, this attachment does not standardize detailed interwiring in the traditional sense.
 Connector pin assignments are standardized with respect to input/output signal types only.
 While nominal signal functions are provided, manufacturers are encouraged to utilize
 programmable I/O design approaches which allow for variations in aircraft interfaces and
 installations.
- 4695 2. Shield Grounds
- 4696 Digital data bus shield grounds should be grounded to aircraft structure at both ends.
- 4697 3. Off-Side CDU Enable Discrete
- This discrete tells the FMC which CDU has control of data entry in dual CDU installations in
 which either may perform this function. When an open circuit is sensed by the FMC, its prime
 CDU has control. When the wire is connected to ground by means of a cockpit-located
 switch, or equivalent, the other CDU has control.
- 4702 4. FMC Master/Slave and Manual Autotune Discrete
- 4703The Master/Slave discrete may be used in dual FMC installations to tell the FMCs which unit4704should be considered as master for dual system synchronism and redundancy management4705purposes as described in Section 3.5. The manual/autotune discretes provide information to4706the FMCs on VOR/DME turning status. When in autotune mode, these radios accept tuning4707commands from the FMC.
- 4708 5. Source/Destination Identifier (SDI) Encoding
- 4709 Pins MP1K, MP3K, and MP5K are assigned for encoding the location of the FMC in the aircraft (i.e., system number) per Section 2.1.4 of ARINC Specification 429. If the SDI 4710 4711 function is used, the following encoding scheme should be employed, the pins designated 4712 being either left open circuit or connected, on the aircraft-mounted half of the connector, to pin MP5K. The wiring of these pins should cause bit numbers 9 and 10 of each digital word 4713 transmitted by the FMC to take on the binary states defined in ARINC Specification 429. 4714 4715 When the SDI function is not used, both pins MP1K and MP3K should be left open circuit 4716 such that bit numbers 9 and 10 are always binary zeros.

FMC No.	Connec	ctor Pin
	MP1K	MP3K
Not Applicable	Open	Open
1	Open	To MP5K
2	To MP5K	Open
3	To MP5K	To MP5K

- 4717 The foregoing describes the SDI function performed by a data source. ARINC Specification4718 429 also discusses the data identification function to be performed by sinks whose system
- 4719 numbers are encoded in this way. In summary, the FMC should recognize and accept data

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

- words in which bit numbers 9 and 10 are either both zeros or form the code defined by pinsMP1K and MP3K. All other data may be discarded.
- 4722 6. Data Loader Interface

and 615A.

- 4723 It is expected that the airframe manufacturers will provide, at some convenient location on the 4724 aircraft, a connection point for an external data loader of the type described in ARINC 615
- 4725
- 4726

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

4727 **ATTACHMENT 2-4**

TOP INSERT

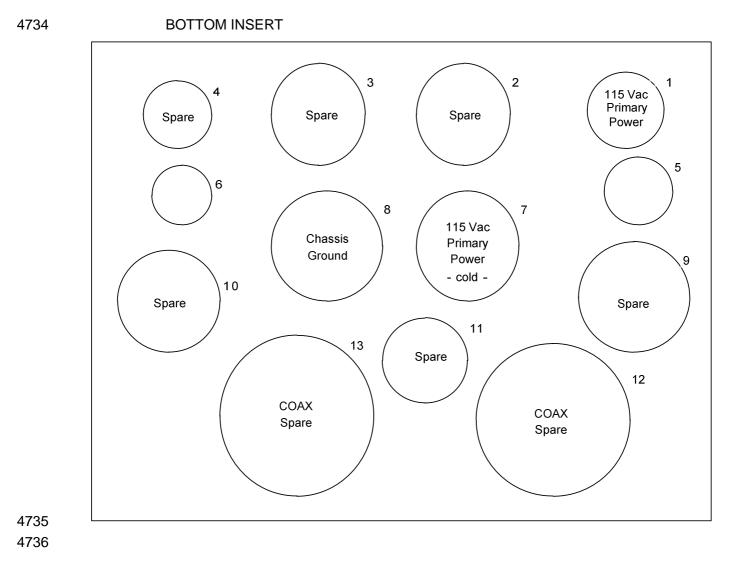
CONNECTOR INSERT LAYOUT

4728

	Α	В	С	D	E	F	G	Н	J	K
1	ARINC 429		SPARE		29 INPUT	SPARE		29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC INPUT
2	ARINC 429	OUTPUT	SPARE	ARINC 429	9 OUTPUT	_	ARINC 42	9 OUTPUT	SPARE	SPARE
	o A	o B	0	o A	o B	SPARE	o A	o B	0	0
	A	Б		A	D	0	A	D		
3	ARINC 42	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC
	~	Б		~	Б		~	В		INPUT
4	SPARE	SPARE	SPARE	ARINC 429	9 OUTPUT	SPARE	-	29 INPUT	SPARE	
	0	0	0	o A	o B	0	o A	o B	0	o DISC
				~	Ь		~	Б		INPUT
5	ARINC 429		SPARE	-	29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	о	o A	o B	0	o DISC
	~	D			D		~	D		INPUT
6	SPARE	SPARE	SPARE		9 OUTPUT	SPARE	-	9 OUTPUT	SPARE	
	0	0	0	o A	o B	0	o A	o B	0	o DISC
					2		<i>N</i>	D		INPUT
7	ARINC 429		SPARE	-	29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC
					_					INPUT
8	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE		SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
									-	
9	ARINC 429	9 INPUT o	SPARE o	-	29 INPUT 0	0	ARINC 42	9 OUTPUT o	SPARE	0
	A	B	0	A	B	DISC	A	B	0	DISC
- 10		00100		0.51.5.5	00105	INPUT		00105		INPUT
10	SPARE	SPARE o	SPARE o	SPARE 0	SPARE	SPARE	SPARE 0	SPARE o	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
44			00405		די יסואן סכ	00405			00405	
11	ARINC 429		SPARE	-	29 INPUT o	SPARE	ARINC 61	5 OUTPUT	SPARE	0
	A	В	0	A	В	0	A	B		DISC
12	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	INPUT SPARE
12	0	O	0	0	0	0	0	0	O	O
	Ũ	Ũ	Ũ	Ũ	Ũ	0	0	Ũ	Ŭ	0
13	ARINC 429		SPARE		9 OUTPUT	SPARE		9 OUTPUT	SPARE	
13	0 ARING 429	001P01	0	_	001901	0 SPARE	ARINC 42	001001	0	0
	Ă	B	-	Ă	B	~	Ă	B	-	DISC
14	SPARE	SPARE	SPARE		стися	RNET INTERFA	CE #1		SPARE	OUTPUT SPARE
14	0	0	0	0	0		0	0	0	0
	-		-	Å	B	č	Ď	Ĕ	-	-
15	ARINC 429		SPARE		29 INPUT	SPARE		29 INPUT	SPARE	
15	0 ARING 423	0	0	0	29 INFUT 0	0	0	29 INPUT 0	0	о
	Ă	B	-	Ă	B		Ă	B	-	DISC
										OUTPUT

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

4731


MIDDLE INSERT

	A	В	С	D	E	F	G	Н	J	K
1	-		SPARE	-		SPARE		29 INPUT	SPARE	SDI CODE
	o A	0	0	0	o B	0	0	o B	0	INPUT #1
	A	В		A	В		A	В		0
2	ARINC 429	OUTPUT	SPARE		9 OUTPUT	SPARE		9 OUTPUT	SPARE	
	o A	0	0	0	o B	0	0	o B	0	o DISC
	A	В		A	В		A	В		INPUT
3	ARINC 42	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 4	29 INPUT		
	o A	0	0	0	o B	0	0	o B	0	o DISC
	A	В		A	В		A	В		INPUT
4	SPARE	SPARE o	SPARE			SPARE	ARINC 4	29 INPUT		SPARE
	0	0	0	0	o B	0	0	o B	0	0
5	ARINC 42	9 INPUT	SPARE		в 29 INPUT	SPARE			SPARE	
Ŭ	o A		0	-	o B	0			0	0
1	A	В		А	В		A	o B		DISC
6	ARINC 42		SPARE	ARINC 4	29 INPLIT	SPARE	ARINC 4	29 INPUT	SPARE	INPUT
Ŭ	-		0			0			0	0
	o A	В		А	o B		А	o B		DISC
7	ARINC 42	9 INPUT	SPARE	ARINC 42		SPARE	ARINC 4	29 INPUT	SPARE	OUTPUT
'	o A		0			0		o B	0	о
	A	В		A	o B		А	В		DISC
<u> </u>										INPUT
8	ARINC 42	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE				SPARE
	0		0	0	0	0	0	o B	0	0
	A	В		A	В		A	В		
9										
	ARINC 429		SPARE	ARINC 42					SPARE	SPARE
	O A	o B	0	o A	o B	o DISC	o o A B		0	0
						INPUT		J		
10	SPARE		SPARE			RNET INTERF			SPARE	SPARE
	0	0	0	o A	o B	o C	o D	o E	0	0
					-	-	-	-		
11										
	O DISC INPUT	o DISC	O DISC	o DISC	O DISC	o DISC	O DISC	o DISC	o DISC	o DISC
		INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
12	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
13										
1	O DISC INPUT	o DISC	o DISC	o DISC	o DISC	o DISC	O DISC	o DISC	o DISC	o DISC
		INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
14	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
15										
1	o DISC	o DISC	o DISC	o DISC	o DISC	o DISC	O DISC	o DISC	o RSVD	o RSVD
L	5.00	5100	2.00	5.00	2.00	5.00	2.00	5.00	1.010	

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

	INPUT								
4700									
4732									

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

ATTACHMENT 3

4737	ATTACHMENT 3
4738	
4739	
4740	
4741	
4742	
4743	THIS SECTION INTENTIONALLY LEFT BLANK
4744	

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

4745 ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
DISTANCE TO GO	001	BCD		Х	Х				
TIME TO GO	002	BCD			0				
PRESENT POSITION LATITUDE	010	BCD		0					
PRESENT POSITION LONGITUDE	011	BCD		0					
GROUND SPEED	012	BCD		0	Х				
SELECTED RUNWAY HEADING	017	BCD		0					
SELECTED N1/EPR (BCD)	021	BCD							
TACAN SELECTED COURSE (BCD)	027	BCD		0					
ILS FREQUENCY	033	BCD		0					
VOR/ILS FREQUENCY #1	034	BCD		0					
VOR/ILS FREQUENCY #2	034	BCD		0					
DME FREQUENCY #1	035	BCD		0					
DME FREQUENCY #2	035	BCD		0					
MLS FREQUENCY/CHANNEL	036	BCD		0					
SET LATITUDE	041	BCD		X					
SET LONGITUDE	042	BCD		Х					
SET MAGNETIC HEADING	043	BCD		Х					
FAS DATA BLOCK MESSAGE START (see ARINC 743B/755 for details)	045	BLK		0					
FAS DATA BLOCK MESSAGE DATA	046	BLK		0					
ETA (ACTIVE WAYPOINT)	056	BCD		-	Х				
ACMS INFORMATION	061	BNR		0					
ACMS INFORMATION	062	BNR		0					
ACMS INFORMATION	063	BNR		0					
LONGITUDINAL (ACTIVE WAYPOINT)	066	BCD		0					
CENTER OF GRAVITY (BCD)				•					
REFERENCE AIRSPEED (VREF)	070	BNR		0	0				
TAKE-OFF CLIMB AIRSPEED (V2)	071	BNR		0	0				
ROTATION SPEED (VR)	072	BNR		0	Х				
CRITICAL ENGINE FAILURE SPEED VI	073	BNR		Х					
ZERO FUEL WEIGHT	074	BNR		0					
GROSS WEIGHT	075	BNR		X				0	
TARGET AIRSPEED	077	BNR	1	0	1		1	-	
SELECTED COURSE #1	100	BNR		0					
SELECTED ALTITUDE	102	BNR		0					Х
SELECTED AIRSPEED	103	BNR		0				0	X
SELECTED VERTICAL SPEED	104	BNR		0					
SELECTED RUNWAY HEADING	105	BNR		0					
SELECTED MACH	106	BNR		0					Х
SELECTED CRUISE ALTITUDE	107	BNR		0					
DESIRED TRACK	114	BNR		0	Х				Х

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
WAYPOINT BEARING	115	BNR		Х	Х				
CROSS TRACK DISTANCE	116	BNR		0	Х				
VERTICAL DEVIATION	117	BNR		0	0				
RANGE TO ALTITUDE	120	BNR			Х				
HORIZONTAL COMMAND SIGNAL	121	BNR		Х					
VERTICAL COMMAND SIGNAL	122	BNR		0					
THROTTLE COMMAND SIGNAL	123	BNR					0	0	
UNIVERSAL COORDINATED TIME (UTC)	125	BCD		Х					
VERTICAL DEVIATION (WIDE)	126	BNR		0					
SELECTED LANDING ALTITUDE	127	BNR		Х					
CURRENT VERTICAL PATH PERF LIMIT	135	BNR							Х
CURRENT VERTICAL PATH PERF	136	BNR							Х
GREENWICH MEAN TIME (UTC)	150	BNR		Х	Х			0	Х
LOCALIZER BEARING (TRUE)	151	BNR		0					
MAXIMUM ALTITUDE	153	BNR		Х					
RUNWAY HEADING (TRUE)	154	BNR		Х					
ESTIMATED POSITION UNCERTAINTY	167	BNR							Х
CURRENT RNP	171	BNR							Х
DRIFT ANGLE	200	BCD		0					
ENERGY MANAGEMENT (CLEAN)	202	BNR			0				
ENERGY MANAGEMENT SPEED BRAKES	203	BNR			0				
UTILITY AIRSPEED	204	BNR		0	0				
BARO ALTITUDE	204	BNR							
SBAS FAS DATABLOCK WORD #1 (see ARINC755 for details)	205	BLK		0					
COMPUTED AIRSPEED	206	BNR							
SBAS FAS DATABLOCK WORD #2	206	BLK		0					
SBAS FAS DATABLOCK WORD #3	207	BLK		0					
TOTAL AIR TEMPERATURE	211	BNR					0	0	
SBAS FAS DATABLOCK WORD #4	211	BLK		0					
ALTITUDE RATE	212	BNR		-					
STATIC AIR TEMPERATURE	213	BNR					0	0	
SBAS FAS DATABLOCK WORD #5	213	BLK		0					
SBAS FAS DATABLOCK WORD #6	215	BLK		0	L				
GEOMETRIC VERTICAL RATE	217	BNR			L				
SBAS FAS DATABLOCK WORD #7	217	BLK		0	<u> </u>				
MCDU #1 ADDRESS LABEL	220		Х						
SBAS FAS DATABLOCK WORD #8	220	BLK		0					
MCDU #2 ADDRESS LABEL	221		Х						
SBAS FAS DATABLOCK WORD #9	221	BLK		0	L				

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
MCDU #3 ADDRESS LABEL	222		0						
CDU DATA (PER ARINC 739)			Х						
PRINTER #1 ADDRESS LABEL	223						0		
SBAS FAS DATABLOCK WORD #10	223	BLK		0					
PRINTER #2 ADDRESS LABEL	224						0		
SBAS FAS DATABLOCK WORD #11	224	BLK		0	-				
MINIMUM MANEUVERING AIR SPEED	225	BNR			0				
SBAS FAS DATABLOCK WORD #12	225	BLK		0					
MINIMUM OPERATING FUEL TEMP.	226	BNR		0					
MCDU #4 ADDRESS LABEL	230			Х					
SBAS FAS DATABLOCK WORD #13	225	BLK		0					
ACTIVE TRAJ INTENT DATA BLOCK	232								<u>X</u>
ACMS INFORMATION	233								<u>X</u>
	234								<u>X</u>
	235								X
	236								X
	237				0				Х
MIN. AIRSPEED FOR FLAP EXTENSION	241	BNR			0				
MODIFIED INTENT DATA BLOCK	242								Х
									^
SBAS FAS DATABLOCK WORD #14	242	BLK		0					
SBAS FAS DATABLOCK WORD #15	244	BLK		0					
MINIMUM AIRSPEED	245	BNR		0					
GENERAL MAX SPEED (VCMAX)	246	BNR		0					
SBAS FAS DATABLOCK WORD #16	246	BLK		0					
CONTROL MINIMUM SPEED (VCMIN)	247	BNR		0					
CONTINUOUS N1 SPEED	250	BNR	0				0		
GO-AROUND N1 LIMIT	253	BNR		Х					
CRUISE N1 LIMIT	254	BNR		Х					
CLIMB N1 LIMIT	255	BNR		Х					
TIME FOR CLIMB	256	BNR		0					
TIME FOR DESCENT	257	BNR		0					
DATE/FLIGHT LEG	260	BCD		Х				0	
FLIGHT NUMBER (BCD)	261	BCD		0					
DOCUMENTARY DATA (PER ARINC 619)	262	BNR				0			
MIN. AIRSPEED FOR FLAP RETRACTION	263	BNR			0				
NDB EFFECTIVITY	263			0					
TIME TO TOUCHDOWN	264	BNR		0	0	_			
MIN. BUFFET AIRSPEED	265	BNR		0					
MAX. MANEUVER AIRSPEED	267	BNR		0	0				

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

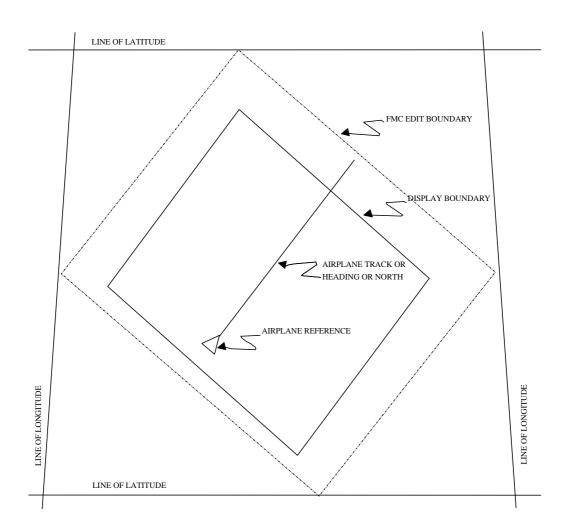
FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
INTENT STATUS	270	DISC							Х
STATUS DISCRETES	270	DISC		Х					
DISCRETE DATA #1	270	DISC			Х				
DISCRETE DATA #2	271	DISC		Х	Х				
DISCRETE DATA #3	272	DISC		0	0				
DISCRETE DATA #6	275	DISC		0	0				
DISCRETE DATA #7	276	DISC		0	0				
APPLICATION DEPENDENT	301				0				
APPLICATION DEPENDENT	302				0				
APPLICATION DEPENDENT	303				0				
PRESENT POSITION LATITUDE	310	BNR		0	Х				Х
PRESENT POSITION LONGITUDE	311	BNR		0	Х				Х
GROUND SPEED	312	BNR		0	Х				Х
TRACK ANGLE TRUE	313	BNR		0	Х				Х
TRUE HEADING	314	BNR							Х
WIND SPEED	315	BNR			Х				Х
WIND DIRECTION (TRUE)	316	BNR			Х				Х
TRACK ANGLE MAGNETIC	317	BNR		0	Х				
MAGNETIC HEADING	320	BNR							Х
DRIFT ANGLE	321	BNR		0	Х				
FLIGHT PATH ANGLE	322	BNR			0				
GEOMETRIC ALTITUDE	323	BNR							
TRACK ANGLE RATE	335	BNR							Х
N1 OR EPR COMMAND	341	BNR		Х			0	0	
N1 BUG DRIVE	342	BNR		Х			0	0	
MAINTENANCE DATA #5	354			0					
ISO ALPHABET #5 MESSAGE	357	ISO-5			0				
FLIGHT INFORMATION	360	BNR		0	0				
N/S VELOCITY	366	BNR							Х
E/W VELOCITY	367	BNR							Х
EQUIPMENT ID	377			Х					

4746 4747

Notes:

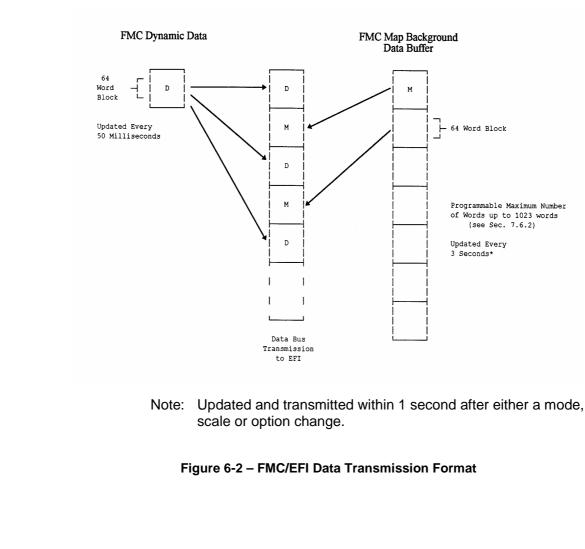
- 4. X = Basic or Baseline
- 5. O = Optional

- 4748 4749
- 4750


ATTACHMENT 5 ENVIRONMENTAL TEST CATEGORIES

4751 ATTACHMENT 5 ENVIRONMENTAL TEST CATEGORIES

ENVIRONMENT	RTCA DO-160 SECTION	CATEGORY RTCA DO-160C/D
Temperature and Altitude	4	Category A2/W
Temperature Variation	5	Category A
Humidity	6	Category B
Shock	7	
Vibration	8	Category B'
Explosion	9	Category X
Waterproofness	10	Category X
Hydraulic Fluid	11	Category X
Sand and Dust	12	Category X
- Fungus	13	Category F
- Salt Spray	14	Category X
Magnetic Effects	15	Category Z
Power Input	16	Category A
Voltage Spikes	17	Category A
Audio Frequency		
 Conducted Susceptibility 	18	Category Z
Electromagnetic Compatibility		Category A
- Induced Signal Susceptibility	19	Category Z
- Radio Frequency Susceptibility	20	Category W
- Emission of Radio Frequency Energy	21	Category Z
- Lightning	22	600v/120a


ATTACHMENT 6 FMC/EFI INTERFACE

4754 ATTACHMENT 6 FMC/EFI INTERFACE

Figure 6-1 – Map Edit Area North-Up Orientation Used in Plan Mode

ATTACHMENT 6 FMC/EFI INTERFACE

ATTACHMENT 6 FMC/EFI INTERFACE

4767 Table 6-1 – FMC/EFI Data Type Identification Codes

OCTAL	BIT	POS	ΙΤΙΟΙ	N					
LABEL	1	2	3	4	5	6	7	8	PARAMETER
301	1	1	0	0	0	0	0	1	START OF TRANSMISSION (SOT) (BACKGROUND)
303	1	1	0	0	0	0	1	1	START OF TRANSMISSION (SOT) (DYNAMIC)
100	0	1	0	0	0	0	0	0	VECTOR - Active Flight Plan
300	1	1	0	0	0	0	0	0	- Active Flight Plan Changes
040	0	0	1	0	0	0	0	0	- Inactive Flight Plan
240	1	0	1	0	0	0	0	0	- Inactive Flight Plan Changes
140	0	1	1	0	0	0	0	0	- Radial
340	1	1	1	0	0	0	0	0	- Runway Center Line
020	0	0	0	1	0	0	0	0	- Offset Path
220	1	0	0	1	0	0	0	0	undefined
120	0	1	0	1	0	0	0	0	undefined
320	1	1	0	1	0	0	0	0	undefined
060	0	0	1	1	0	0	0	0	undefined
260	1	0	1	1	0	0	0	0	undefined
160	0	1	1	1	0	0	0	0	VECTOR IDENTIFIERS
360	1	1	1	1	0	0	0	0	undefined
010	0	0	0	0	1	0	0	0	undefined
210	1	0	0	0	1	0	0	0	undefined
110	0	1	0	0	1	0	0	0	undefined
310	1	1	0	0	1	0	0	0	undefined
050	0	0	1	0	1	0	0	0	undefined
250	1	0	1	0	1	0	0	0	SYMBOLS - VORTAC + Identifier
150	0	1	1	0	1	0	0	0	- Tuned VORTAC + Identifier
350	1	1	1	0	1	0	0	0	- VOR + Identifier
030	0	0	0	1	1	0	0	0	- Tuned VOR + Identifier
230	1	0	0	1	1	0	0	0	- DME/TACAN + Identifier
130	0	1	0	1	1	0	0	0	- Tuned DME/TACAN + Identifier
330	1	1	0	1	1	0	0	0	 Waypoint + Identifier
070	0	0	1	1	1	0	0	0	 Active Waypoint + Identifier
270	1	0	1	1	1	0	0	0	- Airfield + Identifier
170	0	1	1	1	1	0	0	0	 Origin/Destination Airfield Ident
370	1	1	1	1	1	0	0	0	- GRP + Identifier
004	0	0	0	0	0	1	0	0	 Altitude Profile Point + Identifier
204	1	0	0	0	0	1	0	0	- Selected Reference Point
104	0	1	0	0	0	1	0	0	undefined
304	1	1	0	0	0	1	0	0	undefined
044	0	0	1	0	0	1	0	0	undefined
244	1	0	1	0	0	1	0	0	undefined
144	0	1	1	0	0	1	0	0	undefined
344	1	1	1	0	0	1	0	0	undefined
024	0	0	0	1	0	1	0	0	undefined
224	1	0	0	1	0	1	0	0	TEXT - Type 1: Navigation Advisory
124	1	0	0	1	0	1	0	0	- Type 2: Maintenance Test
324	1	1	0	1	0	1	0	0	- Туре 3
064	0	0	1	1	0	1	0	0	- Туре 4
264	1	0	1	1	0	1	0	0	MAP REFERENCE GROUP - Latitude

OCTAL	BIT	POS	ITIO	N					PARAMETER
LABEL	1	2	3	4	5	6	7	8	PARAMETER
164	0	1	1	1	0	1	0	0	-Longitude
364	1	1	1	1	0	1	0	0	DISCRETE WORD - Map Mode
014	0	0	0	0	1	1	0	0	- Range
214	1	0	0	0	1	1	0	0	undefined
114	0	1	0	0	1	1	0	0	undefined
314	1	1	0	0	1	1	0	0	undefined
054	0	0	1	0	1	1	0	0	ROTATED SYMBOLS - Runway + Identifier
254	1	0	1	0	1	1	0	0	 Airport + Runway + Identifier
154	0	1	1	0	1	1	0	0	- Marker Beacon
354	1	1	1	0	1	1	0	0	 Holding Pattern – R
034	0	0	0	1	1	1	0	0	- Holding Pattern – L
234	1	0	0	1	1	1	0	0	- Procedure Turn – R
134	0	1	0	1	1	1	0	0	- Procedure Turn – L
334	1	1	0	1	1	1	0	0	undefined
074	0	0	1	1	1	1	0	0	undefined
274	1	0	1	1	1	1	0	0	undefined
174	0	1	1	1	1	1	0	0	undefined
374	1	1	1	1	1	1	0	0	undefined
302	1	1	0	0	0	0	1	0	END OF TRANSMISSION (EOT)
000	0	0	0	0	0	0	0	0	FILL-IN WORDS

ATTACHMENT 6 FMC/EFI INTERFACE

4768

4769

4770

 Table 6-2 Symbol Word Group

4771

The symbol group is comprised of the following:

Table 6-2A – Latitude Symbol Word

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	21
Р	SSM	NS	Latitud	Latitude (Degrees)																		SY	MB	OL.	ГҮР	E			

4772

Table 6-2A-1 – Latitude

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	
18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	

ATTACHMENT 6 FMC/EFI INTERFACE

26	11.25	
27	22.5	
28	45.0	

Table 6-2A-2 – NS Bit

BIT 29	VALUE	NOTES
0	North	
1	South	

4774

4773

Table 6-2A-3 – Sign/Status its

BI1 31 3		WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

4775

Table 6-2B – Longitude Symbol Word

P SSM EW Longitude (Degrees) SYMBOL TYPE	I	32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	87654321
	I	Ρ	SSM	EW	SYMBOL TYPE	

4776

Table 6-2B-1 – Longitude

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

ATTACHMENT 6 FMC/EFI INTERFACE

4777

Table 6-2B-2 – EW

BIT 29	VALUE	NOTES
0	East	
1	West	

4778

Table 6-2B-3 – Sign/Status Bits

BIT 31	- 30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4779

Table 6-2C-1 – Azimuth

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4780 4781

Table 6-2C-2 – Sign

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2C-3 – Sign/Status Bits

BI	Г	WORD
31	30	DESCRIPTION
0	1	First word of data type group

4781

ATTACHMENT 6 FMC/EFI INTERFACE

0	0	Intermediate positional,
		character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

4785

Table 6-2D – Symbol Identifier Word(s)

32	31 30	29 28 27 26 2	5 24 23	22 21 20 19 18	17 16	15 14 13 12 11 10 9	87654321
Р	SSM	CHARACTER #3		CHARACTER #2		CHARACTER #1	SYMBOL TYPE
		b7	b1	b7	b1	b7 b1	

4786

Table 6-2D-1 – Sign/Status Bits

BIT	-	WORD
31	30	DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4787 4788 Note: Character data is encoded per ISO #5 format with bit 1 transmitted first. See Section 2 of Attachment 7.

4789

Table 6-2E – Length (Runway Symbols Only)

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Р	SSM		±	Runwa	ay Le	ength	(Fee	et)											Pad					SY	ΜB	0L	ΤY	PE			
																			(all 0)'s)											

4790

Table 6-2E-1 – Runway Length

BIT	VALUE	NOTES
14	1	
15	2	
16	4	
17	8	
18	16	
19	32	
20	64	
21	128	
22	256	
23	512	
24	1024	
25	2048	
26	4096	
27	8192	
28	16384	

4791

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2E-3 – Sign/Status Bits

ATTACHMENT 6 FMC/EFI INTERFACE

BIT	•	
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

32	31 30	29	28 27 26 25		22	21 20 1	19 18	17	16 15	14	13 1	2 1	1 10	9	8765
Ρ	SSM	±	Azimuth (Degrees)											SYMBOL TYP
Tahl	o 6-3	Voct	or Word Gro	un											
ιαρι	C U-J			-											
		١r	ne Vector Word	d Group) IS	compris	sed o	t the	e follo	win	g:				
					Tak	ole 6-3A	۱ – L	atitu	ude V	/ect	or W	/or	d		
32	31 30	29	28 27 26 25	5 24 23	22	21 20 1	9 18	17	16 15	14	13 12	21	1 10	9	8765
Р	SSM	NS	Latitude (Degrees												VECTOR TYP
					Tal	ble 6-3A	-1 – 1	Latit	ude						
				BIT		VALUE		NO	TES						
				9		0.00008			•						
				10		0.00017									
				11		0.0003									
				12		0.0006									
				13		0.0013									
				14		0.0027									
				15		0.0054									
				16		0.0109									
				17		0.0219									
				18 19		0.0439 0.0878									
				20		0.0078									
				21		0.3515									
				22		0.7031									
				23		1.406									
				24		2.812									
				25		5.625									
				26		11.25									
				27		22.5									
				28		45.0									
					Та	able 6-3	A-2 –	NS	Bit						
				BIT	29	VALU	E	NC	DTES						
				0		North									
				1		South									
				Tab	ole 6	6-3A-3 –	Sign	/Sta	tus B	its					
				BIT		WORD [DESC	RIP	TION						
				31 3											
				0 1		First wor	rd of o	data	type						
						group									
				0 0		Intermed	late	DOSI	ional,						

ATTACHMENT 6 FMC/EFI INTERFACE

1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type
		group

4805 4806

Table 6-3B – Longitude Vector Word

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Ρ	SSM	EW	Longit	ude	(Deg	rees)																VEC	СТС)r 1	ГYР	Έ			

4807

Table 6-3B-1 – Longitude

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4808

Table 6-3B-2 – EW Bit

BIT 29	VALUE	NOTES
0	East	
1	West	

4809

Table 6-3B-3 – Sign/Status Bits

BIT	31 30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

4810

Table 6-3C – Conic Definition Word (Subtended Angle)

	32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1
ſ	Ρ	SSM	±	Subtended Angle (Degrees) Pad	VECTOR TYPE
ſ				(all 0's)	

4811

Table 6-3C-1 – Subtended Angle

BIT	VALUE	NOTES
17	0.0439	
18	0.0879	
19	0.1758	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4812

Table 6-3C-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4813

Table 6-3C-3 – Sign/Status Bits

Γ	BI	Г	
	31 30		WORD DESCRIPTION
ſ	0	1	First word of data type group
ľ	0	0	Intermediate positional, character words
ſ	1	1	Control word (symbol rotation and vector conics)
	1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

Table 6-3D – Conic Definition Word (Radius)

32	31 30	29	28 27 26 25	5 24 23 22 21 20	19 18 17 16 15 14	13 12 11 10 9	87654321
Р	SSM	Sign	Radius (NM)			Pad	VECTOR TYPE
						(all 0's)	

4816

4815

Table 6-3D-1 – Radius

BIT	VALUE	NOTES
14	2-7	
15	2-6	
16	2 ⁻⁵ 2 ⁻⁴ 2 ⁻³	
17	2-4	
18	2 ⁻³	
19	2 ⁻²	
20	2-1	
21	20	
22	2 ¹	
23	2 ²	
24	2 ³ 2 ⁴ 2 ⁵	
25	24	
26		
27	2 ⁶ 2 ⁷	
28	27	

4817

4818

Table 6-3D-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-3D-3 – Sign/Status Bits

BIT		
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4819

4820

Table 6-3E – Conic Definition Word (Initial Angle)

	32	31 30	29	28 27	26	25	24	23 2	22 2	21	20	19	18	17	16	15	14	13	12	11	10	9	8	76	5 4	43	2	1
	Ρ	SSM	Sign	Initial Ang	le (D	egree	s)								Pad								VEC	TOR	TYPE			
															(all 0)"s)												
4821	Table 6-3E-1 – Initial Angle																											

BIT	VALUE	NOTES
ы	VALUE	NOTES

ATTACHMENT 6 FMC/EFI INTERFACE

17	0.0439	
18	0.0879	
19	0.1758	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

Table 6-3E-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4823

4822

Table 6-3E-3 – Sign/Status Bits

BIT		
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control word (symbol
		rotation and vector conics)
1	0	Last word of data type
		group

4824

4825 Table 6-4 Map References Position Word Group

4826

The Map Reference Position Word Group consists of the following:

4827

Table 6-4A – Latitude (Plan Mode) Word (Label 264)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1
Р	SSM	NS	Latitude (Degrees)	0 0 1 0 1 1 0 1

4828

Table 6-4A-1 – Latitude

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	

ATTACHMENT 6 FMC/EFI INTERFACE

18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	
26	11.25	
27	22.50	
28	45.0	

4829

Table 6-4A-2 – NS Bit

BIT 29	VALUE	NOTES
0	North	
1	South	

4830

Table 6-24-3 – Sign/Status Bits

BIT 31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

4831 4832

11

MAP

ATTACHMENT 6 FMC/EFI INTERFACE

4833					Table	6-4B -	- Longitude	e (Plan Moo	le) Word	(La	bel 164)	
	32	31 30	29				23 22 21 20	0 19 18 17	16 15 14	13	12 11 10 9	87654321
	Ρ	SSM	EW	Longitu	de (Deg	rees)						00101110
4834							Table 6-4	4B-1 – Long	gitude			
					[BIT	VALUE	NOTE	S			
						9	0.00017					
						10	0.0003					
						11	0.0006					
						12	0.0013					
						13	0.0027					
					-	14	0.0054					
					_	15	0.0109					
						16	0.0219					
						17	0.0439					
						18	0.0878					
						19	0.1757					
					_	20	0.3515					
						21	0.7031					
						22	1.406					
						23	2.812					
						24	5.625					
						25	11.25					
						26	22.5					
						27	45.0					
						28	90.0					
4835							Table 6	6-4B-2 – EV	/ Bit			
						BIT 29	VALUE	NOTE	S			
						0	East					
						1	West					
4836						Т	able 6-4B-	3 – Sign/St	atus Bits		-	
					[BIT					7	
						31 30	WORD	DESCRIPT	ON			
					ľ	0 1	First wo	rd of data ty	pe group		1	
						0 0		diate positio				
							characte		,			
						1 1	Control	word (symb	ol rotation	۱		
							and vec	tor conics)				
						1 0	Last wo	rd of data ty	pe group			
4837					_	Table	6-4C – Ma	ap Mode [iscrete	Wo	rd (Label 36	64)
	32	31 30			26 25	24 23		19 18 17 1	6 15 14			8 7 6 5 4 3 2 1
	Ρ	SSM	0	00			0 0			0	0	0 0 1 0 1 1 1 1
4838							Та	ble 6-4C-1				_
				BIT	NAM	Ε		ZERO	ONE		NOTES	

12	VOR		1
13	ILS		1
14	PLAN		1
15	SPARE		1
16	SPARE		1
17	EFIS S/T		
20	NAV AIDS		
21	GPS		
22	WAYPOINT DATA		
23	AIRPORTS		
24	MAP ORIENT		
25	VOR/ILS ORIENT		
26	RA ALERT RESET		

ATTACHMENT 6 FMC/EFI INTERFACE

4839

Table 6-4C-2 – Sign/Status Bits

BIT	•		
31 30 WORD DESCRIPTION		WORD DESCRIPTION	
0	1	First word of data type group	
0	0	Intermediate positional, character words	
1	1	Control word (symbol rotation and vector conics)	
1	0	Last word of data type group	

Note:

1. For bits 11 through 16, only 1 bit should be set at a time.

4841 4842

4840

4843

Table 6-4D – Map Range Discrete Word (Label 014)

32	31 30	29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	87654321
Р	SSM	Range (Miles)	PAD	0 0 1 1 0 0 0 0
		Note 1	(all 0's)	

4844

Table	6-4D-1	– Range
-------	--------	---------

BIT	VALUE	NOTES
24	5.0	
25	10.0	
26	20.0	
27	40.0	
28	80.0	
29	160.0	

4845

Table 6-4D-2 – WXR Data

BIT 23	VALUE	NOTES
0		
1		

4846

Table 6-4D-3 – Sign/Status Bits

BIT	WORD DESCRIPTION
31 30	

ATTACHMENT 6 FMC/EFI INTERFACE

ſ	0	1	First word of data type
			group
	0	0	Intermediate positional,
			character words
ſ	1	1	Control word (symbol
			rotation and vector conics)
ſ	1	0	Last word of data type
			group

4847

Note:

4848

1. All bits set to zero represents 320 mile range

4849

Table 6-5 Dynamic Symbol Word Group 4850

4851

The Dynamic Symbol Word Group consists of the following:

4852

Table 6-5A – Altitude Range Arc Word (Label 157)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9	87654321
Р	SSM	±	Altitude Range (NM)	Pad	1 1 1 1 0 1 1 0
				(all 0's)	

4853

4854

Table 6-5A-1 – Altitude Range

BIT	VALUE	NOTES
14	2-6	
15	2-5	
16	2-4	
17	2 ⁻³	
18	2 ⁻³	
19	2 ⁻¹	
20	2 ⁰	
21	2 ¹	
22	2 ²	
23	2 ³	
24	2 ⁴	
25	2 ⁵	
26	2 ⁶	
28	2 ⁷ 2 ⁸	
28	2 ⁸	

4855

Table 6-5A-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

DIT	WORD DESCRIPTION
DII	WORD DESCRIPTION
1 31 30	
01 00	

ATTACHMENT 6 FMC/EFI INTERFACE

ſ	0	1	First word of data type
			group
	0	0	Intermediate positional,
			character words
	1	1	Control words (symbol
			rotation and vector conics)
Γ	1	0	Last word of data type
			group

4857

4858 Table 6-6 Bus Control Words

4859

4860

The following Bus Control Word Group consists of the following:

Table 6-6A – SOT (Start of Transmission) Word (Background Data) (Label 301)

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13 12 11 10 9	87	6	5	4	3	2 1
Р	1	1	WOR	D CC	UNT	(Not	te 1)						0	0	0	0	0	0	BLOCK NUMBER	10	0	0 (0 0) 1	1

4861

4862

Table 6-6A-1 – Block Number

BIT	VALUE	NOTES
9	1.0	
10	2.0	
11	4.0	
12	9.0	
13	16.0	

4863

Table 6-6A-2 – Word Count

BIT	VALUE	NOTES
20	1.0	
21	2.0	
22	4.0	
23	8.0	
24	16.0	
25	32.0	
26	64.0	
27	128.0	
28	256	
29	512	

4864 Note: The word count is the number of usable words being 4865 transmitted in the background data transfer. This count is only coded in the 301 label of the first 64 block. 4866 4867 4868 Table 6-6B – SOT (Start of Transmission) Word (Dynamic Data) (Label 303) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Ρ 1 1 0 1 1 0 0 0 0 1 1 4869 Table 6-6C – SOT (End of Transmission) Word Label 302)

-							
32	31 30	29	28 27 26 25	24 23 22 2	21 20 19 18 17	16 15 14 13 12 11 10 9	87654321

ATTACHMENT 6 FMC/EFI INTERFACE

ATTACHMENT 6 FMC/EFI INTERFACE

4872	ATTACHMENT 7 FMC/DATALINK INTERFACE
4873 4874	Part A Text-Imbedded Error Check For Ground Computer/Airborne Computer Messages
4875 4876	Section 1 End-to-End Error Check
4877 4878 4879 4880 4881 4882	The FMC should provide the facility to perform an "end-to-end" error check on messages received and transmitted via ACARS. This is accomplished by designating the four characters preceding the suffix character (ETX) of the final block of the message as the "text-imbedded" error control field. This field will be used to verify successful transfer of each message to which the end-to-end error check applies.
4883 4884 4885 4886 4887	The allowable character set on which the end-to-end check is performed is defined in Attachment 10 to this Characteristic, entitled "ISO Alphabet No. 5 Subset for Ground Computer/Airborne Computer Message Exchange Via ACARS." In addition, bit patterns of the characters appended to the message by the error checking procedure should be encoded per this ISO subset.
4888 4889	The pad bit for each 7-bit character in the message is set to a binary zero prior to encoding or decoding of the error check.
4890 4891 4892 4893	The error check to be used in the verification of end-to-end message integrity is a Cyclic Redundancy Check (CRC), described in Section 3 of this attachment, "Character-oriented CRC Calculation." The CRC generator polynomial is the same CCITT polynomial introduced into ARINC Specification 429 by Supplement 12.
4894	COMMENTARY
4895 4896 4897 4898 4899 4900 4901 4902 4903	The end-to-end error check provides an assurance that a message composed on the ground has been correctly reconstructed by the FMC (and vice versa for messages originated by the FMC). It supplements the message integrity assurance provisions which are employed at various levels during the transfer of data from originator (e.g., the host airline computer) to the FMC. The normal message integrity checks which, onboard the aircraft, include BCS, word count check, parity check, etc., should continue to be exercised in accordance with ARINC 724() and this Characteristic.
4904	Encoding the CRC at the Message Source
4905 4906 4907	The procedure specifying the application of the CRC by the source on the message text is as follows. (See Section 3 of this attachment, Character-Oriented CRC Calculation, for a detailed description and example of this procedure.)
4908 4909 4910 4911 4912 4913	 The CRC is to be applied to the message text beginning with the first character of the IMI, and ending with the last text character of the message. When ordering bits in the message to be CRC'd, the Most Significant Bit (MSB) of the message is the least significant bit of the first character of the IMI. The Least Significant Bit (LSB) of the message is the most significant bit of the last text character).
4914 4915	 After the source has been determined the CRC code from the 16-bit "remainder," four hexadecimal characters representing these 4-bit bytes will

4916 4917 4918 4919 4920 4921	c b a s	be encoded as ISO #5 characters for the CRC field. The hexadecimal characters are determined by assigning 4 bits at a time in the order specified by the table in Section 2 of this attachment. The resulting four characters are placed at the end of the original message text to be transmitted, in the same transmission order as message text characters; i.e., the LSB of each character is transmitted first.
4922 4923		For character-oriented file transfer protocols, an ETX character follows the ast character of the CRC code.
4924	Decoding the CRC a	at the Message Sink
4925 4926		Jpon the receipt of a message which is error-free in accordance with the link evel protocol, the sink will begin verification of the received message.
4927 4928 4929 4930 4931	ו b ד	n order to verify the value of the CRC, the sink should first ensure each 7-bit SO #5 character of the message text has the associated pad bit set to a binary zero, such that each character can be assumed to be 8 bits in length. The sink should also ensure any intermediate "end-of-block" characters have been deleted from the message text.
4932 4933 4934 4935 4936 4936	c	The sink then operates on the four characters representing the CRC code to translate them back to the original 16-bit binary value calculated by the source; i.e., the reverse of the procedure specified above is performed. Finally, the sink verifies the integrity of the message text by applying either of the verification procedures specified for the receiving system in the following section on Character-Oriented CRC Calculation.
4938 4939 4940 4941	lf ti	f the CRC confirms message integrity, the sink should accept the message. f message integrity is not confirmed (the CRC fails), the sink should discard he message. Further action will be defined by the user and will depend on he application of the message.
4942		COMMENTARY
4943 4944 4945 4946 4947	fı ir p	This CRC scheme is only compatible with uncorrupted messages rom the host airline computer to the FMC and vice versa. No intermediate systems may be allowed to modify the message text portion of the transmission by character substitution or insertion (such as line feeds, carriage returns, etc.).
4948		

ATTACHMENT 7 FMC/DATALINK INTERFACE

4949 Section 2

4950 **ISO #5 Representation of Hexadecimal Characters for Binary Data Transmission**

- 4951
- 4952
- 4953
- 4954

This document states that ISO #5 representation of hexadecimal characters should be used for the interchange of binary information between ground-based and airborne computers via ACARS. The following example illustrates the binary-to-ISO character conversion process.

TRANSMISSION ORDER = =>									
	LSE	3						MSB	
1. BINARY DATA STREAM	1011		01	0 1 0 0		0 0 0 0		0 0 1 1	
2. 4 BIT BYTES STREAM	1011		0 1	0100		0 0 0 0		0 0 1 1	
3. HEX CHARACTER VALUE	В	3		4		0		3	
4. ISO CHARACTER (COLUMN, ROW)	4,2		3,4		3,0		3,3		
5. ISO BIT VALUES (P = PAD BIT)	Ρ	100010	Ρ	0110100	Ρ	0110000	Ρ	0110011	
6. ISO BITS TRANSMITTED (PAD BITS set to 0)	0	100010	0	0110100	0	0110000	0	0110011	
7. CHARACTER TX ORDER CHAR 4		CH	CHAR 3		CHAR 2		CHAR 1		

ATTACHMENT 7 FMC/DATALINK INTERFACE

4957 4958 Binary representation of ISO #5 hexadecimal characters is illustrated in the table below.

					-	-	-	-	-	-	-	. 1
	DITE				0 0	0	0	0	1	1 0	1	1
BIT 5	ы о-				0	0 1	0	1	0	1	0	1
2 0				Col →	0	1	2	3	4	5	6	7
BIT 4	BIT 3	BIT 2	BIT 1	Row↓								
					00	10	20	30	40	50	60	70
0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
					01	11	21	31	41	51	61	71
0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
					02	12	22	32	42	52	62	72
0	0	1	0	2	STX	DC2	"	2	в	R	b	r
					03	13	23	33	43	53	63	73
0	0	1	1	3	ЕТХ	DC3	#	3	с	s	с	s
					04	14	24	34	44	54	64	74
0	1	0	0	4	EOT	DC4	\$	4	D	т	d	t
					05	15	25	35	45	55	65	75
0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
-	-	-	-		06	16	26	36	46	56	66	76
0	1	1	0	6	ACK	SYN	&	6	F	v	f	
0	- 1	- 1	U	0	07	17	C x 27	37	г 47	v 57	67	V 77
	_		_									
0	1	1	1	7	EL	ETB	,	7	G	W	g	w
					08	18	28	38	48	58	68	78
1	0	0	0	8	BS	CAN	(8	Н	Х	h	x
					09	19	29	39	49	59	69	79
1	0	0	1	9	нт	EM)	9	I	Y	i	У
					0A	1A	2A	3A	4A	5A	6A	7A
1	0	1	0	10	LF	SUB	*	:	J	z	j	z
					0B	1B	2B	3B	4B	5B	6B	7B
1	0	1	1	11	VТ	ESC	+	;	к	ſ	k	{
					0C	1C	2C	3C	4C	5C	6C	7C
1	1	0	0	12	FF	FS	,	<	L	١	I	
					0D	1D	2D	3D	4D	5D	6D	7D
1	1	0	1	13	CR	GS	1	=	м]	m	}
					0E	1E	2E	3E	4E	5E	6E	7E
1	1	1	0	14	SO	RS		>	N	^	n	~
					0F	1F	2F	3F	4F	5F	6F	7F
1	1	1	1	15	SI	US	1	?	о	_	o	DEL
-			•	•		•	•	•	•	•		

4960 4961	Section 3 Character-Oriented CRC Calculation
4962	Generation of the CRC Code
4963 4964 4965	This CRC calculation method is based on the premise that a message may be represented as the coefficients of a polynomial, $G(x)$, having k terms, where k is the number of bits in the message.
4966	COMMENTARY
4967 4968 4969 4970 4971 4972	The notation used to describe the CRC is based on the property of cyclic codes that a code vector such as 1000000100001 can be represented by a polynomial $G(x) = x^{12} + x^5 + 1$. The elements of a k element code vector are thus the coefficients of a polynomial of order k - 1. In this application, these coefficients can have the value 0 or 1, and all polynomial operations are performed modulo 2.
4973 4974	To create the polynomial $G(x)$ representing the message, the terms are ordered as follows:
4975 4976	 The coefficient of the most significant bit of G(x), (x^{k-1}), is the LSB of the first character of the message.
4977 4978	 The coefficient of the least significant bit of G(x), (x⁰), is the MSB of the last character of the message.
4979 4980 4981 4982 4983 4983	For example, if the message, $G(x)$, is 'FPR', the first character is 'F' which is represented by the code 46 hex or 01000110 binary. The rightmost bit of 'F', 0 in this example, is therefore the most significant bit of $G(x)$. Similarly, the last character, 'R', is represented by the code 52 hex or 01010010 and the least significant bit of $G(x)$ is the leftmost bit of 'R', which is 0. The message FPR has 24 bits so k has a value of 24.
4985	The actual transmission order for the message is MSB to LSB as follows:
4986	Note slashes (/) are used for octet separation only.
	Transmission Order ==> LSB MSB 01010010 01010000 01000110 R P F

4987In order to illustrate the mathematical procedure, the entire message is transposed4988for representation as a bit stream with the MSB at the left and the LSB at the right to4989yield:

Transmission Order ==>					
MSB		LSB			
01100010	00001010	01001010			

4990

ATTACHMENT 7 FMC/DATALINK INTERFACE

4992	Expressing the bit stream for this example as a polynomial, $G(x)$, yields:
	$G(x) = x^{22} + x^{21} + x^{17} + x^{11} + x^9 + x^6 + x^3 + x^1$
4993	
4994	To generate the CRC code the generator polynomial is defined as:
	$P(x) = x^{16} + x^{12} + x^5 + 1$
4995 4996	The CRC code is the one's complement of the remainder obtained from the modulo 2 division of:
	$\frac{x^{16} G(x) + x^{k} (x^{15} + x^{14} + x^{13} + \dots + x^{2} + x + 1)}{P(x)} = Q(x) + \frac{R(x)}{P(x)}$
4997	where $Q(x)$ is the quotient and $R(x)$ is the remainder.
4998 4999 5000 5001	Note: The addition of $X^{16}G(x)$ and $xk(x^{15} + x^{14} + x^{13} + x^2 + x + 1)$ is modulo 2 and is equivalent to inverting the 16 most significant bits of G(x) and appending a bit string of 16 zeroes to the lower order end of G(x).
5002 5003 5004	If the 16-bit binary CRC code were appended to the original $G(x)$ the resulting message, $M(x)$, would be of length n, where $n = k + 16$. This is equivalent to the following operation:
	$M(x) = x^{16} G(x) + (16 - bit) CRC (Modulo 2).$
5005 5006 5007	When the 16-bit binary CRC is transformed into four ISO #5 characters (8 bits each), the final message to be transmitted, $M^*(x)$ is now of length $N^* = k + 32$, and so
	$M^{*}(x) = x^{32} G(x) + (32 - bit) CRC (Modulo 2).$

ATTACHMENT 7 FMC/DATALINK INTERFACE

5010 5011 5012 5013 5014 5015 5016 5017 5018	Using the above example with 'FPR' as G(x), the CRC calculation gives a remainder of 00111111/11010010, where the left-hand 0 is the most significant bit and the right-hand 0 is the least significant bit (see Appendix 7 of ARINC Specification 429, Mathematical Example of CRC Encoding/Decoding, for a detailed example of the mathematical operations involved to arrive at this remainder). The CRC code is the one's complement of the remainder, or 11000000/00101100. This CRC code is converted to a four character (ISO #5) code and appended to the end of the message over which the CRC code was calculated by applying steps 1 through 7 in Section 2 as follows:
5019 5020 5021 5022 5023	 Because the message was transposed in this illustration to generate the CRC code, the resultant CRC code should also be transposed from left to right. Transposing 11000000/00101101 yields 10110100/00000011. This operation returns the CRC code to the same transmission order as the original message, with the MSB to the right and the LSB to the left.
5024 5025	2-3. Separating the 16-bit transposed value into 4-bit segments and expressing it in hex yields B403.
5026 5027 5028	4-7. The four characters representing this value are coded as ISO #5 characters and appended to the message in the order: MS to LS character. For this example, the order is 3, 0 4, B.
5029	The complete message plus CRC code for this example (read left to right) is:
5030	FPR304B
5031	The transmission order of this message is right to left, as:
5032	B403RPF ==>
5033 5034	Section 4 Verification (Decoding) of the CRC Code
5035 5036 5037 5038	At the receiving system, the four characters representing the CRC code are converted back into the original binary CRC code; i.e., the steps in Section 2 are performed in reverse order. At this point, verification (decoding) of the CRC is accomplished by either of the following methods:
5039 5040 5041	 After conversion back to the binary CRC code, the 16-bit binary CRC is appended to the message G(x) (in the same transmission order as the message) resulting in the message M(x), of length n, where n = k + 16 and
	$M(x) = x^{16} G(x) + (16 - bit) CRC (Modulo 2).$

5042 M(x) is multiplied by X¹⁶, added to the product $x^n(x^{15} + x^{14} + x^{13} + ... + x^2 + x + 1)$, and divided by P(x) as follows (where n = k + 16):

ATTACHMENT 7 FMC/DATALINK INTERFACE

5044This CRC procedure is designed to create a constant remainder for error free5045messages. If the transmission of the serial incoming bits plus CRC code (i.e., M(x))5046is error free, then the remainder, Rr(x) is always:

Transmission Order ==>				
MSB	LSB			
00011101	00001111			

(coefficients of x^{15} through x^{0} , respectively).

- 2. An alternate procedure for the receiving system, which will ensure the same data integrity, is to recompute the CRC code on the received message less the four CRC characters (using the same generator polynomial). The generated CRC code is then compared with the one received. The following steps are performed:
 - The received message, M*(x), is stripped of the four CRC characters, leaving only G(x). The four characters representing the CRC code are converted back into the original binary 16-bit CRC code; that is, the steps in Section 2 are performed in reverse order.
 - A binary CRC code is generated for G(x) using the same encoding method described for the message source.
 - The generated binary CRC code is compared with the 16-bit binary CRC code stripped from the message and if they are identical, the message is assumed to be free of errors and exactly represents the message transmitted by the source.

5065 5066	Part B Table-Based Formats for FMC IMI/IEI Messages
5067 5068	Section 1 Definition of Terms Used In Data Link Messages
5069 5070	All uplink and downlink messages are formatted using a consistent set of syntax rules. The following definitions are used to describe parts of a message:
5071	IMI (Imbedded Message Identifier)
5072 5073 5074	The IMI is a three alphanumeric character identifier. An IMI is placed at the beginning of the text to identify the relative message content. Only one IMI is used per message. The same IMI can be used for both uplinks and downlinks.
5075	Examples of IMIs are: FPN, PER, LDI, POS, REJ, etc.
5076	IEI (Imbedded Element Identifier)
5077 5078	The IEI is a two alpha character identifier that is used to group one or more elements.
5079	Examples of IEIs are: FN, RP, RM, CG, RW, etc.
5080	Element
5081 5082 5083 5084 5085 5086 5087 5088	An element is the smallest omissible part of an uplink or downlink message. It can be a single parameter, or a number of parameters. A single parameter element is defined as either fixed length or variable length with a defined maximum number of characters. Directional elements are single parameter elements that must contain either a single alpha character preceding one or more numeric characters, or one or more numeric characters followed by an alpha character. The alpha character indicates the direction (or qualifier) that is associated with the numeric value. Directional elements can be fixed or variable length.
5089 5090 5091 5092 5093	A multi-parameter element is used to group similar or related information. Multi- parameter elements can be fixed length, variable length or a combination of fixed and variable length. However, only one field within a multi-parameter element can be of variable length. There is no delimiter between single data elements within a multi-parameter element.
5094	Example:
5095	OAT: P23 Single parameter element OAT is +23 °C.
5096	V1VRV2: 131139147 Multi-parameter element is composed of:
5097	V1 = 131 knots
5098	VR = 139 knots
5099	V2 = 147 knots
5100	

ATTACHMENT 7 FMC/DATALINK INTERFACE

5101	Parameter
5102	A parameter is an element or part of an element that has the following attributes:
5103	1. Type - Variable or Fixed
5104	2. Element Type - Alpha (A - Z)
5105	3. Alphanumeric (A - Z, 0 - 9, dash)
5106	4. Numeric (0 - 9)
5107	5. Character Length - Number of Characters
5108	Scaling Factor - Identifies the multiplication factor
5109	7. Units - Identifies The Parameter Units
5110	List
5111 5112	A list is a repeatable group of elements within a data link message. Each list contains one or more elements.
5113	Message Format Example
5114 5115 5116	The following is an example of a Predicted Wind Information uplink message (the IMI for this message is PWI, the IEI is DD for Descent Wind Data and the IEI DS is for Descent Wind Temperature).
5117 5118 5119	Example: PWI/DD350270060.310270045.140260040/DS320M50.250M30.100M10.010P10:0 60,,,M04,1013
	Altitude/Wind List (up to ten allowed):

Altitude/Wind List (up to ten allowed):		
Altitude	Wind	
FL350	270/060 kts	
FL310	270/045 kts	
14000	260/040 kts	

5120

Altitude/Temperature List (up to ten allowed):				
Altitude	Temperature			
FL320	- 50 °C			
FL250	- 30 °C			
FL100	- 10 °C			
1000ft	+10 °C			

5121

Remaining Elements:	
TAI On Altitude	6000 ft
TAI On/Off Altitude	(Missing Data)
Des Transition Altitude	(Missing Data)
Descent ISA Deviation	-4 °C
QNH	1013 Hectopascals

5122 Flight Plan Definition

5123Each independent part of a flight plan is called a Flight Plan Element (FPE). Each5124FPE is preceded by a Flight Plan Element Identifier (FPEI) which identifies the

5125group of data that follows. These FPEs are used in combination to fully define the5126FMC flight plan in both the uplinks and downlinks. The flight plan definition is used5127to create a flight plan (either active or inactive) or modify an existing flight plan.

5128 FPEI (Flight Plan Element Identifier)

5129FPEIs are used to identify special elements, which are used in the (Flight Plan)5130Route IEIs of RP, RI, RM, and RA. Examples of Flight Plan Element Identifiers are5131:H:, :V:, ".", "DA", etc.

5132 FPE (Flight Plan Element)

- 5133 A Flight Plan Element (FPE) is a special type of variable or fixed length element (or 5134 group of elements) used in RP, RI, RM, or RA IEIs.
- 5135 Examples of FPEs (and their corresponding FPEIs) are shown below:

FPE	FPEI	Example
Departure Airport	:DA:	KJFK
Arrival Airport	:AA:	KLAX
Company Route	:CR:	JFKLAX07
Waypoint Spd/Alt/Time	:V:	N47W125,250,AT1250
Direct to Waypoint		BLAKO
Departure Runway	:R:	040
Airway VIA		J36
Arrival Procedure	:A:	DOWNE
Arrival Transition		HECTR
Arrival Runway	(XXX)	(04O)

The last four items in the table illustrate the dual role of the special character "." which is context dependent. It can be used as a "VIA" indicator for an airway, or as a transition indicator if it is preceded by an ":A:" (or an ":AP:" or a :D:), as in DOWNE.HECTR(04O).

Example: F P N / R M..N I A . J 4 8 . B E N N Y , N 3 3 2 4 0 W 1 1 6 2 5 0 : A T : N I A - M0400,280,AT1400:A:BENE3.NIA:AP:ILS32R.EDD

- IMI (FPN) followed by
- IEI (RM) followed by
- Direct to waypoint NIA
- Followed by a via airway J48
- To waypoint BENNY with optional lat/lon definition
- Then an along track offset definition of NIA -40.0 with an associated speed restriction of 280 at 14,000 feet
 - Followed by a standard arrival BENE3 with a NIA transition and the standard approach of ILS32R with an EDD transition.

5151 Uplink and Downlink Delimiters

- 5152When constructing an uplink or a downlink message, delimiters are used to5153consistently identify the information in the message. The delimiters supersede each5154other in the order given (i.e., '/' has the highest priority).
- 5155

5136 5137

5138

5139

5140

5141 5142

5143

5144

5145

5146

5147

5148

5149

- 5156 IEI Delimiter '/' solidus, Character 2/15
- 5157This character precedes each Imbedded Element Identifier which identifies the5158beginning of predefined group of elements. This delimiter is always followed by two5159alpha characters.
- 5160 List Terminator ':' colon, Character 3/10
- 5161 The colon is an end of list control character. This character is used to terminate a 5162 repetitive list structure.

5163 List Entry Terminator '.' period, Character 3/11

- 5164The period is a list entry terminator. This character is used to terminate each list5165entry (group of elements). List entries are groups of parameters or elements that5166are repeated one or more times.
- 5167 Element Terminator ',' comma, Character 2/12
- 5168Commas are used to separate elements (unless they have been separated by or5169terminated with another control character; i.e., '/', ':', '.' or another FPEI in the case5170of RI, RM, RP, or RAs). Missing elements are denoted by consecutive commas.

5171 Request Messages

- 5172To allow the receiving system to recognize the difference between a message that5173is transmitting data and a message that is requesting data, a special IMI has been5174reserved for requests. This IMI ('REQ' is the default) precedes any request5175message. The data that follows this IMI depends on whether the message is an5176uplink or a downlink.
- 5177 Uplink Request A Downlink
- 5178The request IMI is followed by an element which contains the IMI of the "reply." This5179is optionally followed by a comma (element terminator), which is optionally followed5180by a list of elements that define the IEIs to be included in the downlink (all separated5181by a list entry terminator). An IMI, or IEIs following the REQ are considered5182elements in the uplink.
- 5183 Example: REQPRG,DT.FN
- 5184 This example is a request from the ground for the current destination and current 5185 flight number which results in a downlink of:
- 5186 PRG/DTKSEA/FNSFOSEA001
- 5187 Downlink Requesting An Uplink
- 5188 In a downlink request, the request IMI is followed by the requested information.
- 5189 Example: REQFPN/COKSEAKSF002
- 5190 This example is a request from the FMC for a flight plan, the request includes the 5191 entered company route as a data element.
- 5192

ATTACHMENT 7 FMC/DATALINK INTERFACE

5193 Section 2

5194 IMI/IEI Relationships

This section identifies the IEIs normally associated with IMIs that have been defined. This section will be updated as the need for new IMIs and IEIs is identified. Users are requested to advise the AEEC staff when such a need arises. The basic IEIs are listed in bold text, the dependent IEIs are listed in italics and the extended IEIs are listed as normal text.
--

				Up	link Messag	jes				
FPN	FPC	PER	LDI	PWI	PWM	POS	REQ	ALT	LIM	NDB
RP	RP	PD	RW	WD	WM	RF	FPN	AI	PL	SD
RI	RI	SN	CG	DD	DD	SN	FPC	AE		
RM	RM		SN	CB	CB		PER	AN		
FN	FN			AW	AW		LDI	AS		
RA	RA			CS	CS		POS			
MW	GA			DS	DS		PRG			
SD	SN			SN	SN		PRF			
SN				PG	PG		TOD			
				TR	TM					
							XXX			
							Report			
							IÈIs			

Note: XXX in 'XXX Report IEIs' is an unrecognizable IMI that is followed by recognizable IEIs. On some systems, XXX may not support all IEI's. The minimum set of IEI's supported is the following: RP, FN, PR, DT, CA, GA.

ATTACHMENT 7 FMC/DATALINK INTERFACE

5206

	Downlink Messages																		
	Reports													Req	uests R	equired			
TOD	PRF	FPX	PER	LDI	POS	PRG	FPM	ALT	LIM	NDB	REJ	RES	FPN	PER	LDI	PWI	PWM	ALT	EFB
TD WI TS GA CA	GL GP FH ATS GA CA	RP FN RAS GA CA	PR TS GA CA	RR TS GA CA	SP TS GA CA	DT FN TS GA CA		AR WR		AP ED NV WP	FPN FPC LDI PWI PWM POS REQ NDB TS GA CA	AK AC FSA SN CA	CO FN GA CS RA PS	PQ SP GA CA TS	PQ SP GA TS	DQ WQ SP GCA TS Q WR PH CU DU	DQ SP GA CA TS DU	AA AB SP GA CA TS AQ	FR PP

Note that FPX represents FPN and FPC.

ATTACHMENT 7 FMC/DATALINK INTERFACE

5209 Section 3

5210 Uplink IMI Definitions

- 5211
- 5212 5213

5214

This section lists the currently defined uplink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Contains alternate airport information generated by the airline.
FPC	FLIGHT PLAN	Flight plan information supplied by ATC.
FPN	FLIGHT PLAN	Flight plan information generated by the airline.
LDI	LOAD INFORMATION	Contains load information for takeoff generated by the airline.
LIM	PERFORMANCE LIMITS DATA	Contains performance limits data that is provided by the airline.
NDB	AIRLINE DATABASE	Contains supplemental Navigation Data Base, Effectivity Date, Supplemental Navigation Airport, Navaid, and Waypoint definitions generated by the airline.
PER	PERFORMANCE INITIALIZATION	Contains performance initialization data generated by the airline.
POS	POSITION	Contains specified triggers for automatic position report information generated by the airline.
PWI	PREDICTED WIND DATA	Contains climb, alternate, enroute, descent wind and/or temperature information that is to be applied to the flight plan. Generated by the airline.
PWM	PREDICTED WIND MODIFICATION	Contains alternate, enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent winds and temperatures data may be applied regardless of the route status. Generated by the airline ground station.
REQ	REQUEST	Contains a type of request (FPN/FPC, PER, LDI, POS, PRG, PRF, TOD, XXX) for information generated by the airline.
TAC	RESERVED	
TAR	RESERVED	

5215

ATTACHMENT 7 FMC/DATALINK INTERFACE

5217 Section 4

5218 Downlink IMI Definitions

- 5219
- 5220 5221

5222

This section lists the currently defined downlink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Provides the airline with alternate airport information.
FPC	FLIGHT PLAN	Provides flight plan report to ATC.
FPM	FLIGHT PLAN	Provides flight plan modification information to the airline.
FPN	FLIGHT PLAN	Provides flight plan information to the airline.
LDI	LOAD INFORMATION	Provides the airline with a load information data report for a single runway.
LIM	PERFORMANCE LIMITS DATA	Provides the airline with the current FMC performance limits.
NDB	AIRLINE DATA BASE	Provides the contents of the supplemental data base to the airline.
PER	PERFORMANCE INITIALIZATION	Provides performance initialization data report to the airline.
POS	POSITION	Provides the airline with current position report information.
PRF	PREFLIGHT	Provides preflight report to the airline.
PRG	PROGRESS (ETA) REPORT	Provides the airline with progress report data in response to a trigger.
PWI	PREDICTED WIND DATA	Provides the airline with climb, enroute, descent wind and/or temperature information that is to be applied to the flight plan.
PWM	PREDICTED WIND MODIFICATION	Provides the airline with enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent wind data may be applied regardless of the route status.
REJ	DOWNLINK REJECTION	Provides ATC or the airline with information referencing a rejected uplink message.
REQ	REQUEST	Requests (FPN/FPC, PER, LDI, PWI/PWM) information from the airline or ATC.
RES	DOWNLINK RESPONSE	Provides a response to an uplink message.
TAC	RESERVED	
TAR	RESERVED	
TOD	TOP OF DESCENT	Provides top of descent data to the airline.

5223

ATTACHMENT 7 FMC/DATALINK INTERFACE

5225 Section 5

5226 Uplink IEIs

5227

5228 5229 This section lists the currently defined uplink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IEI	DESCRIPTION
AE	COMPANY PREFERRED ALTERNATES DATA
AI	ALTERNATE INFORMATION DATA
AN	ALTERNATES INHIBIT DATA
AW	ALTERNATE WIND DATA
AS	ALTERNATES FLIGHT LIST DATA
CA	COMPANY DISTRIBUTION
CB	CLIMB WIND DATA
CG	TAKEOFF CENTER OF GRAVITY
CS	CLIMB TEMPERATURE DATA
DD	DESCENT FORECASTS
DS	DESCENT TEMPERATURE DATA
FN	FLIGHT NUMBERS
GA	GROUND ADDRESS
MW	MEAN WIND DATA
PD	PERFORMANCE INITIALIZATION DATA
PG	PAGE INFO
PL	PERFORMANCE LIMITS
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RF	POSITION REPORT FIX
RI	INACTIVE ROUTE
RM	ROUTE MODIFICATION
RP	ACTIVE ROUTE
RT	REQUIRED TIME OF ARRIVAL
RW	RUNWAY DATA
SD	SUPPLEMENTAL NAVIGATION DATABASE
SN	MESSAGE SEQUENCE NUMBER
TR	WAYPOINT TROPOPAUSE DATA
TM	MOD WAYPOINT TROPOPAUSE DATA
TS	TIME STAMP
WD	ENROUTE WIND DATA
WE	WIND VECTOR MAGNITUDE DIFFERENCE
WL	WAYPOINT LIST
WM	ENROUTE WIND MODIFICATION

5230

ATTACHMENT 7 FMC/DATALINK INTERFACE

5232 Section 6

5233 Downlink IEIs

- 5234
- 5235 5236

This section lists the currently defined downlink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IEI	DESCRIPTION
AA	COMPANY PREFERRED ALTERNATES REQUEST
AB	ALTERNATES FLIGHT LIST REQUEST
AC	ACCEPT
AK	ACKNOWLEDGE
AP	SUPPLEMENTAL NAV DATA BASE AIRPORTS
AQ	WEATHER REQUEST
AR	ALTERNATE INFORMATION REPORT
CA	COMPANY DISTRIBUTION
CO	COMPANY ROUTE REQUEST
CQ	CLIMB FORECAST REQUEST
CU	CLIMB TEMPERATURE REQUEST
DI	DOWNLINK TIME INFORMATION
DQ	DESCENT FORECAST REQUEST
DT	DESTINATION REPORT
DU	DESCENT TEMPERATURE REQUEST
ED	SUPPLEMENTAL EFFECTIVITY DATE
FH	FLIGHT PLAN HISTORY
FN	FLIGHT NUMBER
FP	FUEL PLANNING
FR	FORECAST REPORT
GA	GROUND ADDRESS
GL	GENERAL DATA
GP	GENERAL DIRECTIONS
MQ	MOD WIND REQUEST
NV	SUPPLEMENTAL NAV DATA BASE NAVAIDS
PH	FLIGHT PHASE
PL	PERFORMANCE LIMITS
PP	PERFORMANCE PARAMETERS REPORT
PQ	PERFORMANCE INITIALIZATION REQUEST
PR	PERFORMANCE INITIALIZATION REPORT
PS	POSITION REPORT
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RJ	REJECT
RP	ACTIVE ROUTE
RQ	RUNWAY DATA REQUEST
RR	RUNWAY DATA REPORT
SN	MESSAGE SEQUENCE NUMBER
SP	SCRATCHPAD
TD	TOP OF DESCENT REPORT
TS	TIME STAMP
WI	WAYPOINT INFORMATION
WQ	WIND REQUEST
WP	SUPPLEMENTAL NAV DATA BASE WAYPOINTS

ATTACHMENT 7 FMC/DATALINK INTERFACE

	WR	ALTERNATE AIRPORT WEATHER REQUEST
E007		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Section 7

5239 5240 5241 5242 5243 5244 5245	iei an	default text for all IEIs. This sec IEIs) and their associated elem and IMIs and their associated e indicated by 'IEI CONTENT'. Th	te for relating elements to IEIs and defines the tion is separated into basic IEIs (also dependent ents, extended IEIs and their associated elements, lements. The default IEI content and structure is ne content and order of list entries are indicated by rovided to clarify the default text.
5246		BASIC IEIS A	ND ASSOCIATED ELEMENTS
	AC	ACCEPT	Consists of a variable length field defining the message sequence number and stimulus code.
		EXAMPLE: /AC12345,451 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER	
		STIMULUS CODE	
	AK	ACKNOWLEDGE	Consists of a variable length field defining the message sequence number and stimulus code.
		EXAMPLE: /AK12345,451 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER STIMULUS CODE	
	CA	COMPANY DISTRIBUTION EXAMPLE: /CAFLTOPS IEI CONTENT	Consists of an airline internal distribution identifier.
	CG	COMPANY DISTRIBUTION TAKEOFF CENTER OF GRAVITY	Consists of a variable length field.
		EXAMPLE: /CG200 IEI CONTENT TAKEOFF CENTER OF GRAVITY	
	CO	COMPANY ROUTE REQUEST EXAMPLE: /COKBFIKSFO01 IEI CONTENT COMPANY ROUTE	Consists of a variable length field.
	DD	DESCENT FORECAST	Consists of a list of up to ten altitude wind entries, followed by the additional descent forecast elements.
		EXAMPLE: /DD350270060.310270045.140 <u>IEI CONTENT</u> LIST ENTRY: ALTITUDE AND WIND TAI ON ALTITUDE TAI ON/OFF ALTITUDE DESCENT TRANSITION ALTITUDE DESCENT ISA DEVIATION QNH	0260040.100230020.06030. 180.M04.1013
	DQ	DESCENT FORECAST REQUEST	Consists of a single parameter element defining the top of descent altitude.
		EXAMPLE: /DQ390 <u>IEI CONTENT</u> TOP OF DESCENT ALTITUDE	
	DS	DESCENT TEMPERATURE EXAMPLE: /DS320M50.250M30.010P10 IEI CONTENT	Consists of a list of up to ten altitude temperature entries

ATTACHMENT 7 FMC/DATALINK INTERFACE

		D ASSOCIATED ELEMENTS
	LIST ENTRY: ALTITUDE AND OAT	
DU	DESCENT TEMPERATURE REQUEST	Consists of a single parameter element defining the top of Descent Altitude.
	EXAMPLE: /DU370	
	IEI CONTENT	
	TOP OF DESCENT ALTITUDE	
DT	DESTINATION REPORT	Consists of a fixed format, fixed order field.
	EXAMPLE: /DTKSFO,28L,0234,190023,003	
	<u>IEI CONTENT</u> ARRIVAL AIRPORT IDENT	
	DESTINATION RUNWAY IDENT	
	PREDICTED FUEL REMAINING	
	ETA AT DESTINATION	
	REPORT STIMULUS	
FN	FLIGHT NUMBER	Consists of a variable length field.
I IN	EXAMPLE: /FNUAL1633A	
	<u>IEI CONTENT</u>	
	FLIGHT NUMBER	
GA	GROUND ADDRESS	Consists of a list of addresses. A copy of the network address not
C/ (<u>encond Abbricco</u>	directly used for message routing purposes.
	EXAMPLE: /GATULDDAA.HEQXESA	
	<u>IEI CONTENT</u>	
	LIST ENTRY: GROUND ADDRESS	
PD	PERFORMANCE INITIALIZATION DAT.	Consists of a fixed format, fixed order field
	EXAMPLE: /PD2113,,270,,0150,23,,,,P12,M3	34
	IEI CONTENT	
	ZERO FUEL WEIGHT	
	CRUISE CENTER OF GRAVITY	
	PLAN OR BLOCK FUEL RESERVE FUEL	
	COST INDEX	
	CRUISE WIND	
	TOC OR CRUISE TEMPERATURE	
	CLIMB TRANSITION ALTITUDE	
	FUEL FLOW FACTOR	
	DRAG FACTOR	
	PERF FACTOR	
	IDLE FACTOR	
	TROPOPAUSE ALTITUDE	
	TAXI FUEL	
	ZERO FUEL WEIGHT CENTER OF	
	GRAVITY	
	MINIMUM FUEL TEMPERATURE	
PQ	PERFORMANCE INITIALIZATION	Consists of a fixed format, fixed order field.
	REQUEST	
	EXAMPLE: /PQ2113,,270,,0150,23,,,,P12,M	34
	<u>IEI CONTENT</u>	
	ZERO FUEL WEIGHT	
	CRUISE CENTER OF GRAVITY	
	CRUISE ALTITUDE	
	PLAN OR BLOCK FUEL	
	COST INDEX	

	BASIC IEIS AN	DASSOCIATED ELEMENTS
	CRUISE WIND	
	TOC OR CRUISE TEMPERATURE	
	CLIMB TRANSITION ALTITUDE	
	FUEL FLOW FACTOR	
	DRAG FACTOR	
	PERF FACTOR	
	TROPOPAUSE ALTITUDE	
	TAXI FUEL	
	ZERO FUEL WEIGHT CENTER OF	
	GRAVITY	
	MINIMUM FUEL TEMPERATURE	
PR	PERFORMANCE INITIALIZATION	Consists of a fixed format, fixed order field.
	REPORT	
	EXAMPLE: /PR2633,,270,0520,,0150,23,,,,F	P12,M34
	IEI CONTENT	
	CURRENT GROSS WEIGHT	
	CRUISE CENTER OF GRAVITY	
	CRUISE ALTITUDE	
	FUEL REMAINING	
	PLAN OR BLOCK FUEL	
	RESERVE FUEL	
	COST INDEX	
	CRUISE WIND	
	TOC OR CRUISE TEMPERATURE	
	CLIMB TRANSITION ALTITUDE	
	FUEL FLOW FACTOR	
	DRAG FACTOR	
	PERF FACTOR	
	IDLE FACTOR	
	TROPOPAUSE ALTITUDE	
	TAXI FUEL	
	ZERO FUEL WEIGHT	
	ZERO FUEL WEIGHT CENTER OF	
	GRAVITY	
	MINIMUM FUEL TEMPERATURE	
RF	POSITION REPORT FIX	Consists of a list of reporting points which when sequenced in
		flight, trigger the position report.
	EXAMPLE: /RFORTIN.SEA.N3545W090256	6
	IEI CONTENT	
	LIST ENTRY: WAYPOINT SEQUENCE	
RI	INACTIVE ROUTE	A variable length field that consists of flight plan elements that
		replace the inactive route. These flight plan elements define a flight
		plan in approximately the same fashion as ATC clearance
		language.
	:DA: DEPARTURE AIRPORT IDENT	
	:AA: ARRIVAL AIRPORT IDENT	
	:CR: COMPANY ROUTE	
	:R: DEPARTURE RUNWAY IDENT	
	:D: DEPARTURE PROCEDURE	
	:F: FLIGHT PLAN SEGMENT	
	PUBLISHED IDENT	
	LATITUDE/LONGITUDE	
	PLACE BEARING/PLACE BEARING	G
	PLACE BEARING DISTANCE	

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	:ON: START OF DESIGNATED FLIGH	T PLAN SEGMENT
	:A: ARRIVAL PROCEDURE	
	:AP: APPROACH PROCEDURE	
	(): ARRIVAL RUNWAY IDENT	
	:V: WAYPOINT SPEED/ALTITUDE/T	IME
	:H: HOLD AT WAYPOINT	
	:WS: WAYPOINT STEP CLIMB	
	:AT: ALONG TRACK WAYPOINT	
	:RP: REPORTING POINTS	
	DIRECT FIX	
	. TRANSITION OR AIRWAY VIA	
	:F:. AIRWAY INTERCEPT	
	:IC: INTERCEPT COURSE FROM	
RJ	REJECT	Consists of a variable length field defining the message sequence
		number and the stimulus code.
	EXAMPLE: /RJ12345,451	
	<u>IEI CONTENT</u>	
	MESSAGE SEQUENCE NUMBER	
	STIMULUS CODE	
RP	ACTIVE/INACTIVE ROUTE	A variable length field that consists of flight plan elements. These
		flight plan elements define a flight plan in approximately the same
		fashion as ATC clearance language.
D O	THE FORMAT IS THE SAME AS DESCRI	
RQ	RUNWAY DATA REQUEST	Consists of a fixed-list format, fixed order field consisting of data
	EXAMPLE: /RQKSEA,31L,A9,,,156,2613,	for up to two runway/intersection combinations.
		,P15,140012,1,15,2,,P40
	<u>IEI CONTENT</u> LIST ENTRY:	
	DEPARTURE AIRPORT IDENT	
	DEFARTORE AIRFORT IDENT	TAKEOFF RUNWAY IDENT
		RUNWAY INTERSECTION
		POSITION SHIFT
		RUNWAY LENGTH REMAINING
		TAKEOFF CENTER OF GRAVITY
		CURRENT GROSS WEIGHT
		REFERENCE TAKEOFF GROSS WEIGHT
		OAT OR SAT
		TAKEOFF RUNWAY WIND
		TAKEOFF RUNWAY CONDITION
		TAKEOFF FLAPS
		TAKEOFF THRUST RATING
		VTR PERCENTAGE
		SELECTED TEMPERATURE
		BARO SETTING
		FLAP/SLAT CONFIGURATION
		THRUST REDUCTION ALTITUDE
		ACCELERATION ALTITUDE
		ENGINE-OUT ACCELERATION ALTITUDE
RT	REQUIRED TIME OF ARRIVAL	Consists of a fixed format, fixed order field
		,
	EXAMPLE: /RTVAMPS,143000	
	IEI CONTENT	

<u>IEI CONTENT</u> RTA WAYPOINT IDENT RTA TIME

ATTACHMENT 7 FMC/DATALINK INTERFACE

RW RUNWAY DATA Consists of a fixed-list entry format field consisting of data for up to six runway/intersection combinations followed by a departure airport EXAMPLE: /RW13R,A9,PO9,0,1125,2613,2850,P23,U05,250015,1,15,1,08,P38,131139147,0, 15,1133,130137145,31L,ETC:KBFI IEI CONTENT UST ENTRY: TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF RUNWAY CONDITION TAKEOFF FLAVST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE FLAPS ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE FLAPS CONSIST AST ALTONE ALTERNATE FLAPS CONSIGN SWEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE FLAPS ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED CEMPERATURE </th <th></th> <th>OPTIONAL RTA CONSTRAINT</th> <th>ID ASSOCIATED ELEMENTS</th>		OPTIONAL RTA CONSTRAINT	ID ASSOCIATED ELEMENTS
EXAMPLE: RW13R.49.090,0.1125.250,P23,U05.250015,1,15,1,08,P38,131139147,0, 15,1135,13013746,31L_ETC:KBF1 IELCONTENT LIST ENTRY: TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF FLAPS ALTERNATE JARE ALTERNATE TARUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: SPSCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.	RW		
15,1135,130137145.31L_ETC:KBFI IEL_CONTENT IST ENTRY: TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY WIND TAKEOFF FRUWAY WIND TAKEOFF FLAPS ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE TRUST RATING ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TACONFIGURATION ALTERNATE TACONFIGURATION ALTERNATE TAKE OFF		EXAMPLE: /RW/13R A9 PO9 0 1125 2613	•
IELCONTENT LIST ENTRY: TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY VIND TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF TARUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE TAKEOFF SPEEDS ALTERNATE TRIM ALTERNATE TRAFE TALEOFT CONFIGURATION ALTERNATE TREPECENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT SPEED			
TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF FUNDAY CONDITION TAKEOFF FUNDAY CONDITION TAKEOFF FUNDAY CONDITION TAKEOFF SPEEDS ALTERNATE TIMU ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TIMUS ALTERNATE TIMUS ALTERNATE TRIM ALTERNATE TIMUS ALTERNATE TIMUS ALTERNATE TIMUS ALTERNATE TRIM ALTERNATE TRAE TOON ALTERNATE TRAE TROE SETTING THRUST REDUCTION ALTITUDE ACELERATION ALTITUDE		IEI CONTENT	
RUWWAY INTERSECTION POSITION SHIFT RUWWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDAD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY VIND TAKEOFF RUNWAY CONDITION TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF SPEEDS ALTERNATE THAUST RATING ALTERNATE THAUST RATING ALTERNATE THAUST RATING ALTERNATE THAUST RATING ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT TRATS NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT TRATS NOISE ABATEMENT TRATS SON MESSAGE SEQUENCE		LIST ENTRY:	
POSITION SHIFT RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY WIND TAKEOFF RUNWAY CONDITION TAKEOFF FUNWAY CONDITION TAKEOFF FUNWAY CONDITION TAKEOFF FHRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE TIRIM ALTERNATE INIM ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE TIME ALTERNATE TAKEOFF SPEEDS ALTERNATE FLAPS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE THRUST ROMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE THRUST IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT DEATE THRUST NOISE ABATEMENT BPEED NOISE ABATEMENT BREAD NOISE ABATEMENT BRACE THRUST NOISE ABATEMENT THAT ALTITUDE SN MESSAGE SEQUENCE SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			
RUNWAY LENGTH REMAINING INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF FLAPS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE TAKEOFF SPEEDS ALTERNATE TRIM TAKEOFF S			
INVALID FLAG TRIM REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF RUNWAY CONDITION TAKEOFF FUNUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE FLAPS ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPSLAT CONFIGURATION ALTERNATE TRUE DEPARTURE ARPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE SCONSIST OF a variable length field that contains the contents of the CDU scratch pad.			
TRIM REFERENCE TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUINWAY SLOPE TAKEOFF RUINWAY SLOPE TAKEOFF RUINWAY WIND TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF SUINWAY CONDITION TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF SUINWAY CONDITION TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF FLAPS TAKEOFF SUINWAY CONDITION TAKEOFF FLAPS TAKEOFF SUINWAY CONDITION TAKEOFF SUINWAY CONDITION TAKEOFF SUINWAY CONDITION TAKEOFF SUINWAY SUINT RAKE SUINED TEMPERATURE TAKEOFF SUINT ALTERNATE TRING ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE PLAP/SLAT CONFIGURATION ALTERNATE PLAP/SLAT CONFIGURATION ALTERNATE PLAPORT IDENT BARO SETTING ONISE ABATEMENT END ALTITUDE NOISE ABATEMENT PRATE THRUST </th <th></th> <th></th> <th></th>			
REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF TRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE FLAPS TAKEOFF TRUE FLAP/SLAT CONFIGURATION ALTERNATE PED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THR		-	
STANDARD LIMIT TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY CONDITION TAKEOFF RUNWAY CONDITION TAKEOFF FRUNYAY CONDITION TAKEOFF FLAPS TAKEOFF FRUNYAY CONDITION TAKEOFF FLAPS TAKEOFF FRUNT RATING ALTERNATE TARUST RATING ALTERNATE THRUST RATING ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE AKEOFF SPEEDS ALTERNATE AKEOFF GROSS WEIGHT ALTERNATE AKEOFF SPEEDS ALTERNATE AKEOFF GROSS WEIGHT ALTERNATE ASUMED TEMPERATURE FLAPSLAT CONFIGURATION ALTERNATE ASUMED TEMPERATURE FLAPSLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT PRATE THRUST NOISE ABATEMENT PRATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			/FIGHT
OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY VIND TAKEOFF RUNWAY CONDITION TAKEOFF FLAPS TAKEOFF THRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE CONFIGURATION ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST			
TAKEOFF RUNWAY WIND TAKEOFF FUNWAY CONDITION TAKEOFF FLAPS TAKEOFF THRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE TRACET SUME TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE TROPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT DENT BARD SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT TRATE ALTITUDE SN MESSAGE SEQUENCE SN MESSAGE SEQUENCE SN MESSAGE SEQUENCE NUMBER SP <td< th=""><th></th><th></th><th></th></td<>			
TAKEOFF RUNWAY CONDITION TAKEOFF TRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE TIM ALTERNATE TIM ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TAREOFF SPEEDS ALTERNATE TAREOFF SPEEDS ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE TRAPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT START ALTITUDE NOISE ABATEMENT START ALTITUDE NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable		TAKEOFF RUNWAY SLOPE	
TAKEOFF FLAPS TAKEOFF THRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TRIM ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE TRING ALTERNATE TRING ALTERNATE TRING ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE ARPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT TRAT ALTITUDE NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /		TAKEOFF RUNWAY WIND	
TAKEOFF THRUST RATING VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE TARNATE TARING ALTERNATE TRIM ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAPS ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FUNCTION ALTITUDE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT START ALTITUDE NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			
VTR PERCENTAGE ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE TRIM ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE TONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE TROPIC TOENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT EDA ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT DENATE THRUST NOISE ABATEMENT DENATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
ASSUMED TEMPERATURE TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE FLAPS ALTERNATE FLAPS ALTERNATE TRIM ALTERNATE TIMI ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT PREDE NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
TAKEOFF SPEEDS ALTERNATE THRUST RATING ALTERNATE THRUST RATING ALTERNATE FLAPS ALTERNATE TRIM ALTERNATE TAKEOFF GROSS WEIGHT ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE TREPROET IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT TRAT ALTITUDE SN MESSAGE SEQUENCE Consists of a variable length format field defining the message sequence number. EXAMPLE: /SN12345 EICONTENT MESSAGE SEQUENCE NUMBER Consists of a variable length field that contains the contents of the CDU scratch pad.			
ALTERNATE THRUST RATING ALTERNATE FLAPS ALTERNATE TRIM ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT SART ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
ALTERNATE FLAPS ALTERNATE TRIM ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
ALTERNATE TRIM ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE AKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE FURPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
ALTERNATE LIMIT TAKEOFF GROSS WEIGHT ALTERNATE TAKEOFF SPEEDS ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE Consists of a variable length format field defining the message sequence number. SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE		-	
ALTERNATE ASSUMED TEMPERATURE FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			DSS WEIGHT
FLAP/SLAT CONFIGURATION ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.		ALTERNATE TAKEOFF SPEEDS	
ALTERNATE FLAP/SLAT CONFIGURATION ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE		ALTERNATE ASSUMED TEMPERA	ATURE
ALTERNATE VTR PERCENTAGE DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			
DEPARTURE AIRPORT IDENT BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			JRATION
BARO SETTING THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			
THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad.			
ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
NOISE ABATEMENT END ALTITUDE NOISE ABATEMENT SPEED NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE			
NOISE ABATEMENT DERATE THRUST NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.			
NOISE ABATEMENT THRUST NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE Consists of a variable length format field defining the message sequence number. EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the		NOISE ABATEMENT SPEED	
NOISE ABATEMENT START ALTITUDE SN MESSAGE SEQUENCE Consists of a variable length format field defining the message sequence number. EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.		NOISE ABATEMENT DERATE THRUST	
SN MESSAGE SEQUENCE Consists of a variable length format field defining the message sequence number. EXAMPLE: /SN12345 IEI CONTENT SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.			
EXAMPLE: /SN12345 sequence number. IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.			
EXAMPLE: /SN12345 IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE	SN	MESSAGE SEQUENCE	
IEI CONTENT MESSAGE SEQUENCE NUMBER SP SCRATCHPAD EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.		EXAMPLE: /SN12345	
MESSAGE SEQUENCE NUMBER SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE			
SP SCRATCHPAD Consists of a variable length field that contains the contents of the CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE Consists of a variable length field that contains the contents of the CDU scratch pad.			
CDU scratch pad. EXAMPLE: /SPSCRATCHPADMESSAGE			
EXAMPLE: /SPSCRATCHPADMESSAGE	SP	<u>SCRATCHPAD</u>	Consists of a variable length field that contains the contents of the
			CDU scratch pad.
<u>IELCONTENT</u>			

ATTACHMENT 7 FMC/DATALINK INTERFACE

		ID ASSOCIATED ELEMENTS
	SCRATCHPAD	Opensists of a fixed log with field
TS	<u>TIME STAMP</u> EXAMPLE: /TS152533,200290	Consists of a fixed length field.
	IEI CONTENT	
	GREENWICH MEAN TIME	
	DATE	
WD	ENROUTE WIND DATA	Consists of an altitude and a variable length list of entries that include the waypoint, the waypoint winds that apply to that altitude and the waypoint temperature.
	EXAMPLE: /WD310,SEA,120015,350M35, IEI CONTENT	
	WIND ALTITUDE	
	LIST ENTRY:	
	WAYPOINT NAME OR POSITION	
	WAYPOINT WIND	
	WAYPOINT ALTITUDE/OAT	
WQ	WIND REQUEST	Consists of a list of elements defining altitudes for which winds are requested, followed by a list of elements defining waypoints in the route for which the request is being made.
	EXAMPLE: /WQ350.370.390.410:SEA.N40 IEI CONTENT	30W110.ORD.ETC
	LIST ENTRY: WIND LEVEL ALTITUDE LIST ENTRY: WIND LEVEL WAYPOINT	
POS	POSITION REPORT	Consists of elements used to define a position report.
		118,350,ORTIN,093436,BARRO,M32,120015,0485,784
	CURRENT POSITION	
	(CROSSED) WAYPOINT IDENT	
	GREENWICH MEAN TIME	
	CURRENT ALTITUDE GOTO (NEXT) WAYPOINT IDENT	
	ETA AT GOTO WAYPOINT	
	GOTO+1 (FOLLOWING) WAYPOINT IDEN	г
	STATIC AIR TEMPERATURE (SAT)	
	ACTUAL WIND	
	FUEL REMAINING	
	TARGET MACH	
REJ	REJECT	Consists of the uplinked IMI, time uplink is received and a list of
	REJPWI.HHMMSS 103 006 CB/ 108 CB/C	error codes. CB.109,,001,NOVALIDIEI/TShhmmss,mmddyy
	UPLINKED IMI	22.100,,001,100 V/LIDIL// On infinited, infieddyy
	LIST ENTRY:	
	ERROR TYPE CODE	
	ERROR DATA CODE	
	LITERAL ERROR DATA	
	EXTENDED REJECTION DATA	
RES	RESPONSE	Consists of the uplinked IMI, time uplink is received and a list of
		error codes.
	EXAMPLE:	RESFPN/AC,073
AA	COMPANY PREFERRED ALTERNATES RI	
	EXAMPLE: /AAN47261W122185,BOE123,H	<sea,ksfo,seasfo< td=""></sea,ksfo,seasfo<>
	FLIGHT NUMBER	

	BASIC IFIS AN	D ASSOCIATED ELEMENTS
	DEPARTURE AIRPORT IDENT	
	ARRIVAL AIRPORT IDENT	
	COMPANY ROUTE	
AB	ALTERNATES FLIGHT LIST REQUEST	
	EXAMPLE: /ABN47261W122185,BOE123,H	(SEA,KSFO, SEASFO
	CURRENT POSITION	
	ARRIVAL AIRPORT IDENT COMPANY ROUTE	
AE	COMPANY PREFERRED ALTERNATES DA	ΔΤΔ
	EXAMPLE:/aeksea,1,09020,350P10,HUMPF	
	LIST ENTRY	,
	COMPANY PREFERRED ALTN IDE	ENT
	COMPANY PREFERRED ALTN PR	IORITY
	COMPANY PREFERRED ALTN WI	ND
	COMPANY PREFERRED ALTN AL	TITUDE/OAT
	COMPANY PREFERRED ALTN ALTITUDE	
	COMPANY PREFERRED ALTN SPEED	
AI	COMPANY PREFERRED ALTN OFFSET	Consists of a variable length list of antrias consisting of alternate
AI	ALTERNATE INFORMATION DATA	Consists of a variable length list of entries consisting of alternate information
	EXAMPLE: /AIKSFO,D,1423,230,120045,M	
	IEL CONTENT	- , ,,,,-
	LIST ENTRY:	
	ALTERNATE IDENT	
	ALTERNATE TYPE	
	DISTANCE TO ALTERNATE	
		F
	ESTIMATED WIND TO ALTERNAT TEMPERATURE AT ALTERNATE	E
AN	ALTERNATES INHIBIT DATA	
/	EXAMPLE: /ANKPAE.KSEA	
	LIST ENTRY: ALTN INHIBIT	
AP	SUPPLEMENTAL NDB AIRPORTS	Consists of a list of airports to be included in the supplemental
		navigation data base
	EXAMPLE:	
	/APKABC,N39152W121185,01740,E10.K	
	DEF,N37440W119118,00900,W12 IEI CONTENT	
	LIST ENTRY:	
	AIRPORT IDENT	
	AIRPORT LAT/LON	
	AIRPORT ELEVATION	
	AIRPORT MAGVAR	
AQ	WEATHER REQUEST	
	EXAMPLE: /AQKSFO.KLAX.KONT:KPHX	
	LIST ENTRY:	
		ENT
AR	ARRIVAL AIRPORT IDENT ALTERNATE INFORMATION REPORT	Consists of a variable length list consisting of alternate destination
	ALIENNATE IN ONWATION REPORT	data.
	EXAMPLE: /ARKSFO,D,132456,0120,0123,	310,310050.KLAX,D,142523,0109,0206,325,340100
	IEI CONTENT	

	BASIC IEIS AI	ND ASSOCIATED ELEMENTS
	LIST ENTRY	
	ALTERNATE IDENT	
	ALTERNATE TYPE	
	ETA AT ALTERNATE DESTINATIO	
	FUEL REMAINING AT ALTERNAT	E
	DISTANCE TOALTERNATE	
	ALTITUDE TO ALTERNATE	
-		
AS	ALTERNATES FLIGHT LIST DATA	02040 250040
	EXAMPLE: /ASKDEN,18030,350M5.KLAX, LIST ENTRY:	02040,350P10
	ALTN FLIGHT LIST IDENT	
	ALTN FLIGHT LIST WIND	
	ALTN FLIGHT LIST ALTITUDE/OA	т
AW	ALTERNATE WIND DATA	Consists of a multi-parameter element defining the altitude and
,	<u>ALIERAALE WIND DAAR</u>	wind.
	EXAMPLE: /AW220035040	
	IEI CONTENT	
	ALTITUDE AND WIND	
СВ	CLIMB WIND DATA	Consists of a list of up to ten altitude wind entries.
	EXAMPLE: /CB350270060.310270045.140	260040.100230020
	IEI CONTENT	
	LIST ENTRY: ALTITUDE AND WIND	
CQ	CLIMB FORECAST REQUEST	Consists of a single parameter element defining the top of climb
		altitude.
	EXAMPLE: /CQ370 IEI CONTENT	
	CRUISE ALTITUDE	
CS	CLIMB TEMPERATURE DATA	Consists of a list of up to ten altitude temperature entries.
00	EXAMPLE: /CS120P05.250M30.300M40	
	<u>IEI CONTENT</u>	
	LIST ENTRY: ALTITUDE AND OAT	
CU	CLIMB TEMPERATURE REQUEST	Consists of a single parameter element defining the top of climb
		altitude.
	EXAMPLE: /CS370	
		Operations of a fine of format, fine of and and in field as a tailor of the
DI	DOWNLINK TIME INFORMATION	Consists of a fixed format, fixed order field containing time information.
	EXAMPLE: /D105163251635.051636	
	IEI CONTENT	
	TRIGGER TRIPPED TIME	
	DOWNLINK GENERATION TIME	
	GREENWICH MEAN TIME	
ED	SUPPLEMENTAL EFFECTIVITY DATE	Consists of a fixed length field defining the effectivity date of the
		supplemental navigation data base.
	EXAMPLE: /EDJAN0191/	
	<u>IEI CONTENT</u>	
	EFFECTIVITY DATE/	
FH	FLIGHT PLAN HISTORY	Consists of a variable length list of parameters that are linked to
		the different waypoints of the flight plan. 0197,P23,132016,235,Y,150,012,ILS32R,1100,etc
	IEI CONTENT	0137,123,132010,233,1,130,012,1L332K,1100,810
	LIST ENTRY:	

	BASIC IEIS AND ASSOCIATED ELEMENTS
	ETA AT PREDICTED WAYPOINT
	PREDICTED WAYPOINT IDENT
	PREDICTED AIRSPEED
	ALTITUDE TO PREDICTED WAYPOINT
	FUEL REMAINING AT PREDICTED
	WAYPOINT
	OAT AT PREDICTED WAYPOINT
	WIND AT PREDICTED WAYPOINT
	TAS AT PREDICTED WAYPOINT
	PROCEDURE INDICATOR
	COURSE INTO PREDICTED WAYPOINT
	DISTANCE TO PREDICTED WAYPOINT
	PROCEDURE IDENTIFIER
	CURRENT GROSS WEIGHT
FP	FUEL PLANNING Consists of a fixed format, fixed order field.
	EXAMPLE: /FP1605,1100,12,220,08,140,110,P26,360
	IEI CONTENT
	TAKEOFF GROSS WEIGHT
	LANDING GROSS WEIGHT
	TAXI FUEL
	TRIP FUEL
	RESERVE FUEL
	ALTERNATE FUEL
	FINAL FUEL
	EXTRA FUEL
	PLAN OR BLOCK FUEL
FR	FORECAST REPORT Consists of multiple variable length lists of elements defining wind
	and temperature forecasts for climb, cruise, and descent.
	EXAMPLE: /FR020120015.100125020.300130040:020P15.250M30:SEA,280130035,300M40.SEA,320130045.
	ORD,280140035,300M45.ORD,320140050:040120015.120125020.300130040:020P15.250M30
	IEI CONTENT
	LIST ENTRY: (CLIMB) ALTITUDE AND WIND
	LIST ENTRY: (CLIMB) ALTITUDE AND OAT
	LIST ENTRY:
	WAYPOINT NAME OR POSITION
	WAYPOINT ALTITUDE AND WIND
	WAYPOINT ALTITUDE AND OAT
	LIST ENTRY: (DESCENT) ALTITUDE AND WIND
	LIST ENTRY: (DESCENT) ALTITUDE AND OAT
GL	GENERAL DATA Consists of a fixed order field.
	EXAMPLE: /GL290690,757-200,,BE49005001,NWA105,BFMWH01,KBFI,KMWH,10,1750,
	PW2040,KPDX,BFIMWO02.230.255
	<u>IEI CONTENT</u>
	DATE
	AIRCRAFT TYPE
	ENGINE THRUST
	NAVIGATION DATA BASE IDENT
	FLIGHT NUMBER
	COMPANY ROUTE
	DEPARTURE AIRPORT IDENT
	ARRIVAL AIRPORT IDENT
	COST INDEX
	ZERO FUEL WEIGHT
	ENGINE TYPE

ATTACHMENT 7 FMC/DATALINK INTERFACE

	ALTERNATE DESTINATION	ND ASSOCIATED ELEMENTS
	ALTERNATE COMPANY ROUTE CRUISE ALTITUDE	
	CENTER OF GRAVITY	
GP	GENERAL PREDICTIONS	Consists of a fixed format, fixed order field.
		30,2700,2180,,,,,,,255,KSEA,0140,14033,206,230
	IEI CONTENT	
	ARRIVAL AIRPORT IDENT	
	ETA AT DESTINATION	
	DISTANCE TO DESTINATION	
	PREDICTED DESTINATION FUEL	
	ACTIVE CRUISE ALTITUDE	
	TAKEOFF GROSS WEIGHT	
	LANDING GROSS WEIGHT TOTAL FUELFOB	
	PLAN OR BLOCK FUEL	
	TRIP FUEL	
	RESERVE FUEL	
	EXTRA FUEL	
	FINAL FUEL	
	CENTER OF GRAVITY	
	ALTERNATE DESTINATION	
	ALTERNATE FUEL	
MQ	ALTERNATE CRUISE ALTITUDE MOD WIND REQUEST	Consists of a list of elements defining altitudes for which winds are
IVIQ	MOD WIND REQUEST	requested, followed by a list of elements defining waypoints in the
		modified route for which the request is being made.
	EXAMPLE: /MQ350.370.390.410:SEA.N40	
	IEI CONTENT	
	LIST ENTRY: WIND LEVEL ALTITUDE	
	LIST ENTRY: WIND LEVEL WAYPOINT	
MW		Consists of a fixed order, fixed format field.
	EXAMPLE: /MWKBFI,KMWH,P045	
	IEI CONTENT DEPARTURE AIRPORT IDENT	
	ARRIVAL AIRPORT IDENT	
	MEAN WIND	
NV	SUPPLEMENTAL NDB NAVAIDS	
	EXAMPLE: /NVABCD,N25131W108473,11	300,VTH,01250,W11
	IEI CONTENT	
	LIST ENTRY:	
	NAVAID IDENT	
	CLASS OF NAVAID NAVAID ELEVATION	
	NAVAID ELEVATION NAVAID MAGVAR	
PG	PAGE INFO	
	EXAMPLE: /PG13	
	PAGE INFO	
PH	FLIGHT PHASE	Consists of a fixed format field defining FMC flight phase.
	EXAMPLE: /PH2	

ATTACHMENT 7 FMC/DATALINK INTERFACE

	BASIC IEIS AND ASSOCIATED ELEMENTS
	<u>IEI CONTENT</u>
	FLIGHT PHASE
PL	PERFORMANCE LIMITS Consists of a fixed format, fixed order field.
	EXAMPLE: /PL25,210340,220340,240320,500820,650820,500780
	IEI CONTENT
	TIME ERROR TOLERANCE
	CLIMB CAS LIMITS
	CRUISE CAS LIMITS
	DESCENT CAS LIMITS
	CLIMB MACH LIMITS
	CRUISE MACH LIMITS
	DESCENT MACH LIMITS
PP	PERFORMANCE PARAMETERS Consists of a fixed order field.
ГГ	REPORT
	EXAMPLE:
	/PP757-
	200,PW2040,NDB170601,BC001M,NWA105,1750,,250,,0150,23,1,180,180,100250,100250,,,,,1020,P14,M1,5,1
	200,FW2040,NDBT7000T,BC00TM,NWAT05,T750,,250,,0T50,25,T,180,T60,T00250,T00250,,,,,,T020,FT4,MT,5,T 30,36089
	<u>IEI CONTENT</u>
	NAVIGATION DATA BASE IDENT
	PERFORMANCE DATABASE IDENT
	FLIGHT NUMBER
	ZERO FUEL WEIGHT
	CRUISE CENTER OF GRAVITY
	CRUISE ALTITUDE
	PLAN OR BLOCK FUEL
	RESERVE FUEL
	COST INDEX
	CLIMB DERATE
	CLIMB TRANSITION ALTITUDE
	DESCENT TRANSITION ALTITUDE
	CLIMB SPEED LIMIT
	DESCENT SPEED LIMIT
	FUEL FLOW FACTOR
	DRAG FACTOR
	PERF FACTOR
	IDLE FACTOR
	DESTINATION QNH
	DESTINATION TEMPERATURE
	DESTINATION ISA DEVIATION
	ENTERED LANDING FLAP/SLAT CONFIGURATION
	ENTERED LANDING SPEED
	TROPOPAUSE ALTITUDE
	TAXI FUEL
PS	POSITION REPORT
10	EXAMPLE: /PSN47261W122185,SEA,093118,350,ORTIN,093436,BARRO,M32,120015,0485,789,ECON
	CURRENT POSITION
	CROSSED WAYPOINT IDENT
	GREENWICH MEAN TIME
	CURRENT ALTITUDE
	GOTO (NEXT) WAYPOINT IDENT ETA AT GOTO WAYPOINT

ATTACHMENT 7 FMC/DATALINK INTERFACE

	GOTO + 1 (FOLLOWING) WAYPOINT IDEN	
	STATIC AIR TEMPERATURE (SAT)	
	ACTUAL WIND	
	FUEL REMAINING	
	TARGET MACH	
	CRUISE SPEED MODE	
	ENGINE OUT STATUS	
	ZERO FUEL WEIGHT	
RA	ALTERNATE ROUTE	A variable length field that consists of flight plan elements that
	<u></u>	replace the inactive route. These flight plan elements define a flight
		plan in approximately the same fashion as ATC clearance
	EXAMPLE:	
	THE FORMAT IS THE SAME AS DESCRIB	
RM	ROUTE MODIFICATION	A variable length field that that consists of flight plan elements that
		replace the inactive route. These flight plan elements define a flight
		plan in approximately the same fashion as ATC clearance
		language. The RM cannot contain the CR: or :DA: flight plan
	FOLLOWING: LO: LATERAL OFFSET	ED FOR THE RI IEI DESCRIPTION WITH THE ADDITION OF THE
RR	RUNWAY DATA REPORT	Consists of a fixed format, fixed order field.
ΝN		5,2855,,P25,U35,250015,1,15,2,,P40,108119126
	IEI CONTENT	,2033,,1 23,033,230013,1,13,2,,1 40,100113120
	DEPARTURE AIRPORT IDENT	
	TAKEOFF RUNWAY IDENT	
	RUNWAY INTERSECTION	
	POSITION SHIFT	
	RUNWAY LENGTH REMAINING	
	TAKEOFF CENTER OF GRAVITY	
	TRIM	
	CURRENT GROSS WEIGHT	
	REFERENCE TAKEOFF GROSS WEIGHT	
	OAT OR SAT	
	TAKEOFF RUNWAY SLOPE	
	TAKEOFF RUNWAY WIND	
	TAKEOFF RUNWAY CONDITION	
	TAKEOFF FLAPS	
	TAKEOFF THRUST RATING	
	VTR PERCENTAGE	
	SELECTED TEMPERATURE	
	TAKEOFF SPEEDS	
	BARO SETTING	
	FLAP/SLAT CONFIGURATION	
	THRUST REDUCTION ALTITUDE	
	ACCELERATION ALTITUDE	
	ENGINE-OUT ACCELERATION ALTITUDE	
SD	SUPPLEMENTAL NAVIGATION DATA	Consists of an effectivity date and four separate lists that define
	BASE	the supplemental data base airport, navaid, waypoint and runway elements in that order.
		19235,00911,W23.KJLL,etc:ABC,N45354W122506,11550,
	VTH,00530,W21.SEE,etc:ABCDE,N45354W	
	,W22.WPT01,etc:05L,LFBO,N33125E01025	
	IEI CONTENT	-,, ,
	EFFECTIVITY DATA	

	LIST ENTRY:	
	AIRPORT IDENT	
	AIRPORT LAT/LON	
	AIRPORT ELEVATION	
	AIRPORT MAGVAR	
	LIST ENTRY:	
	NAVAID IDENT	
	NAVAID LAT/LON	
	FREQUENCY	
	CLASS OF NAVAID	
	NAVAID ELEVATION	
	NAVAID MAGVAR	
	LIST ENTRY:	
	WAYPOINT IDENT	
	WAYPOINT LAT/LON	
	REFERENCE LAT/LON RADIAL/DISTANCE	
	WAYPOINT MAGVAR	
	LIST ENTRY:	
	RUNWAY IDENT	
	REFERENCE AIRPORT IDENT	
	RUNWAY LAT/LON	
	RUNWAY COURSE	
	RUNWAY ELEVATION	
	RUNWAY LENGTH	
TD	TOP OF DESCENT REPORT	Consists of top of descent time and location, and current weight.
	EXAMPLE: /TD134230,N59151W132251,3	3153,001
	IEI CONTENT	
	TOP OF DESCENT ETA	
	TOP OF DESCENT LOCATION	
	CURRENT GROSS WEIGHT	
	STIMULUS CODE MOD TROPOPAUSE DATA	Consists of a variable length list of entries that include the
TM	EXAMPLE:	waypoints, the waypoint tropopause altitude and the waypoint
	/TMSEA,550,M55.N4030W110,570,M55	tropopause temperature
	IEI CONTENT	
	LIST ENTRY:	
	WAYPOINT NAME OR POSITION	
	WAYPOINT TROPOPAUSE	
	ALTITUDE	
	WAYPOINT TROPOPAUSE	
	WAYPOINT TROPOPAUSE TEMPERATURE	
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA	Consists of a variable length list of entries that include the
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE:	waypoints, the waypoint tropopause altitude and the waypoint
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58	
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58 IEI CONTENT	waypoints, the waypoint tropopause altitude and the waypoint
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58 IEI CONTENT LIST ENTRY:	waypoints, the waypoint tropopause altitude and the waypoint tropopause temperature
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58 IEI CONTENT LIST ENTRY: WAYPOINT NAME OR POSITION	waypoints, the waypoint tropopause altitude and the waypoint tropopause temperature
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58 IEI CONTENT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT TROPOPAUSE	waypoints, the waypoint tropopause altitude and the waypoint tropopause temperature
TR	WAYPOINT TROPOPAUSE TEMPERATURE TROPOPAUSE DATA EXAMPLE: /TRSEA,600,M60.N4030W110,550,M58 IEI CONTENT LIST ENTRY: WAYPOINT NAME OR POSITION	waypoints, the waypoint tropopause altitude and the waypoint tropopause temperature

ATTACHMENT 7 FMC/DATALINK INTERFACE

	BASIC IEIS AND ASSOCIATED ELEMENTS						
WE	<u>WIND VECTOR MAGNITUDE</u> <u>DIFFERENCE</u> EXAMPLE: /WE020 <u>IEI CONTENT</u> WIND VECTOR MAGNITUDE	Consists of a fixed length field used to define the downlink trigger threshold for wind discrepancies.					
	DIFFERENCE						
WI	WAYPOINT INFORMATION EXAMPLE: /WIBDX,143205.CGC,144510.N <u>IEI CONTENT</u> LIST ENTRY: WAYPOINT NAME OR POSITION ETA AT PREDICTED WAYPOINT	Contains a list of waypoints and their ETAs. I33E010,153512					
WL	WAYPOINT LIST EXAMPLE: /WLBDX.CGC.NSG.N33E010 <u>IEI CONTENT</u> LIST ENTRY: WAYPOINT NAME OR POSITION	Contains a list of waypoints for which data is to be included in a top of descent downlink.					
WM	ENROUTE WIND MODIFICATION EXAMPLE: /WM310,SEA,120075,350M35.N <u>IEI CONTENT</u> WIND ALTITUDE LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT WIND WAYPOINT ALTITUDE/OAT						
WP	SUPPLEMNTAL NDB WAYPOINTS EXAMPLE: /WPEFGH,N21421W101113,SF <u>IEI CONTENT</u> LIST ENTRY: WAYPOINT IDENT WAYPOINT LAT/LON REFERENCE IDENT RADIAL/DISTANCE WAYPOINT MAGVAR	Consists of a list of waypoints to be included in the supplemental navigation data base. RP,1090020,W09					

WR	<u>ALTERNATE AIRPORT WEATHER</u> <u>REQUEST</u>	Consists of a variable length list of entries defining destination and alternate identifiers.
	EXAMPLE: /WRKLAX.KSFO.KPHX	
	IEI CONTENT	
	LIST ENTRY: DESTINATION AND ALT	ERNATE IDENTS

ATTACHMENT 7 FMC/DATALINK INTERFACE

5248 5249	Section 8 Element Definitions
5250 5251 5252 5253	This section contains an alphabetical table of defined elements indicating the formats and attributes of each element. This section will be updated as the need for new elements is identified. Users are requested to advise the AEEC staff when such a need arises.
5254	Notes:
5255 5256	 This element may require one or more elements to completely define the desired data.
5257 5258	 Some implementations require that this element be uplinked in a fixed length format of maximum character length.
5259	4. See Section 10 for further definition of codes.
5260	5. Millibars = Hectopascals = 100 newton/meter2

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ACARS CONFIG IDENT NUMBER	V	S	AN	10			
ACCELERATION ALTITUDE	V	S	Ν	5	1	Feet	
ACT PLAN CRUISE ALTITUDE	V	S	Ν	3	100	Feet	
ACTIVE CRZ WAYPOINT	V	S	AN	13			
ACTIVE CRZ WAYPOINT/WIND	V	S	AN	13			
ACTIVE DESCENT WIND	V	М	N	9			
ALTITUDE	F	S	Ν	3	100	Feet	
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	2
ACTUAL WIND	V	М	N	6			
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
AIRCRAFT TYPE	V	S	AN	11			
AIRPORT ELEVATION	V	S	Ν	5	1	Feet	
AIRPORT IDENT	V	S	AN	4			
AIRPORT LAT/LON	F	S	AN	13			
S = SINGLE PARAMER M = MULTIPARAMETER		A = ALPHA AN = ALPHANUMERIC			N = NUMERIC D = DIRECTIONAL		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
AIRPORT MAGVAR	V	S	AN	3			
DIRECTIONAL	F		A	1		E=East	
						W=West	
MAGNITUDE	V		Ν	2	1	Degrees	
ALTERNATE ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
ALTERNATE COMPANY ROUTE	V	S	AN	10			
ALTERNATE CRUISE ALTITUDE	V	S	Ν	3	100	Feet	
ALTERNATE DESTINATION	V	S	AN	4			1
ALTERNATE FLAP/SLAT							
CONFIGURATION	F	S	Ν	1			
ALTERNATE FLAPS	V	S	Ν	2	1	Degrees	
ALTERNATE FUEL	V	S	Ν	5	0.1	Klbs	
ALTERNATE IDENT	V	S	AN	10			
ALTERNATE LIMIT TAKEOFF							

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

V F F	S M	N	5	0.1		
	М			0.1	Klbs	
F		Ν	9			
	S	Ν	3	1	Knots	
F	S	Ν	3	1	Knots	
F	S	Ν	3	1	Knots	
F	S	N	1		0 = No derate	
					1 = Derate 1	
					2 = Derate 2	
					I	
					9 = Derate 9	
F	М	Ν	6		1	I
F	S	Ν	2	1	Hour	
F	S	Ν	2	1	Minute	
F	S	Ν	2	1	Second	
V	D	AN	5			
F		А	1		P=Plus	
					M=Minus	
V		Ν	4	0.01	Degrees	
F	S	А	1		M=Missed 1	I
					Appr	
					D=Dir to	
					from	
	F F F F F F V F	F S F S F M F S F S F S F S F S F S F S F S V D F V	F S N F S N F S N F M N F S N F S N F S N F S N F S N F S N F S N V D AN F A N	F S N 3 F S N 1 F M N 6 F S N 2 F S N 2 F S N 2 F S N 2 F S N 2 F S N 2 V D AN 5 F A 1	F S N 3 1 F S N 1	F S N 3 1 Knots F S N 1 0 = No derate 1 = No derate 1 = Derate 1 = Derate 2 = 1 = = Derate 2 = 1 = = Derate 2 = 1 =

V = VARIABLE F = FIXED

A = ALPHA

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						Present Pos	
ALTERNATE VTR PERCENTAGE	V	S	Ν	2	1	Percent	
ALTERNATE WIND	V	М	Ν	9			
ALTITUDE	F	S	Ν	3	100	Feet	
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	
ALTITUDE AND WIND	V	М	Ν	9			
ALTITUDE	F	S	Ν	3	100	Feet	
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	
ALTITUDE TO ALTERNATE	V	S	Ν	3	100	Feet	1
ALTITUDE TO PREDICTED WPT	V	S	Ν	4	10	Feet	
ALTN FLIGHT LIST ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	Ν	3	100		
DIRECTIONAL	F	D	A	1			
MAGNITUDE	V		Ν	2	1		
ALTN FLIGHT LIST IDENT	V	S	AN	4			
ALTN FLIGHT LIST WIND	V	D	Ν	6			
DIRECTIONAL	F		Ν	3	1		
MAGNITUDE	v		N	3	1		
ALTN INHIBIT	V	S	AN	4			
ARRIVAL AIRPORT IDENT	V	S	AN	4			
ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
S = SINGLE PARAMER	A = .	ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Note:
						M=Minus
MAGNITUDE	V		N	2	1	°C
BARO SETTING	V	D	AN	5		
DIRECTIONAL	F		А	1		H=QNH
						E=QFE
MAGNITUDE	V		Ν	4	1	Hecto- 4 pascals
CENTER IRS POSITION	F	S	AN	13		
DIRECTIONAL	F		А	1		N=North
						S=South
DEGREES	F		Ν	2	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
DIRECTIONAL	F		A	1		E=East
						W=West
DEGREES	F		Ν	3	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
CENTER OF GRAVITY	V	S	Ν	3	0.1	Percent
CLASS OF NAVAID	V	S	A	7		
CLIMB CAS LIMITS	F	М	Ν	6		
MINIMUM CLB CAS	F	S	Ν	3	1	Knots
MAXIMUM CLB CAS	F	S	Ν	3	1	Knots
CLIMB DERATE	F	S	Ν	1		N=as required
						N=0 (NoDerate)
						N=1 (Derate 1)

V = VARIABLE F = FIXED

S = SINGLE PARAMERA = ALPHAM = MULTIPARAMETERAN = ALPHANUMERIC

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						N=2 (Derate 2)	
CLIMB MACH LIMITS	F	М	Ν	6			
MINIMUM CLB MACH	F	S	Ν	3	0.001	Mach	
MAXIMUM CLB MACH	F	S	Ν	3	0.001	Mach	
CLIMB SPEED LIMIT	F	М	N	6			
ALTITUDE	F	S	N	3	100	Feet	
SPEED	F	S	Ν	3	1	Knots (CAS)	
CLIMB TRANSITION ALTITUDE	V	S	Ν	3	100	Feet	
CLIMB WIND	V	М	Ν	9			
ALTITUDE	F	S	Ν	3	100	Feet	
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	
COMPANY DISTRIBUTION	V	S	AN	10			
COMPANY PREFERRED ALTN ALTITUDE	V	S	Ν	3	100	Feet	
COMPANY PREFERRED ALTN ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	Ν	3	100		
DIRECTIONAL	F	D	A	1			
MAGNITUDE	V		Ν	2	1		
COMPANY PREFERRED ALTN IDENT	V	S	AN	4			
COMPANY PREFERRED ALTN OFFSET	V	D	AN	3			
DIRECTIONAL	F		A	1			
DISTANCE	V		N	2	1		
COMPANY PREF ALTN OVERHEAD FIX	V	S	AN	13			
COMPANY PREFERRED ALTN PRIORITY	F	S	N	1			
S = SINGLE PARAMER M = MULTIPARAMETER		= ALPHA N = ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
COMPANY PREFERRED ALTN SPEED	V	М	Ν	4			
TYPE	F	S	Ν	1			
SPEED VALUE	V	S	Ν	S	1, 0.001		
COMPANY PREFERRED ALTN WIND	V	Μ	Ν	6			
DIRECTIONAL	F	S	Ν	3	1		
MAGNITUDE	V	S	Ν	3	1		
COMPANY ROUTE	V	S	AN	10			
COST INDEX	V	S	Ν	4			
COURSE IN	F	S	Ν	3	1	Degrees	
COURSE INTO PREDICTED WAYPOINT	V	S	Ν	3	1	Degrees	1
CROSS TRACK DEVIATION	V	D	AN	4			
DIRECTIONAL	F		A	1		L or R	
DISTANCE	V		Ν	3	0.1	NM	
CROSSED WAYPOINT IDENT	V	S	AN	13			
CRUISE ALTITUDE	V	S	Ν	3	100	Feet	
CRUISE CAS LIMITS	F	Μ	Ν	6			
MINIMUM CRZ CAS	F	S	Ν	3	1	Knots	
MAXIMUM CRZ CAS	F	S	Ν	3	1	Knots	
CRUISE CENTER OF GRAVITY	V	S	Ν	3	0.1	Percent	
CRUISE MACH LIMITS	F	Μ	Ν	6			
MINIMUM CRZ MACH	F	S	Ν	3	0.001	Mach	
MAXIMUM CRZ MACH	F	S	Ν	3	0.001	Mach	
CRUISE SPEED MODE	V	S	AN	17		Active Cruise	
						Page Title	

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
CRUISE WAYPOINT WIND	V	М	N	6			
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	2
CRUISE WIND	V	М	Ν	6			
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	2
CRUISE WIND TO ALTERNATE	V	М	Ν	6			1
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	
CURRENT ALTITUDE	V	S	Ν	3	100	Feet	
CURRENT CALIBRATED AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		Ν	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		А	1		K or M	
CURRENT GROSS WEIGHT	V	S	Ν	5	0.1	Klbs	
CURRENT GROSS WEIGHT AT PRED WPT	V	S	N	5	0.1	Klbs	
CURRENT GROUND SPEED	F	S	N	3	1	Knots	
CURRENT POSITION	F	S	AN	13			
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
S = SINGLE PARAMER	A =	= ALPHA		N = NUME	RIC		
M = MULTIPARAMETER	AN	I = ALPHANUME	RIC	D = DIREC	CTIONAL		

F = FIXED

V = VARIABLE

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MINUTES	F		N	3	0.1	Minutes	
CURRENT TRUE AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		Ν	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		А	1		K or M	
CURRENT VERTICAL SPEED	V	D	AN	5			
DIRECTIONAL	F		A	1		U or D	
SPEED VALUE	V		N	4	1	Feet/min	
DATE	F	Μ	N	6			
DAY	F	S	N	2		Day	
MONTH	F	S	N	2		Month	
YEAR	F	S	N	2		Year	
DEPARTURE AIRPORT IDENT	V	S	AN	4			
DESCENT CAS LIMITS	F	Μ	Ν	6			
MINIMUM DES CAS	F	S	N	3	1	Knots	
MAXIMUM DES CAS	F	S	N	3	1	Knots	
DESCENT ISA DEVIATION	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
DESCENT MACH LIMITS	F	Μ	Ν	6			
MINIMUM DES MACH	F	S	Ν	3	0.001	Mach	
MAXIMUM DES MACH	F	S	Ν	3	0.001	Mach	
DESCENT SPEED LIMIT	F	Μ	Ν	6			
ALTITUDE	F	S	Ν	3	100	Feet	

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
SPEED	F	S	N	3	1	Knots (CAS)	
DESCENT TRANSITION ALTITUDE	V	S	N	3	100	Feet	
DESCENT WIND	V	М	Ν	9			
ALTITUDE	F	S	Ν	3	100	Feet	2
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
DESIRED TRACK	V	S	N	3	1	Degrees	
DESTINATION AND ALTERNATE IDENTS	V	S	AN	10			
DESTINATION ISA DEVIATION	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
DESTINATION QNH	V	S	Ν	4	1	Hecto pascals	4
DESTINATION RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		N	2			
RUNWAY SUFFIX	F		A	1		L=Left	
						C=Center	
						R=Right	
						O=None	
DESTINATION TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
DISTANCE TO ALTERNATE	V	S	Ν	4	1	NM	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
DISTANCE TO DESTINATION	V	S	N	4	1	NM	
DISTANCE TO PREDICTED WAYPOINT	V	S	Ν	4	1	NM	1
DISTANCE TO WAYPOINT	V	S	N	4	1	NM	
DOWNLINK GENERATION TIME	F	М	Ν	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1		
DRAG FACTOR	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
EFFECTIVITY DATE	F	М	AN	7			
MONTH	F	S	А	3		Month	
DAY	F	S	А	2		Day	
YEAR	F	S	N	2		Year	
ENGINE-OUT ACCELERATION							
ALTITUDE	V	S	N	5	1	Feet	
ENGINE-OUT STATUS	V	S	Ν	1		0=All Engine	
						1=Engine Out	
ENGINE THRUST	F	S	N	3	0.1	Klbs	
ENGINE TYPE	V	S	AN	15			
ENTERED LANDING FLAP/SLAT CONFIGURATION	F	S	Ν	1			
ENTERED LANDING SPEED	F	S	Ν	3	1	Knots (CAS)	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ENTERED IRS HEADING	F	S	Ν	3	1	Degrees	
ERROR DATA CODE	F	S	Ν	3			3
ERROR TYPE CODE	F	S	Ν	3			3
ESTIMATED WIND TO ALTERNATE	V	Μ	Ν	6			1
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	2
ETA AT ALTERNATE DESTINATION	F	Μ	Ν	6			1
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	Ν	2	1	Second	
ETA AT DESTINATION	F	Μ	Ν	6			
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	Ν	2	1	Second	
ETA AT GOTO WAYPOINT	F	Μ	Ν	6			1
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	Ν	2	1	Second	
ETA AT PREDICTED WAYPOINT	F	Μ	Ν	6			
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	Ν	2	1	Second	
ETA CHANGE VARIABLE	F	S	Ν	1	1	Minutes	
EXTENDED REJECTION DATA	V	S	AN	25			

V = VARIABLE F = FIXED

M = MULTIPARAMETER

S = SINGLE PARAMER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Not
EXTRA FUEL	V	D	AN	6			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	5	0.1	Klbs	
FINAL FUEL	V	S	Ν	5	0.1	Klbs	
FLAP/SLAT CONFIGURATION	F	S	Ν	1			
FLIGHT NUMBER	V	S	AN	10			
FLIGHT PATH ANGLE	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
ANGLE	V		Ν	2	0.1	Degrees	
FLIGHT PHASE	F	S	Ν	1		0= Preflight	
						1=Takeoff	
						2=Climb	
						3=Cruise	
						4= Descent	
						5= Approach	
						6=Go Around	
						7=Done	
FMC BEST POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
S = SINGLE PARAMER		ALPHA	-	N = NUME			
M = MULTIPARAMETER	AN	= ALPHANUME	RIC	D = DIREC	TIONAL		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
FMC POSITION PRIOR TO POS UPDATE	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
FMC SOFTWARE PART NUMBER	F	S	Ν	10			
FMC SYSTEM DATE	F	М	Ν	6			
DAY	F	S	Ν	2	1		
MONTH	F	S	Ν	2	1		
YEAR	F	S	Ν	2	1		
FMC SYSTEM TIME	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1	Seconds	
FREQUENCY	F	S	Ν	5	0.01	MHz	1
FUEL AT DESTINATION	V	S	Ν	5	0.1	Klbs	
S = SINGLE PARAMER M = MULTIPARAMETER		Alpha = Alphanume	RIC	N = NUME D = DIREC			

V = VARIABLE

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
FUEL FLOW FACTOR	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	0.1	Percent	
FUEL REMAINING	V	S	Ν	5	0.1	Klbs	
FUEL REMAINING AT ALTN DEST	V	S	Ν	5	0.1	Klbs	1
FUEL REMAINING AT PREDICTED WPT	V	S	Ν	5	0.1	Klbs	1
GOTO (NEXT) WPT IDENT	V	S	AN	13			
GOTO+1 (FOLLOWING) WPT IDENT	V	S	AN	13			
GREENWICH MEAN TIME	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	N	2	1	Seconds	
GROUND ADDRESS	V	S	AN	7			
HOLD EFC TIME	F	М	N	4			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
IDLE FACTOR	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	0.1	Percent	
INACTIVE COMPANY ROUTE	V	S	AN	10			
INVALID FLAG	F	S	Ν	1		Nothing	
						0=Valid	
						1=Invalid	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
IRS-C MODE	F	S	Ν	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-L MODE	F	S	Ν	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-R MODE	F	S	Ν	1		1=Align	
						2=Nav	
						3=Attitude	
IRS MONITOR	F	М	Ν	9			
LEFT IRS DRIFT	F	S	Ν	3	0.1	NM/hour	
CENTER IRS DRIFT	F	S	Ν	3	0.1	NM/hour	
RIGHT IRS DRIFT	F	S	Ν	3	0.1	NM/hour	
LABEL CODE	F	S	Ν	3			
LANDING GROSS WEIGHT	V	S	Ν	5	0.1	Klbs	
LEFT DME DISTANCE	V	S	Ν	4	0.1	NM	
LEFT DME FREQUENCY	F	S	Ν	5	0.01	MHz	
LEFT GNSS POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
S = SINGLE PARAMER	A = 7	ALPHA		N = NUME	RIC		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
MINUTES	F		N	3	0.1	Minutes
LEFT ILS FREQUENCY	F	S	Ν	5	0.01	MHz
LEFT IRS POSITION	F	S	AN	13		
DIRECTIONAL	F		А	1		N=North
						S=South
DEGREES	F		N	2	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
DIRECTIONAL	F		A	1		E=East
						W=West
DEGREES	F		N	3	1	Degrees
MINUTES	F		N	3	0.1	Minutes
LEFT VOR BEARING	F	S	N	4	0.1	Degrees
LEFT VOR FREQUENCY	F	S	N	5	0.01	MHz
LITERAL ERROR DATA	V	S	AN	13		
LOCALIZER DEVIATION	V	D	AN	4		DDM
DIRECTIONAL	F		A	1		L = Left
						R = Right
MAGNITUDE	V		N	3	0.001	
MANEUVER MARGIN	V	S	N	3	0.01	
MAXIMUM CLIMB CAS	F	S	N	3	1	Knots
MAXIMUM CLIMB MACH	F	S	N	3	0.001	Mach
MAXIMUM CRUISE CAS	F	S	N	3	1	Knots
MAXIMUM CRUISE MACH	F	S	N	3	0.001	Mach
MAXIMUM DESCENT CAS	F	S	N	3	1	Knots
MAXIMUM DESCENT MACH	F	S	N	3	0.001	Mach
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC	RIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
MEAN WIND	V	D	AN	4		
DIRECTIONAL	F		A	1		P=Plus
						M=Minus
MAGNITUDE	V		Ν	3	1	Knots
MESSAGE SEQUENCE NUMBER	V	S	AN	10		
MINIMUM CLIMB CAS	F	S	Ν	3	1	Knots
MINIMUM CLIMB MACH	F	S	Ν	3	0.001	Mach
MINIMUM CRUISE CAS	F	S	Ν	3	1	Knots
MINIMUM CRUISE MACH	F	S	Ν	3	0.001	Mach
MINIMUM CRUISE TIME	F	S	Ν	1	1	Minutes
MINIMUM DESCENT CAS	F	S	Ν	3	1	Knots
MINIMUM DESCENT MACH	F	S	Ν	3	0.001	Mach
MINIMUM FUEL TEMPERATURE	V	D	AN	3		P=Plus
DIRECTIONAL	F		А	1		M=Minus
MAGNITUDE	V		Ν	2	1	°C
MINIMUM R/C - CLB	V	S	Ν	3	1	Feet/min
MINIMUM R/C - CRZ	V	S	Ν	3	1	Feet/min
MINIMUM R/C - ENG OUT	V	S	Ν	3	1	Feet/min
MOD CRZ WAYPOINTS	V	S	AN	13		
MOD PLAN CRUISE ALTITUDE	V	S	Ν	3	100	Feet
MONITOR CODE	F	S	Ν	2		
NAVAID ELEVATION	V	S	Ν	5	1	Feet
NAVAID IDENT	V	S	AN	4		
NAVAID LAT/LON	F	S	AN	13		1

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
NAVAID MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		А	1		E=East	
						W=West	
MAGNITUDE	V		Ν	2	1	Degrees	
NAVAID TYPE	F	S	А	1		D=DME	
						V=VOR	
NAVIGATION DATA BASE IDENT	V	S	AN	10			
NETWORK ADDRESS	V	S	AN	7			
NOISE ABATEMENT END ALTITUDE	V	S	V	5	1	Feet	
NOISE ABATEMENT SPEED	F	S	Ν	3	1	Knots	
NOISE ABATEMENT DERATE THRUST	F	S	Ν	1		N=as required	
						N=0 (no noise derate Thrust)	
						N=1 (Derate 1)	
						N=2	

V = VARIABLE F = FIXED N = NUMERIC D = DIRECTIONAL (Derate 2)

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						N=3 (Max Climb)	
NOISE ABATEMENT THRUST	V	М	AN	6			
THRUST TYPE	F	S	A	1		n=n1	
						N=N1	
						E=EPR	
THRUST VALUE	V	S	Ν	5	0.01	PERCENT OR EPR	
NOISE ABATEMENT START ALTITUDE	V	S	Ν	5	1	Feet	
OAT OR SAT	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
OAT AT PREDICTED WAYPOINT	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
PAGE ID	V	М	AN	3			
PAGE NUMBER	V		N	2	1		
LAST PAGE FLAG	F		Ν	1		Blank= Page	
						to Follow	
						E=End	
PAGE INFO	F	Μ	Ν	2			
PAGE NUMBER	F	S	Ν	1			
NUMBER OF PAGES	F	S	Ν	1			
S = SINGLE PARAMER	A = ALPHA		N = NUME	RIC			
M = MULTIPARAMETER	AN =	= ALPHANUME	RIC	D = DIREC	CTIONAL		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
PERF DEFAULTS CONFIG NO.	V	S	A	10			
PERF FACTOR	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
PERFORMANCE DATA BASE IDENT	V	S	AN	10			
PLAN OR BLOCK FUEL	V	S	N	5	0.1	Klbs	
POSITION SHIFT	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
SHIFT	V		Ν	2	100	Feet	
PREDICTED AIRSPEED	F	D	AN	4			1
SPEED	F		N	3	1 or		
ТҮРЕ	F		A	1	0.001	K=Knot	
						M=Mach	
PREDICTED DESTINATION FUEL	V	S	N	5	0.1	Klbs	1
PREDICTED FUEL REMAINING	V	S	N	5	0.1	Klbs	1
PREDICTED WAYPOINT IDENT	V	S	AN	13			
ACTIVE CRUISE ALTITUDE	V	S	N	3	100	Feet	
PROCEDURE INDICATOR	F	S	A	1		Y=	1
						Proc.mbr.	
						N=Not	
						Proc.mbr.	
PROCEDURE IDENT	V	S	AN	6			1
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
PROCEDURE WAYPOINT	F	S	A	1		Y or N	
QNH	V	S	Ν	4	1	Hecto pascals	4
QRH T/O SPD CONFIG NUM	V	S	А	10			
RADIAL/DISTANCE	F	М	AN	7			1
RADIAL	F	S	N	3	1	Degrees	
DASH	F	S	AN	1			
DISTANCE	F	S	Ν	3	1	NM	
RADIO MEASUREMENT	V	S	Ν	4	0.1	NM or degrees	
REFERENCE AIRPORT IDENT	V	S	AN	4			
REFERENCE CRZ WAYPOINT IDENT	V	S	AN	13			
REFERENCE IDENT	V	S	AN	5			1
REFERENCE LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
REFERENCE RTA WAYPOINT IDENT	V	S	AN	13			
REFERENCE TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
REPORT STIMULUS	F	S	Ν	3			3
RESERVE FUEL	V	S	Ν	5	0.1	Klbs	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA ⊧ ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
RIGHT DME DISTANCE	V	S	Ν	4	0.1	NM
RIGHT DME FREQUENCY	F	S	Ν	5	0.01	MHz
RIGHT GPS POSITION	F	S	AN	13		
DIRECTIONAL	F		А	1		N=North
						S=South
DEGREES	F		Ν	2	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
DIRECTIONAL	F		A	1		E=East
						W=West
DEGREES	F		Ν	3	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
RIGHT ILS FREQUENCY	F	S	Ν	5	0.01	MHz
RIGHT IRS POSITION	F	S	AN	13		
DIRECTIONAL	F		A	1		N=North
						S=South
DEGREES	F		Ν	2	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
DIRECTIONAL	F		A	1		E=East
						W=West
DEGREES	F		Ν	3	1	Degrees
MINUTES	F		Ν	3	0.1	Minutes
RIGHT VOR BEARING	F	S	Ν	4	0.1	Degrees
RIGHT VOR FREQUENCY	F	S	Ν	5	0.01	MHz
RTA CONSTRAINT	F	S	A	2		AA=AT or AFTER

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Note
						AB=AT or BEFORE
						AT =AT
RTA COST INDEX	V	D	AN	5		
DIRECTIONAL	F		A	1		P=Plus
						M=Minus
COST INDEX	V		N	4	1	
RTA TAKEOFF WINDOW TIMES	F	М	Ν	12		
FIRST HOURS	F	S	Ν	2	1	Hours
FIRST MINUTES	F	S	N	2	1	Minutes
FIRST SECONDS	F	S	Ν	2	1	Seconds
LAST HOURS	F	S	N	2	1	Hours
LAST MINUTES	F	S	N	2	1	Minutes
LAST SECONDS	F	S	N	2	1	Seconds
RTA TIME	F	М	N	6		
HOURS	F	S	Ν	2	1	Hours
MINUTES	F	S	N	2	1	Minutes
SECONDS	F	S	Ν	2	1	Seconds
RTA TIME ERROR TOLERANCE	V	S	Ν	2	1	Seconds
RTA WAYPOINT IDENT	V	S	AN	13		
RTA WINDOW TIMES	F	М	Ν	12		
FIRST HOURS	F	S	Ν	2	1	Hours
FIRST MINUTES	F	S	Ν	2	1	Minutes
FIRST SECONDS	F	S	Ν	2	1	Seconds
LAST HOURS	F	S	N	2	1	Hours
LAST MINUTES	F	S	N	2	1	Minutes
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units N	lotes
LAST SECONDS	F	S	N	2	1	Seconds	
RUNWAY COURSE	V	S	Ν	3	1	Degrees	
RUNWAY ELEVATION	V	S	Ν	6	1	Feet	
RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		Ν	2			
RUNWAY SUFFIX	F		A	1		L=Left	
						C=Center	
						R=Right	
						O=None	
RUNWAY INTERSECTION	V	S	AN	3			
RUNWAY LAT/LON	F	S	AN	13			
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
RUNWAY LENGTH	V	S	Ν	5	1	Feet	
RUNWAY LENGTH REMAINING	V	S	Ν	3	100	Feet	
SCRATCHPAD	V	S	AN	24			
SELECTED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
S = SINGLE PARAMER	A =	ALPHA		N = NUME	RIC		

F = FIXED

V = VARIABLE

M = MULTIPARAMETER AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MAGNITUDE	V		Ν	2	1	°C	
STANDARD LIMIT TAKEOFF GR WT	V	S	Ν	5	0.1	Klbs	
STATIC AIR TEMPERATURE (SAT)	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
STEADY/INTERMITTENT	F	S	A	1	S or I		
STIMULUS CODE	F	S	Ν	3			3
SYSTEM CODE	F	S	Ν	2			
TAI ON ALTITUDE	V	S	Ν	3	100	Feet	
TAI ON/OFF ALTITUDE	F	Μ	Ν	6			
TAI ON ALTITUDE	F	S	Ν	3	100	Feet	
TAI OFF ALTITUDE	F	S	Ν	3	100	Feet	
TAKEOFF CENTER OF GRAVITY	V	S	Ν	3	0.1	Percent	
TAKEOFF FLAPS	V	S	Ν	2	1	Degrees	
TAKEOFF GROSS WEIGHT	V	S	Ν	5	0.1	Klbs	

TAKEOFF RUNW	AY CONDITION	F	S	Ν	1		1=Wet
							2=Dry
							3=1/4 water
							4=1/2 water
							5=1/4 slush
S =	SINGLE PARAMER	A = AL	.PHA		N =	NUMERIC	

V = VARIABLE F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						6=1/2 slush	
						7=compact snow	
						8= wet skid resist	
TAKEOFF RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		Ν	2			
RUNWAY SUFFIX	F		A	1		L=Left	
						C=Center	
						R=Right	
						O=None	
TAKEOFF RUNWAY SLOPE	V	D	AN	3			
DIRECTIONAL	F		A	1		U=Up	
						D=Down	
MAGNITUDE	V		Ν	2	0.1	Percent	
TAKEOFF RUNWAY WIND	V	Μ	Ν	6			
DIRECTIONAL	F	S	Ν	3	1	Degree	
MAGNITUDE	V	S	Ν	3	1	Knots	2
TAKEOFF SPEEDS	F	М	Ν	9			
V1	F	S	Ν	3	1	Knots	
VR	F	S	Ν	3	1	Knots	
V2	F	S	Ν	3	1	Knots	2
TAKEOFF THRUST RATING	F	S	Ν	1	_	0= No derate	

1= Derate 1

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						2= Derate 2	
						I	
						I	
						8=Bump	
						9=Derate	
TAKEOFF TIME							
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
TARGET MACH	V	S	Ν	3	.001	Mach	
TAS AT PREDICTED WAYPOINT	V	S	Ν	3	1	Knots	1
TAXI FUEL	V	S	Ν	5	0.1	Klbs	
TEMPERATURE AT ALTERNATE	V	D	AN	3			1
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
THRUST REDUCTION ALTITUDE	V	S	Ν	5	1	Feet	
TIME DETERMINED	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1	Seconds	
TIME ERROR TOLERANCE	V	S	Ν	2	1	Seconds	
TIME TO GO TO DESTINATION 1	V	S	Ν	3	1	Minutes	
TIME TO GO TO DESTINATION 2	V	S	Ν	3	1	Minutes	
	V	S	N	3	1	Minutes	

V = VARIABLE

F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
TIME TO GO TO DESTINATION 4	V	S	Ν	3	1	Minutes	
TIME TO GO TO DESTINATION 5	V	S	Ν	3	1	Minutes	
TIME TO GO TRIGGER	V	S	Ν	3	1	Minutes	
TIME UPLINK IS RECEIVED	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1	Seconds	
TOC OR CRUISE TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	v		N	2	1	°C	
TOP OF DESCENT ALTITUDE	V	S	Ν	3	100	Feet	
TOP OF DESCENT ETA	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1	Seconds	
TOP OF DESCENT LOCATION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

V = VARIABLE

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
TOTAL FUEL/FOB	V	S	Ν	5	0.1	Klbs
TRACK ANGLE MAG	F	S	Ν	3	1	Degrees
TRIGGER NUMBER	F	S	Ν	3	1	
TRIGGER TRIPPED TIME	F	Μ	Ν	6		
HOURS	F	S	Ν	2	1	Hours
MINUTES	F	S	Ν	2	1	Minutes
SECONDS	F	S	Ν	2	1	Seconds
TRIGGER UPLINK TIME	F	Μ	Ν	6		
HOURS	F	S	Ν	2	1	Hours
MINUTES	F	S	Ν	2	1	Minutes
SECONDS	F	S	Ν	2	1	Seconds
TRIM	V	D	AN	5		
DIRECTIONAL	F		A	1		P=Plus
						M=Minus
MAGNITUDE	V		Ν	4	0.01	Degrees
TRIP FUEL	V	S	Ν	5	0.1	Klbs
TROPOPAUSE ALTITUDE	F	S	Ν	5	1	Feet
UPLINKED IMI	F	S	A	3		
VERTICAL DEVIATION	V	D	AN	6		
DISTANCE	V		Ν	5	1	Feet
DIRECTIONAL	F		A	1		H or L
VTR PERCENTAGE	V	S	Ν	2	1	Percent
WAYPOINT ALTITUDE/OAT	V	Μ	AN	6		1
ALTITUDE	F	S	Ν	3	100	Feet

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
OAT DIRECTIONAL	F	D	N	1		P=Plus	
						M=Minus	
OAT MAGNITUDE	V		Ν	2	1	°C	
WAYPOINT BEARING	F	S	Ν	3	1	Degrees	1
WAYPOINT IDENT	V	S	AN	5			
WAYPOINT LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	F
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
WAYPOINT MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		A	1		E=East	
						W=West	
MAGNITUDE	V		Ν	2	1	Degrees	
WAYPOINT NAME OR POSITION	V	S	AN	13			
WAYPOINT SEQUENCE	V	S	AN	13			
WAYPOINT TROPOPAUSE ALTITUDE	F	S	Ν	3	100	Feet	
WAYPOINT TROPOPAUSE ALTITUDE MODIFICATION	F	S	Ν	3	100	Feet	
WAYPOINT TROPOPAUSE TEMPERATURE	E	S	AN	3			
DIRECTIONAL	E		A	1		P=Plus	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	ERIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						<mark>M=Minus</mark>	
MAGNITUDE	V		N	2	1	<mark>∘C</mark>	
WAYPOINT TROPOPAUSE TEMPERATURE MODIFICATION	E	S	AN	3			
DIRECTIONAL	F		A	1		<mark>P=Plus</mark>	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
WAYPOINT WIND	V	М	Ν	6			
DIRECTIONAL	F	S	Ν	3	1	Degrees	1
MAGNITUDE	V	S	Ν	3	1	Knots	2
WIND ALTITUDE	V	S	Ν	3	100	Feet	
WIND AT PREDICTED WAYPOINT	V	М	Ν	6			1
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	Ν	3	1	Knots	
WIND LEVEL ALTITUDE	V	S	Ν	3	100	Feet	
WIND LEVEL WAYPOINT	V	S	AN	13			
WIND VECTOR MAGNITUDE							
DIFFERENCE	V	S	Ν	3	1	Knots	
ZERO FUEL WEIGHT	V	S	Ν	5	0.1	Klbs	
ZERO FUEL WEIGHT CG	V	S	Ν	3	0.1	Percent	

5261 Section 9

5262 Flight Plan Element Definitions

5263 5264 This section contains the flight plan element identifiers and a complete description of each flight plan element.

V = VARIABLE F = FIXED S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
:DA:	DEPARTURE AIRPORT							
		AIRPORT IDENTIFIER	V	S	AN	4		
:AA:	ARRIVAL AIRPORT							
		AIRPORT IDENTIFIER	V	S	AN	4		
:CR:	COMPANY ROUTE							
		COMPANY ROUTE	V	S	AN	10		
:R:	DEPARTURE RUNWAY							
		RUNWAY IDENTIFIER	F	D	AN	3		
		RWY NUMBER			Ν	2		
		RWY SUFFIX			А	1		L=LEFT
								C=CENTER
								R=RIGHT
	SUFFIX							O=NO
:D:	SUFFIX DEPARTURE PROCEDURE							O=NO
:D:	DEPARTURE	PROCEDURE IDENT	v	S	AN	10		O=NO
	DEPARTURE	PROCEDURE IDENT	V	S	AN	10		O=NO
	DEPARTURE PROCEDURE FLIGHT PLAN	PROCEDURE IDENT	V	S	AN	10		O=NO
	DEPARTURE PROCEDURE FLIGHT PLAN SEGMENT	PROCEDURE IDENT	V	S	AN	10		O=NO
	DEPARTURE PROCEDURE FLIGHT PLAN SEGMENT							O=NO
:D: :F:	DEPARTURE PROCEDURE FLIGHT PLAN SEGMENT	FIX IDENTIFIER						O=NO
	DEPARTURE PROCEDURE FLIGHT PLAN SEGMENT	FIX IDENTIFIER OPTIONAL INTRO.(,)	V	S	AN	5		O=NO N OR S
	DEPARTURE PROCEDURE FLIGHT PLAN SEGMENT	FIX IDENTIFIER OPTIONAL INTRO.(,) OPTIONAL LAT/LON	V	S	AN	5		

V = VARIABLE F = FIXED

FPEI	Description	Elemen Descripti		Length Type	Elem Type	Char Type	Length	Scale	Units
		DIRECTIONAL				А	1		E OR W
		DEGREES				Ν	6		
	LAT/LON								
		LATITUDE/ LONGITUDE		V	Μ	AN	13		
		DIRECTIONAL				А	1		N OR S
		DEGREES				Ν	5		
		DIRECTIONAL				А	1		E OR W
		DEGREES				Ν	6		
	PB/PB								
		FIX IDENTIFIER		V	S	AN	5		
		OPTIONAL INTRO	D.(,)						
		OPTIONAL LAT/L	ON	F	М	AN	13		
		DIRECTIONAL				А	1		N OR S
		DEGREES				Ν	5		
		DIRECTIONAL				А	1		E OR W
		DEGREES				Ν	6		
		OPTIONAL TERM	l.(,)						
		BEARING		F	S	Ν	3	1	DEGREES
		DASH							
		FIX IDENTIFIER		V	S	AN	5		
		OPTIONAL INTRO	D.(,)						
		OPTIONAL LAT/L	ON	F	М	AN	13		
		DIRECTIONAL				А	1		N OR S
		DEGREES				Ν	5		
	S = SINGLE PA M = MULTIPAR		A = ALPHA AN = ALPH		С			۸L	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		DIRECTIONAL			A	1		E OR W
		DEGREES			Ν	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	Ν	3	1	DEGREES
	PBD							
		FIX IDENTIFIER	V	S	AN	5		
		OPTIONAL INTRO.(,)						
		OPTIONAL LAT/LON	F	М	AN	13		
		DIRECTIONAL			A	1		N OR S
		DEGREES			Ν	5		
		DIRECTIONAL			A	1		E OR W
		DEGREES			Ν	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	Ν	3	1	DEGREES
		DASH						
		DISTANCE	F	S	Ν	4	0.1	NM
:ON:	START OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
:OF:	END OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
	DIRECT FIX	SAME AS :F:						
:A:	ARRIVAL PROCEDURE							
		PROCEDURE IDENT	V	S	AN	10		
	S = SINGLE PA	RAMER A = ALI	РНА		N – N	IUMERIC		
	M = MULTIPAR		LPHANUMERI	с			۹L	

FP	PEI	Description	Elemen Descriptio		Length Type	Elem Type	Char Type	Length	Scale	Units
:AP		APPROACH PROCEDURE								
			PROCEDURE IDE	NT	V	S	AN	10		
()		ARRIVAL RUNWAY								
			RUNWAY IDENTI	FIER	F	М	AN	3		
			RWY NUMBER			S	Ν	2		
			RWY SUFFIX			S	А	1		L=LEFT
										C=CENTER
										R=RIGHT
		SUFFIX								O=NO
:V:		WAYPOINT SPD/ALT/TIME								
			FIX IDENTIFIER		V	S	AN	13		
			COMMA (,)							
			OPTIONAL* SPEE	D	F	S	Ν	3	1	KNOTS
			COMMA (,)							
			OPTIONAL* ALTIT	UDE	V	D	AN	6		
			DIRECTIONAL		F		А	2		AA=AT OR
										ABOVE
										AB=AT OR
										BELOW
										AT=AT
			ALTITUDE		V		Ν	4	10	FEET
			COMMA (,)							
			OPTIONAL ALTIT	UDE	V	D	AN	6		
			DIRECTIONAL		F		А	2		AA=AT OR
LE		S = SINGLE PARA M = MULTIPARAN		A = ALPHA AN = ALPH/	ANUMERIC	2		JMERIC RECTIONA	L	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V		Ν	4	10	FEET
		COMMA (,)						
		OPTIONAL TIME*	V	D	AN	6		
		DIRECTIONAL	F		A	2		AA=AT OR AFTER
								AB=AT OR BEFORE
								AT=AT
		TIME	F		Ν	4	1	HOURS MINUTES UTC (HHMM)
		* For speed-only, altitude only, or time-only constra						
		Note: Either speed, altitu or time, or any combinati must be included.						
:	H:	HOLD AT WAYPOINT						
		FIX IDENTIFIER	V	S	AN	13		
		COMMA (,)						
		SPEED	F	S	N	3	1	KNOTS
		COMMA (,)						
		ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		А	2		AA=AT OR
								ABOVE
	S = SINGLE PA M = MULTIPAR		ALPHA = ALPHANUMER	IC			AL	

	FPEI	Description	Eleme Descript		Length Type	Elem Type	Char Type	Length	Scale	Units
										AB=AT OR
										BELOW
										AT=AT
			ALTITUDE	,	V	S	Ν	4	10	FEET
			COMMA (,)							
			TARGET SPEED)	F	S	Ν	3	1	KNOTS
			COMMA (,)							
			TURN DIRECTIC	N	F	S	A	1		L=LEFT
										R=RIGHT
			COMMA (,)							
			INBOUND COUR	RSE	F	S	Ν	3	1	DEGREES
			COMMA (,)							
			EFC TIME	I	F	М	Ν	4		
			HOURS	I	F	S	Ν	2	1	00-24 HOURS
			MINUTES	I	F	S	Ν	2	1	MINUTES
			COMMA (,)							
			LEG TIME	I	F	S	Ν	2	0.1	MINUTES
			COMMA (,)							
			LEG DISTANCE		V	S	Ν	3	0.1	NM
	:WS:	WAYPOINT STE CLIMB	P							
			FIX IDENTIFIER	,	V	S	AN	13		
			COMMA (,)							
			ALTITUDE	,	V	S	Ν	3	100	FEET
	:AT:	along trac Waypoint	K							
= VARIABLE = FIXED		S = SINGLE PARAMER M = MULTIPARAMETER			A = ALPHA AN = ALPHANUMERIC			JMERIC RECTIONA		

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		FIX IDENTIFIER	V	S	AN	5		
		DASH (-)						
		DISTANCE	V	D	AN	5	0.1	NM
		DIRECTIONAL	F		A	1		P=PLUS
								M=MINUS
		DISTANCE	V		Ν	4	0.1	NM
		COMMA (,)						
		SPEED	F	S	Ν	3	1	KNOTS
		COMMA (,)						
		ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		A	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V	S	Ν	4	10	FEET
		COMMA (,)						
		OPTIONAL ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		A	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V	S	Ν	4	10	FEET
RP:	REPORTING POINTS	3						
	S = SINGLE PA	RAMER A = ALF	РНА		N = N	IUMERIC		

V = VARIABLE F = FIXED

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
	LATITUDE RP	LATITUDE	V	М	AN	3		
		DIRECTIONAL	F	S	A	1		N=NORTH
								S=SOUTH
		DEGREES	V	S	Ν	2		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	S	Ν	2		
	LONGITUDE RP	LONGITUDE	V	М	AN	4		
		DIRECTIONAL	F	S	A	1		E=EAST
								W=WEST
		DEGREES	V	S	Ν	3		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	S	Ν	2		
	TRANSITION							
		TRANSITION IDENT	V	S	AN	5		
	AIRWAY VIA/EXIT VIA							
	AIRWAY VIA							
		AIRWAY IDENTIFIER	V	S	AN	5		
	AIRWAY EXIT VIA							
		FIX IDENTIFIER	V	S	AN	6		
:LO:	LATERAL OFFSET	OFFSET	V	D	AN	3		
		DIRECTIONAL	F		А	1		L=LEFT R=RIGHT
		DISTANCE	V/F		Ν	2/3	1/0.1	NM
		For backward compatibility, resolution of 1 NM or a fixe systems may not support 0.	d length of 3 i	numerics w	-			
	S = SINGLE PAR	AMER A = ALF	РНА		N – N	UMERIC		

V = VARIABLE	S = SINGLE PARAMER	A = ALPHA	N = NUMERIC
F = FIXED	M = MULTIPARAMETER	AN = ALPHANUMERIC	D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		OPTIONAL COMMA	(,)					
		OPTIONAL START F IDENTIFIER	FIX V	S	AN	13		
		OPTIONAL COMMA	(,)					
		OPTIONAL END FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA	(,)					
		OPTIONAL INTERCE ANGLE	EPT V	S	Ν	3		DEGREES
F:.	AIRWAY INTERCEPT							
		AIRWAY IDENTIFIER	R V	S	AN	5		
IC:								
	INTERCEPT COURSE FROM	PUBLISHED IDENT, or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F:					
		or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and	the :F:	S	Ν	3	1	DEG
:CS:		or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed	S	N	3	1	DEG
:CS:	COURSE FROM	or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed	S	N	3 13	1	DEG
:CS:	COURSE FROM CRUISE SPEED SEGMENT	or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed V				1	DEG
:CS:	COURSE FROM CRUISE SPEED SEGMENT FIX IDENTIFIER	or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed V				1	DEG Mach 000-999
.CS:	COURSE FROM CRUISE SPEED SEGMENT FIX IDENTIFIER COMMA (,)	or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed V	S	AN	13	1	
CS:	COURSE FROM CRUISE SPEED SEGMENT FIX IDENTIFIER COMMA (,)	or PBD as defined in t FLIGHT PLAN FPE, f by a COMMA (,) and COURSE:	the :F: ollowed V	S	AN	13	1	Mach 000-999

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
	OPTIONAL COMMA (,)							
	OPTIONAL ALTITUDE		F	S	Ν	3	100	FT
	OPTIONAL COMMA (,)							
	OPTIONAL FIX IDENTIFIER	V	S	AN	13			
	OPTIONAL COMMA (,)							
	OPTIONAL SPEED TARGET	v	S	AN	3		Mach 000- 999	
								E=Econ
								L=LR

5265

V = VARIABLE F = FIXED N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

5266 Section 10

5267 Codes and Triggers

5268 10.1 Error Type Codes

5269

5270 5271 Error type codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	END TO END CRC
002	002	INVALID ATC
003	003	SYNTAX ERROR
004	004	MISSING ELEMENT
005	005	RESERVED FOR DEFINITION (B-737)
006	006	N/A FOR IN AIR
007	007	MISSING ALL DATA FOR DEPENDENT ELEMENT
800	008	INCOMPATIBLE DATA
009	009	FMC DOWNMODE
010	00A	REFERENCE MISMATCH
011	00B	NOT IN NDB
012	00C	DUPLICATE WAYPOINT
013	00D	ROUTE FULL ERROR
014	00E	DATA BASE FULL ERROR
015	00F	ENTRY SLOT UNAVAILABLE
016	010	DUPLICATE SUPPLEMENT NDB DEFINITION
017	011	RESERVED FOR DEFINITION (B-737)
018	012	RESERVED FOR DEFINITION (B-737)
019	013	RESERVED FOR DEFINITION (B-737)
020	014	RESERVED FOR DEFINITION (B-737)
021	015	NO MINIMUM FLIGHT PLAN
022	016	NO ACTIVE ROUTE FOR DOWNLINK
023	017	UNSOLICITED UPLINK
024	018	DATA NOT ALLOWED IN TAKEOFF PHASE
025	019	DATA NOT ALLOWED IN CLIMB PHASE
026	01A	DATA NOT ALLOWED IN CRUISE PHASE
027	01B	DATA NOT ALLOWED IN DESCENT PHASE
028	01C	INCOMPATIBLE RANGE
029	01D	DEPARTURE AIRPORT DOES NOT EXIST
030	01E	DESTINATION AIRPORT DOES NOT EXIST
031	01F	ATO DISTANCE IS ENTERED OVER AN INVALID LEG
032	020	NEGATIVE ATO IS ENTERED OVER MOD DIRECT TO WPT
033	021	ATO DISTANCE IS GREATER THAN LEG LENGTH
034	022	INITIAL FIX IS FLOATER OR PPOS
035	023	PBPB WAYPOINT WITH NO VALID INTERSECTION
036	024	DIRECT WPT AFTER INTERCEPT WAYPOINT
037	025	HOLD ENTERED ON NON-HARD WAYPOINT

DEC CODE	HEX CODE	DESCRIPTION
038	026	ALTITUDE RESTRICTION ON ALT ONLY WAYPOINT
039	027	TO FIX EQUALS FROM ON ROUTE PAGE
040	028	RESERVED FOR DEFINITION (B-737)
041	029	TO FIX IS NOT ON AIRWAY
042	02A	TO FIX CAUSES CHANGE OF DIRECT ON AIRWAY
043	02B	FROM AND TO NOT ON ENTERED AIRWAY
044	02C	CRUISE ALTITUDE LESS THAN MIN CRUISE ALT
045	02D	EPC MORE THAN 6 HOURS PAST HOLD FIX ETA
046	02E	RUNWAY REMAINING GREATER THAN RUNWAY LENGTH
047	02F	RESERVED FOR DEFINITION (B-737)
048	030	UNSOLICITED MOD WIND BECAUSE OF LONG DELETE
049	031	INAPPROPRIATE DATA TYPE
050	032	RESERVED FOR DEFINITION (B-737)
051	033	UNSOLICITED MOD WIND
052	034	CRUISE WIND IN DESCENT
053	035	DATA NOT ALLOWED IN PHASE
054	036	HOLD ENTERED ON HOLD EXIT WITH EXIT ARMED
055	037	VIA TYPE OF PROCEDURE TO FIX ENTRY NOT ALLOWED
056	038	ENTERED AIRPORT ID – DIRECT
057	039	VIA ENTERED FOR FIRST ROUTE SEGMENT
058	03A	AIRWAY UNPACK WAS UNSUCCESSFUL
059	03B	COMPANY ROUTE UNPACK UNSUCCESSFUL
060	03C	N/A FOR AIRCRAFT STATE
061	03D	PROCEDURE NOT FOUND (FOR ENROUTE AFTER)
062	03E	N/A FOR AIRCRAFT INSTALLATION
063	03F	DATA ELEMENT NOT ALLOWED ON GROUND
064	040	NO OFFSET EXISTS
065	041	NO OFFSET AT LEG
066	042	OFFSET IS ACTIVE
067	043	OFFSET DATA INCOMPATIBLE
068	044	NO OFFSETABLE LEG EXISTS
069	045	IMI LOST DUE TO WARM START
070	046	IMI LOST DUE TO OVERFLOW
071-100	047-064	RESERVED FOR DEFINITION (B-737)
101	065	BUFFER FULL
102	066	INCOMPATIBLE IEI
103	067	
104	068	
105	069	NOT ALLOWED ON GROUND
106	06A	INVALID REQUEST LABEL
107	06B	
108	06C	
109	06D	
110	06E	NOT ALLOWED WHEN AIRBORNE

DEC CODE	HEX CODE	DESCRIPTION
111	06F	NO APPLICABLE ROUTE
112	070	NO APPLICABLE IEI
113	071	NO REPORTING POINTS CREATED
114	072	ZERO FUEL WEIGHT CAUSES INVALID GROSS WEIGHT
115	073	PRIORITY MESSAGE PENDING
116	074	MULTIPLE ROUTE IEI
117	075	NO ROUTE IEI
118	076	NO FLIGHT PLAN ELEMENTS
119	077	NO ACTIVE ROUTE
120	078	FIRST FLIGHT PLAN ELEMENT INVALID
121	079	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
122	07A	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
123	07B	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
124	07C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
125	07D	MULTIPLE DIRECT TO FIX
126	07E	MULTIPLE OF FLIGHT PLAN ELEMENT NOT ALLOWED
127	07F	FROM FIX IS NOT ON AIRWAY
128	080	AIRWAY/AIRWAY INTERSECTION NOT FOUND
129	081	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
130	082	NO FIX MATCH IN ROUTE
131	083	MULTIPLE HOLD AT FIX
132	084	BASE PROCEDURE UNDEFINED
133	085	LAT/LON REPORTING POINT NOT FOUND
134	086	CURRENT FLIGHT PLAN CONDITIONS INVALID FOR OFFSET
135	087	FPEI INCOMPATIBLE WITH IEI
136	088	NO COMPATIBLE RUNWAYS
137	089	AIRWAY FLIGHT PLAN ELEMENT IS NOT CLOSED
138	08A	NO FROM FIX FOR AIRWAY FLIGHT PLAN ELEMENT
139	08B	SPARE
140	08C	EXCEEDS CHARACTER LIMIT
141	08D	DERATE OPTION NOT SELECTED
142	08E	PAGES OUT OF SEQUENCE
143	08F	TIMED OUT
144	090	NO VALID RWY RECORDS
145-200	091-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201	0C9	DEPENDENT IMI REJECTED
202	0CA	DUPLICATE IEIS
203	0CB	REPORT NOT ALLOWED WITH INVALID A/C POSITION
204	0CC	BLOCK NOT SUFFICIENT FOR TAXI AND ROUTE RESERVE
205	0CD	WINDOW ALTITUDE CONSTRAINT NOT ALLOWED
206	0CE	NOT ALLOWED FOR ALTERNATE FLIGHT PLAN
207	0CF	DESTINATION DOES NOT MATCH ORIGIN OF ALTERNATE
208	0D0	PILOT DEFINED STORE IS FULL
209-300	0D1-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 7 FMC/DATALINK INTERFACE

5272 10.2 Error Data Codes

5273 5274 5275 Error codes are listed as decimal and hexadecimal values. Depending in implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	RTA WAYPOINT DATA CODE
002	002	RTA TIME DATA CODE
003	003	ALTERNATE AIRPORT ID DATA CODE
004	004	ALTERNATE AIRPORT TYPE DATA CODE
005	005	ALTERNATE AIRPORT DISTANCE DATA CODE
006	006	ALTERNATE AIRPORT ALTITUDE DATA CODE
007	007	ALTERNATE AIRPORT WIND DATA CODE
800	008	CLEAR FLIGHT PLAN DATA CODE
009	009	FLIGHT NUMBER DATA CODE
010	00A	COST INDEX DATA CODE
011	00B	CRUISE ALTITUDE DATA CODE
012	00C	CRUISE (TOC) TEMP DATA CODE
013	00D	ZERO FUEL WEIGHT DATA CODE
014	00E	CRUISE WIND DATA CODE
015	00F	RESERVE FUEL DATA CODE
016	010	CRUISE CENTER OF GRAVITY DATA CODE
017	011	CLIMB TRANSITION ALTITUDE DATA CODE
018	012	TAKEOFF DEPARTURE RUNWAY ID DATA CODE
019	013	RUNWAY INTERSECTION DATA CODE
020	014	RUNWAY POSITION SHIFT DATA CODE
021	015	RUNWAY LENGTH REMAINING DATA CODE
022	016	T/O RUNWAY INVALID FLAG DATA CODE
023	017	TRIM DATA CODE
024	018	TAKEOFF REFERENCE GROSS WEIGHT DATA CODE
025	019	TAKEOFF FLAPS DATA CODE
026	01A	V1 SPEED DATA CODE
027	01B	V2 SPEED DATA CODE
028	01C	VR SPEED DATA CODE
029	01D	TAKEOFF SEL TEMP DATA CODE (ASSUMED TEMP)
030	01E	T/O RUNWAY SLOPE DATA CODE
031	01F	T/O RUNWAY WIND DATA CODE
032	020	T/O RUNWAY CONDITION DATA CODE
033	021	TAKEOFF DERATE DATA CODE
034	022	RESERVED FOR DEFINITION (B-737)
035	023	OUTSIDE AIR TEMP DATA CODE
036	024	DESCENT WIND ALT DATA CODE
037	025	DESCENT WIND DIR/MAG DATA CODE
038	026	TAKEOFF CENTER OF GRAVITY DATA CODE
039	027	RESERVED FOR DEFINITION (B-737)

DEC CODE	HEX CODE	DESCRIPTION
040	028	BLOCK FUEL DATA CODE (PLAN FUEL)
041	029	DESCENT TRANSITION ALTITUDE DATA CODE
042	02A	TAI ON DATA CODE
043	02B	TAI ON/OFF ALTITUDE DATA CODE
044	02C	DESCENT ISA DEV DATA CODE
045	02D	QNH DATA CODE
046	02E	TIME ERROR TOLERANCE DATA CODE
047	02F	MIN CLB CAS DATA CODE
048	030	MIN CLB MACH DATA CODE
049	031	MIN CRZ CAS DATA CODE
050	032	MIN CRZ MACH DATA CODE
051	033	MIN DES CAS DATA CODE
052	034	MIN DES MACH DATA CODE
053	035	MAX CLB CAS DATA CODE
054	036	MAX CLB MACH DATA CODE
055	037	MAX CRZ CAS DATA CODE
056	038	MAX CRZ MACH DATA CODE
057	039	MAX DES CAS DATA CODE
058	03A	MAX DES MACH DATA CODE
059	03B	DEPARTURE AIRPORT DATA CODE
060	03C	DESTINATION AIRPORT DATA CODE
061	03D	COMPANY ROUTE DATA CODE
062	03E	DEPARTURE RUNWAY DATA CODE
063	03F	DEPARTURE BASE PROCEDURE DATA CODE
064	040	DEPARTURE TRANSITION PROCEDURE DATA CODE
065	041	AIRWAY VIA DATA CODE
066	042	INITIAL FIX WAYPOINT DATA CODE
067	043	INITIAL FIX PBD DATA CODE
068	044	INITIAL FIX PBPB DATA CODE
069	045	INITIAL FIX LAT/LON DATA CODE
070	046	DIRECT WPT AFTER SID DATA CODE
071	047	DIRECT PBD AFTER SID DATA CODE
072	048	DIRECT PBPB AFTER SID DATA CODE
073	049	DIRECT LAT/LON AFTER SID DATA CODE
074	04A	DIRECT WAYPOINT AFTER STAR DATA CODE
075	04B	DIRECT PBD AFTER STAR DATA CODE
076	04C	DIRECT PBPB AFTER STAR DATA CODE
077	04D	DIRECT LAT/LON AFTER STAR DATA CODE
078	04E	DIRECT WAYPOINT AFTER APPROACH DATA CODE
079	04F	DIRECT PBD AFTER APPROACH DATA CODE
080	050	DIRECT PBPB AFTER APPROACH DATA CODE
081	051	DIRECT LAT/LON AFTER APPROACH DATA CODE
082	052	DIRECT TO WAYPOINT DATA CODE
083	053	DIRECT TO PBD DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
084	054	DIRECT TO PBPB DATA CODE
085	055	DIRECT LAT/LON DATA CODE
086	056	ENROUTE WAYPOINT DATA CODE
087	057	DIRECT WAYPOINT DATA CODE
088	058	DIRECT PBD DATA CODE
089	059	DIRECT PBPB DATA CODE
090	05A	DIRECT LAT/LON DATA CODE
091	05B	RESERVED FOR DEFINITION (B-737)
092	05C	REF WAYPOINT 2 LAT/LON DATA CODE
093	05D	STAR BASE PROCEDURE DATA CODE
094	05E	STAR TRANS PROCEDURE DATA CODE
095	05F	APPROACH BASE PROCEDURE DATA CODE
096	060	APPROACH TRANSITION PROCEDURE DATA CODE
097	061	DESTINATION RUNWAY DATA CODE
098	062	HOLD ID AND ALT RESTRICTION DATA CODE
099	063	HOLD TARGET SPEED DATA CODE
100	064	HOLD TURN DIRECTION DATA CODE
101	065	HOLD INBOUND COURSE DATA CODE
102	066	HOLD EFC TIME DATA CODE
103	067	HOLD LEG TIME DATA CODE
104	068	HOLD LEG DISTANCE DATA CODE
105	069	ATO WAYPOINT INFORMATION DATA CODE
106	06A	UPLINK REQUESTING DOWNLINK DATA CODE
107	06B	WAYPOINT SPD/ALT RESTRICTION DATA CODE
108	06C	NETWORK ADDRESS DATA CODE
109	06D	COMPANY ROUTING ADDRESS DATA CODE
110	06E	MESSAGE SEQUENCE NUMBER DATA CODE
111	06F	REFERENCE CRUISE WIND ALT DATA CODE
112	070	ENROUTE WIND WAYPOINT ID DATA CODE
113	071	ENROUTE WIND DIR/MAG DATA CODE
114	072	SUPP EFFECT DATE DATA CODE
115	073	SUPP AIRPORT ID DATA CODE
116	074	SUPP AIRPORT LAT DATA CODE
117	075	SUPP AIRPORT LON DATA CODE
118	076	SUPP AIRPORT ELEVATION DATA CODE
119	077	SUPP AIRPORT MAG VAR DATA CODE
120	078	SUPP NAVAID ID DATA CODE
121	079	SUPP NAVAID LAT DATA CODE
122	07A	SUPP NAVAID LON DATA CODE
123	07B	SUPP NAVAID ELEVATION DATA CODE
124	07C	SUPP NAVAID MAG VAR DATA CODE
125	07D	SUPP NAVAID FREQUENCY DATA CODE
126	07E	SUPP NAVAID CLASS DATA CODE
127	07F	SUPP WAYPOINT ID DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
128	080	SUPP WAYPOINT LAT DATA CODE
129	081	SUPP WAYPOINT LON DATA CODE
130	082	SUPP WAYPOINT MAG VAR DATA CODE
131	083	SUPP REF WAYPOINT ID DATA CODE
132	084	SUPP REF WAYPOINT REF LAT/LON DATA CODE
133	085	SUPP REF WAYPOINT RADIAL DATA CODE
134	086	SUPP REF WAYPOINT DISTANCE DATA CODE
135	087	WIND VECTOR MAGNITUDE DIFFERENCE DATA CODE
136	088	WAYPOINT SEQUENCE ID DATA CODE
137	089	ETA CHANGE DATA CODE
138	08A	ETA TO DEST 1 DATA CODE
139	08B	ETA TO DEST 2 DATA CODE
140	08C	ETA TO DEST 3 DATA CODE
141	08D	ETA TO DEST 4 DATA CODE
142	08E	ETA TO DEST 5 DATA CODE
143	08F	RESERVED FOR DEFINITION (B-737)
144	090	RESERVED FOR DEFINITION (B-737)
145	091	ROUTE BUILDING PARAMETER DATA CODE
146	092	ROUTE DATA TYPE CODE
147	093	PERF INIT DATA TYPE CODE
148	094	TAKEOFF REF DATA TYPE CODE
149	095	RTA DATA TYPE CODE
150	096	ALTERNATE INFO DATA TYPE CODE
151	097	SUPP NDB DATA TYPE CODE
152	098	AUTO INSERT DATA TYPE CODE
153	099	ACTIVE WIND DATA TYPE CODE
154	09A	
155	09B	DESCENT FORECAST DATA TYPE CODE
156	O9C	PERF LIMITS DATA TYPE CODE
157	09D	SPARE DATA TYPE CODE
158	09E	LATERAL OFFSET DIST DATA CODE
159	09F	LATERAL OFFSET START WPT DATA CODE
160	0A0	
161-200 201	0A1-0C8 0C9	RESERVED FOR DEFINITION (B-737) FUEL FLOW FACTOR DATA CODE
201	0C9 0CA	DRAG FACTOR DATA CODE
202	0CA 0CB	LIMIT TAKEOFF GROSS WEIGHT DATA CODE
203 204	0CC	THRUST RATING DATA CODE
204 205	0CC 0CD	VTR PERCENTAGE DATA CODE
205	0CE	ALTERNATE FLAPS DATA CODE
207	0CF	ALTERNATE TRIM DATA CODE
208	0D0	ALTERNATE LIMIT TAKEOFF GROSS WEIGHT DATA CODE
209	0D1	TAKEOFF SPEEDS DATA CODE
210	0D2	ALTERNATE TAKEOFF SPEEDS DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
211	0D3	WAYPOINT ALTITUDE/OAT DATA CODE
212	0D4	LATERAL OFFSET DATA CODE
213	0D5	ALONG TRACK OFFSET DATA CODE
214	0D6	WAYPOINT STEP CLIMB DATA CODE
215	0D7	LAT/LON REPORTING POINT DATA CODE
216	0D8	GROUND ADDRESS DATA CODE
217	0D9	DIRECT FIX DATA CODE
218	0DA	HOLD SPEED RESTRICTION DATA CODE
219	0DB	POSITION REPORTING POINT DATA CODE
220	0DC	ENROUTE WIND SEGMENT DATA CODE
221	0DD	ENROUTE SEGMENT DATA CODE
222	0DE	OPEN ENDED AIRWAY DATA CODE
223	0DF	ALTERNATE THRUST RATING DATA CODE
224	0E0	SEQUENCE NUMBER DATA CODE
225	0E1	MINIMUM FUEL TEMPERATURE DATA CODE
226	0E2	COMPANY PREFERRED AIRPORT IDENT DATA CODE
227	0E3	COMPANY PREFERRED PRIORITY DATA CODE
228	0E4	COMPANY PREFERRED WIND DATA CODE
229	0E5	COMPANY PREFERRED ALT/OAT DATA CODE
230	0E6	COMPANY PREFERRED OVERHEAD FIX DATA CODE
231	0E7	COMPANY PREFERRED ALTITUDE DATA CODE
232	0E8	COMPANY PREFERRED SPEED DATA CODE
233	0E9	COMPANY PREFERRED OFFSET DATA CODE
234	0EA	FLIGHT LIST AIRPORT IDENT DATA CODE
235	0EB	FLIGHT LIST WIND DATA CODE
236	0EC	FLIGHT LIST ALT/OAT DATA CODE
237	0ED	ALTERNATE INHIBIT AIRPORT IDENT DATA CODE
238	OEE	ALTERNATE TAKEOFF VTR PERCENTAGE DATA CODE
239	0EF	THRUST REDUCTION ALTITUDE DATA CODE
240	0F0	ACCELERATION ALTITUDE DATA CODE
241	0F1	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
242	0F2	PAGING DATA CODE
243	0F3	INTERCEPT COURSE FROM IDENT DATA CODE
244	0F4	INTERCEPT COURSE FROM COURSE DATA CODE
245	0F5	CRUISE SPEED SEGMENT START WAYPOINT DATA CODE
246	0F6	CRUISE SPEED SEGMENT END WAYPOINT DATA CODE
247	0F7	CRUISE SPEED SEGMENT SPEED DATA CODE
248	0F8	CRUISE SPEED SEGMENT ALTITUDE DATA CODE
249-300	0F9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	PERF FACTOR DATA CODE
302	12E	TAXI FUEL DATA CODE
303	12F	ZERO FUEL WEIGHT CG DATA CODE
304	130	TROPOPAUSE ALTITUDE DATA CODE
305	131	IDLE FACTOR DATA CODE

ATTACHMENT 7 FMC/DATALINK INTERFACE

DEC CODE	HEX CODE	DESCRIPTION
306	132	MEAN WIND DATA CODE
307	133	CLIMB WIND ALTITUDE DATA CODE
308	134	CLIMB WIND DIR/MAG DATA CODE
309	135	ALTERNATE DESTINATION WIND ALTITUDE DATA CODE
310	136	ALTERNATE DESTINATION WIND DIR/MAG DATA CODE
311	137	STAR/ENROUTE TRANSITION DATA CODE
312	138	THRUST REDUCTION ALTITUDE DATA CODE
313	139	ACCELERATION ALTITUDE DATA CODE
314	13A	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
315	13B	ALTERNATE ASSUMED TEMP DATA CODE
316-400	13C-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)
401	191	NOISE ABATEMENT END ALTITUDE DATA CODE
402	192	NOISE ABATEMENT SPEED DATA CODE
403	193	NOISE ABATEMENT DERATED THRUST DATA CODE
404	194	HOLD ALTITUDE DATA CODE
405	195	NOISE ABATEMENT THRUST DATA CODE
406	196	NOISE ABATEMENT START ALTITUDE DATA CODE
407	197	SUPP REF AIRPORT DATA CODE
408	198	SUPP RUNWAY DATA CODE
409	199	SUPP RUNWAY LAT DATA CODE
410	19A	SUPP RUNWAY LON DATA CODE
411	19B	SUPP RUNWAY COURSE DATA CODE
412	19C	SUPP RUNWAY ELEVATION DATA CODE
413	19D	SUPP RUNWAY LENGTH DATA CODE
414	19E	CLIMB TEMPERATURE ALTITUDE DATA CODE
415	19F	CLIMB TEMPERATURE DATA CODE
416	1A0	DESCENT TEMPERATURE ALTITUDE DATA CODE
417	1A1	DESCENT TEMPERATURE DATA CODE
<mark>418</mark>	<mark>1A2</mark>	WAYPOINT TROPOPAUSE ALTITUDE DATA CODE
<mark>419</mark>	1A3	WAYPOINT TROPOPAUSE TEMPERATURE DATA CODE
<mark>420</mark>	<mark>1A4</mark>	WAYPOINT TROPOPAUSE ALTITUDE MODIFICATION DATA CODE
<mark>421</mark>	<mark>1A5</mark>	WAYPOINT TROPOPAUSE TEMPERATURE MODIFICATION DATA CODE

ATTACHMENT 7 **FMC/DATALINK INTERFACE**

5278 10.3 Extended Error Codes

5279
5280
5281

Extended error codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	ALL OF MESSAGE TEXT DISCARDED
002	002	REMAINDER OF MESSAGE TEXT DISCARDED
003	003	ALL OF DATA TYPE DISCARDED
004	004	REMAINDER OF DATA TYPE DISCARDED
005	005	ALL OF ELEMENT TEXT DISCARDED
006	006	REMAINDER OF ELEMENT TEXT DISCARDED
007	007	ALL OF LIST DISCARDED
800	008	REMAINDER OF LIST DISCARDED
009	009	ALL OF LIST ELEMENT DISCARDED
010	00A	ALL OF MULTI-PARAMETER ELEMENT DISCARDED
011	00B	ALL OF ROUTE BUILDING PARAMETER DISCARDED
012	00C	ALL APPROACH PROCEDURE RELATED DATA DISCARDED
013	00D	ALL DEPARTURE AIRPORT RELATED DATA DISCARDED
014	00E	ALL ARRIVAL AIRPORT RELATED DATA DISCARDED
015	00F	ALL SID RELATED DATA DISCARDED
016	010	ALL STAR RELATED DATA DISCARDED
017	011	NEXT AIRWAY DISCARDED
018	012	SINGLE ELEMENT DISCARDED
019-100	013-064	RESERVED FOR DEFINITION (B-737)
101	065	ALL OF LIST ENTRY DISCARDED
102	066	ALL OF ENROUTE SEGMENT DISCARDED
103	067	ALTERNATE RUNWAY DATA DISCARDED
104	068	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
105	069	ALL OF ELEMENT TEXT DISCARDED
106-200	06A-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201-300	0C9-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT

5282

ATTACHMENT 7 FMC/DATALINK INTERFACE

5284 **10.4 Triggers, Stimulus Code, and Report Stimulus Codes**

5285 5286 5287 Triggers, stimulus codes and report stimulus codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	4R INIT REF
002	002	4L SUPP NAV DATA INDEX
003	003	4R SUPP NAV DATA INDEX
004	004	5R PERF INIT
005	005	5L PERF LIMITS
006	006	5R PERF LIMITS
007	007	4L TAKEOFF REF 1/2
008	008	6R MOD LEGS EXTENDED DATA
009	009	6L ALTERNATE DEST
010	00A	1L DATA LINK
011	00B	2L DATA LINK
012	00C	3L DATA LINK
013	00D	4L DATA LINK
014	00E	5L DATA LINK
015	00F	1R DATA LINK
016	010	2R DATA LINK
017	011	3R DATA LINK
018	012	4R DATA LINK
019	013	5R DATA LINK
020	014	6R DATA LINK
021	015	1R MAINT BITE INDEX
022	016	2R MAINT BITE INDEX
023	017	3R MAINT BITE INDEX
024	018	4R MAINT BITE INDEX
025	019	5R MAINT BITE INDEX
026	01A	6R MAINT BITE INDEX
027	01B	6R FMCS BITE INDEX
028	01C	6R FMCS SENSOR STATUS 2/2
029	01D	6R FMCS ANALOG DISCRETES
030	01E	6R IRS MONITOR
031	01F	6R FMCS INFLIGHT FAULTS 3/3
032	020	6R FMCS FLIGHT SELECT
033	021	6R FMCS FLIGHT 'N'
034	022	3R ROUTE
035	023	6R ACT LEGS EXTENDED DATA
036	024	5L PROGRESS 3/3
037	025	5R PROGRESS 3/3
038	026	6L PROGRESS 3/3
039	027	6R PROGRESS 3/3

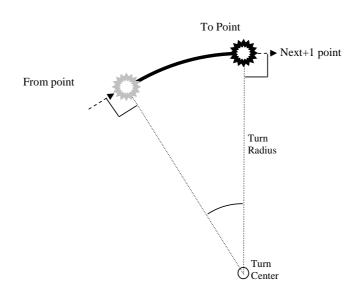
DEC CODE	HEX CODE	DESCRIPTION
040	028	DES FORECAST
041	029	TIME TO DESTINATION 1
042	02A	TIME TO DESTINATION 2
043	02B	TIME TO DESTINATION 3
044	02C	TIME TO DESTINATION 4
045	02D	TIME TO DESTINATION 5
046	02E	CHANGE IN DESTINATION ETA
047	02F	CHANGE IN DESTINATION AIRPORT
048	030	CHANGE IN ARRIVAL RUNWAY
049	031	EFC ENTRY
050	032	WIND DISCREPANCY
051	033	WAYPOINT SEQUENCE
052	034	POS SHIFT TO IRS LEFT
053	035	POS SHIFT TO IRS RIGHT
054	036	POS SHIFT TO IRS CENTER
055	037	POS SHIFT TO RADIO
056	038	POS SHIFT TO GPS LEFT
057	039	POS SHIFT TO GNSS RIGHT
058	03A	VERIFY POSITION MESSAGE
059	03B	INSUFFICIENT FUEL MESSAGE
060	03C	MOD PLAN EXECUTION
061	03D	CRUISE ALTITUDE CHANGE
062	03E	RTA UNACHIEVABLE MESSAGE
063	03F	HOLDING PATTERN EXIT
064	040	HOLDING PATTERN ENTRY
065	041	FMC FAULT
066	042	SENSOR FAILURE
067	043	BAD NAVAID
068	044	INAIR
069	045	COMPANY UPLINK TEXT ERROR
070	046	ATC UPLINK TEXT ERROR
071	047	COMPANY UPLINK ACKNOWLEDGE
072	048	ATC UPLINK ACKNOWLEDGE
073	049	COMPANY ROUTE DATA ACCEPTED
074	04A	ATC ROUTE DATA ACCEPTED
075	04B	COMPANY ROUTE DATA ACCEPTED WITH EDIT
076	04C	ATC ROUTE DATA ACCEPTED WITH EDIT
077	040 04D	COMPANY ROUTE DATA REJECTED
078	04E	ATC ROUTE DATA REJECTED
079	04E 04F	COMPANY RTA DATA ACCEPTED
080	050	ATC RTA DATA ACCEPTED
081	050	COMPANY RTA DATA ACCEPTED WITH EDIT
082	052	ATC RTA DATA ACCEPTED WITH EDIT
083	052	COMPANY RTA DATA REJECTED
003	000	

DEC CODE	HEX CODE	DESCRIPTION
084	054	ATC RTA DATA REJECTED
085	055	COMPANY WIND TEMP DATA ACCEPTED
086	056	ATC WIND DATA ACCEPTED
087	057	COMPANY WIND TEMP DATA ACCEPTED WITH EDIT
088	058	ATC WIND DATA ACCEPTED WITH EDIT
089	059	COMPANY WIND TEMP DATA REJECTED
090	05A	ATC WIND DATA REJECTED
091	05B	COMPANY DESCENT FORECAST DATA ACCEPTED
092	05C	ATC DESCENT FORECAST DATA ACCEPTED
093	05D	COMPANY DESCENT FORECAST DATA ACCEPTED WITH EDIT
094	05E	ATC DESCENT FORECAST DATA ACCEPTED WITH EDIT
095	05F	COMPANY DESCENT FORECAST DATA REJECTED
096	060	ATC DESCENT FORECAST DATA REJECTED
097	061	COMPANY PERF INIT DATA ACCEPTED
098	062	ATC PERF INIT DATA ACCEPTED
099	063	COMPANY PERF INIT DATA ACCEPTED WITH EDIT
100	064	ATC PERF INIT DATA ACCEPTED WITH EDIT
101	065	COMPANY PERF INIT DATA REJECTED
102	066	ATC PERF INIT DATA REJECTED
103	067	COMPANY PERF LIMIT DATA ACCEPTED
104	068	ATC PERF LIMIT DATA ACCEPTED
105	069	COMPANY PERF LIMIT DATA ACCEPTED WITH EDIT
106	06A	ATC PERF LIMIT DATA ACCEPTED WITH EDIT
107	06B	COMPANY PERF LIMIT DATA REJECTED
108	06C	ATC PERF LIMIT DATA REJECTED
109	06D	RESERVED FOR DEFINITION (B-737)
110	06E	RESERVED FOR DEFINITION (B-737)
111	06F	RESERVED FOR DEFINITION (B-737)
112	070	RESERVED FOR DEFINITION (B-737)
113	071	RESERVED FOR DEFINITION (B-737)
114	072	RESERVED FOR DEFINITION (B-737)
115	073	UPLINK REQUESTING A DOWNLINK
116	074	TIME TO TOP OF DESCENT 1
117	075	TIME TO TOP OF DESCENT 2
118	076	TIME TO TOP OF DESCENT 3
119	077	TIME TO TOP OF DESCENT 4
120	078	TIME TO TOP OF DESCENT 5
121-200	079-0C8	RESERVED FOR DEFINITION (B-737)
201-300	0C9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	MULTI-LEVEL WIND TEMP DATA ACCEPTED
302	12E	MULTI-LEVEL WIND TEMP DATA REJECTED
303-400	12F-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

·-▶ Next+1 point

5289	ATTACHMENT 8	CODING EXAM	MPLES OF TRAJECTORY INTENT DATA FILES
5290			EXAMPLE 1
5291		Line to P	oint (Straight), No Vertical Change
5292			
		From point	To Point


5293

5294

Word Type Bits 31-30	Bit 29			Label Bits 8-1						
Full Word	Pad 29-22	Data Type 21-16 Geometry 15-13 Version 12-9							Active Intent	
01	00000000	00	00010		001	-	0001		10011010	
Full Word	Characteris	stics bit	ts 29-9						Active Intent	
00	00000000	000000	0000000						10011010	
Full Word	Point Latitu	Jde							Active Intent	
00	x xxxxxxx	XXXXXX	xxxx 00						10011010	
Full Word	Point Long	itude							Active Intent	
00	x xxxxxxxxxxxxxx 00								10011010	
Full Word	Point Altitude								Active Intent	
00	x xxxxxxxxxxxxx 00								10011010	
Full Word	Point ETA								Active Intent	
00	Valid	Hours	s M	inutes		Seconds	UTC/F	Pad	10011010	
	х	XXXXX		XXXX		XXXXXX	x00		10011010	
Full Word	Valid	Path I	RNP						Active Intent	
00	х	xxxx xxxx xxxx xxxx 0000							10011010	
Full Word	Valid	/alid Point CAS							Active Intent	
00	х								10011010	
Full Word	Valid	Point Wind Speed							Active Intent	
00	х	xxxx xxxx 0000 0000 0000							10011010	
Full Word	Point True								Active Intent	
00	X XXXX XXXX	x 0000	0000 0000						10011010	

5295

EXAMPLE 2 Arc to Point (Curve), No Vertical Change

5300

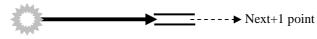
Word Type Bits 31-30	Bit 29		Label Bits 8-1					
Full Word	Pad 29-22	Data Type 21-16	Geometry	/ 15-13	Vers	ion 12-9	Active Intent	
01	00000000	000010	010		0001		10011010	
Full Word	Characteris	stics bits 29-9					Active Intent	
00	00000000	0000000000000					10011010	
Full Word	Point Latitu	ıde					Active Intent	
00	x xxxxxxxx	xxxxxxxx 00					10011010	
Full Word	Point Long	itude					Active Intent	
00	x xxxxxxx	xxxxxxxx 00					10011010	
Full Word	Point Altitu	de					Active Intent	
00	x xxxxxxx	xxxxxxxx 00					10011010	
Full Word	Point ETA						Active Intent	
	Valid	Hours	Minutes			UTC/Pad	10011010	
00	х	XXXXX	XXXXXX	XXXXXX		x00		
Full Word	Valid	Path RNP					Active Intent	
00	х	XXXX XXXX XXXX XX	xx 0000				10011010	
Full Word	Valid	Point CAS					Active Intent	
00	х	xxxx xxxx xxx0 00					10011010	
Full Word	Valid	Point Wind Speed					Active Intent	
00	х	xxxx xxxx 0000 0	000 0000				10011010	
Full Word	Point True		Active Intent					
00	X XXXX XXXX		10011010					
Full Word	Turn Radiu		Active Intent					
00	x xxxxxxx	10011010						
Full Word	Turn Cente		Active Intent					
00	x xxxxxxxx		10011010					
Full Word	Turn Cente	er Longitude					Active Intent	
00	x xxxxxxxx	xxxxxxxx 00					10011010	

5297

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

EXAMPLE 3

Line to Runway


5301

5302

5303

From point

To Point (Runway)

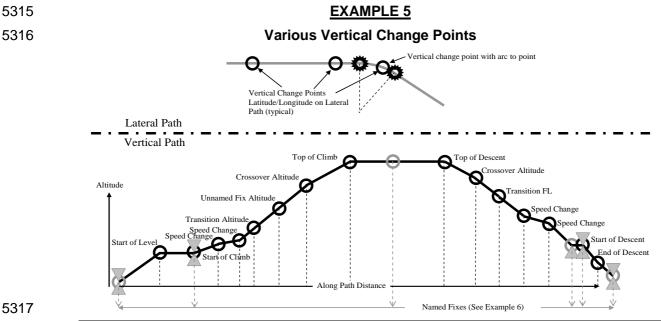
5304 5305

Word Type Bits 31-30	Bit 29		Label Bits 8-1					
Full Word 01	Pad 29-2 0000000	<i>.</i>	Active Intent 10011010					
Full Word 00		eristics bits 29-9 0000000100000	0					Active Intent 10011010
Full Word 00	Point Lat	itude xxxxxxxxxx 00						Active Intent 10011010
Full Word 00	Point Lor	ngitude xxxxxxxxxx 00						Active Intent 10011010
Full Word 00		pint Altitude xxxxxxxxxxxxxxx 00						
Full Word 00	Point ET Valid x	A Hours Minutes Seconds UTC/Pad xxxxx xxxxx x00						Active Intent 10011010
Full Word 00	Valid x	Path RNP xxxx xxxx xxxx	Active Intent 10011010					
Full Word 00	Valid x	Point CAS xxxx xxxx xxx0	Active Intent 10011010					
Full Word 00	Valid x	Point Wind Spe xxxx xxxx 0000	Active Intent 10011010					
Full Word 00		e Wind Direction						Active Intent 10011010

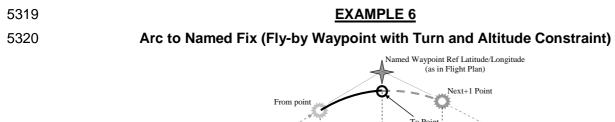
5306

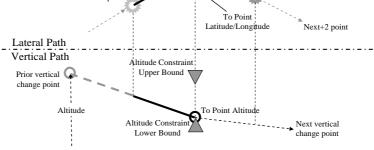
5307

EXAMPLE 4 Lateral Discontinuity to Point


- 5309
- 5310
- 5311

To Point

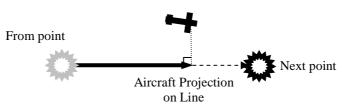

5312 5313


Word Type Bits 31-30	Bit 29		Label Bits 8-1						
Full Word 01	Pad 29-2 0000000		Type 21-16 Geometry 15-13 Version 12 010 001 0001				Active Intent 10011010		
Full Word 00		ristics bits 29-9 000000100000					Active Intent 10011010		
Full Word 00	Point Lat	itude xxxxxxxxxx (00				Active Intent 10011010		
Full Word 00		Point Longitude x xxxxxxxxxxxxxx 00							
Full Word 00		Point Altitude x xxxxxxxxxxxxx 00							
Full Word 00	Point ET. Valid x	A Hours xxxxx	Hours Minutes Seconds UTC/Pad						
Full Word 00	Valid x	Path RNP	Path RNP xxxx xxxx xxxx xxxx 0000						
Full Word 00	Valid x	Point CAS	Active Intent 10011010						
Full Word 00	Valid x	•	Point Wind Speed xxxx xxxx 0000 0000 0000						
Full Word 00		e Wind Directi xx 0000 0000					Active Intent 10011010		

Word Type Bits 31-30	Bit 29		Ра	ramete	r Bits 28-9		Label Bits 8-1		
Full Word 01	Pad 29-22 Data Type 21-16 00000000 000010		001 if	etry 15-13 line to point arc to point	Version 12-9 0001	Active Intent 10011010			
Full Word 00		stics bits 29-9 000000x00000					Active Intent 10011010		
Full Word 00	Point Latit	ude xxxxxxxxx 0(C				Active Intent 10011010		
Full Word 00	Point Long	jitude xxxxxxxxx 00	2				Active Intent 10011010		
Full Word 00	Point Altitu	ide xxxxxxxxx 0(C				Active Intent 10011010		
Full Word 00	Point ETA Valid x	Hours xxxxx	Minut		Seconds xxxxxx	UTC/Pad x00	Active Intent 10011010		
Full Word 00	Valid x	Path RNP			700000		Active Intent 10011010		
Full Word 00	Valid x	Point CAS	(0 000	0 0000			Active Intent 10011010		
Full Word 00	Valid x		Point Wind Speed						
Full Word 00							Active Intent 10011010		
Full Word* 00	Turn Radius x xxxxxxxxxxx 0000						Active Intent 10011010		
Full Word* 00	Turn Center Latitude x xxxxxxxxxxxxx 00					Active Intent 10011010			
Full Word* 00		•	0		Turn Center LongitudeActive Intentx xxxxxxxxxxxxxxxxxxxxxxx0010011010				

*Included if arc to point

Word Type Bits 31-30	Bit 29		Para	Label Bits 8-1			
Full Word 01	Pad 29-2 0000000	00	Data Type 21- 16 001000	Geo 13 010	metry 15-	Version 12-9 0001	Active Intent 10011010
Full Word 00	Characte 0000000		bits 29-9)00000000				Active Intent 10011010
Full Word 00	Point La	titude	xxxxx 00				Active Intent 10011010
Full Word 00	Point Lo	ngitude					Active Intent 10011010
Full Word 00		xxxxxx	xxxxx 00				Active Intent 10011010
Full Word 00	Point ET Valid x	A Hours xxxxx	Minutes xxxxxx	;	Seconds xxxxxx	UTC/Pad x00	Active Intent 10011010
Full Word 00	Valid x	Path F	RNP xxx xxxx xxxx 00	000			Active Intent 10011010
Full Word 00	Valid x		xxx xxx0 0000 0	000			Active Intent 10011010
Full Word 00	Valid x	хххх х	Wind Speed xxx 0000 0000 0	0000			Active Intent 10011010
Full Word 00	x xxxx x	xxx 000	Direction 0 0000 0000				Active Intent 10011010
Full Word 00		XXXXXX	x xxxxxxx				Active Intent 10011010
Full Word 00		XXXXXX	x xxxxxxx				Active Intent 10011010
Full Word 00	Point Name 0000000 0000000 xxxxxxx						Active Intent 10011010
Full Word 00	Named Point Ref Latitude x xxxxxxxxxxxxxx 00						Active Intent 10011010
Full Word 00	Named Point Ref Longitude x xxxxxxxxxxxxxxx 00					Active Intent 10011010	
Full Word 00	Altitude Constraint Lower Bound x xxxxxxxxxxxxxx 00					Active Intent 10011010	
Full Word 00	Altitude Constraint Upper Bound x xxxxxxxxxxxxxx 00						Active Intent 10011010
Full Word 00	Turn Ra x xxxxxx		xxx 0000				Active Intent 10011010


ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

Full Word	Turn Center Latitude	Active Intent
00	x xxxxxxxxxxxxx 00	10011010
Full Word	Turn Center Longitude	Active Intent
00	x xxxxxxxxxxxxxx 00	10011010

EXAMPLE 7 Line to Aircraft Projection, No Vertical Change

Word Type Bits 31-30	Bit 29	Parameter B	its 28-9	1			Label Bits 8-1
Full Word 01	Pad 29-22 00000000	71	21-16	Geome 001	etry 15-13	Version 12-9 0001	Active Intent 10011010
Full Word 00		stics bits 29-9 000100000000	0				Active Intent 10011010
Full Word 00	Point Latit	ude xxxxxxxxx 00)				Active Intent 10011010
Full Word 00	Point Long	jitude xxxxxxxxx 00)				Active Intent 10011010
Full Word 00	Point Altitude x xxxxxxxxxxxxxx 00					Active Intent 10011010	
Full Word	Point ETA						Active Intent 10011010
00	Valid x	Hours xxxxx	Minute xxxxx		Seconds xxxxxx	UTC/Pad x00	
Full Word 00	Valid x	Path RNP	Path RNP xxxx xxxx xxxx xxxx 0000				
Full Word 00	Valid x	Point CAS xxxx xxxx xxx0 0000 0000				Active Intent 10011010	
Full Word 00	Valid x	Point Wind Speed xxxx xxxx 0000 0000 0000					Active Intent 10011010
Full Word 00		Point True Wind Direction					Active Intent 10011010

APPENDIX A REFERENCE DOCUMENTS

5330	APF	PENDIX A REFERENCE DOCUMENTS
5331	The	e latest versions of the following documents apply:
5332 5333	1.	ARINC Specification 413A : Guidance for Aircraft Electrical Power Utilization and Transient Protection
5334	2.	ARINC Specification 424: Navigation System Data Base
5335	3.	ARINC Specification 429: Digital Information Transfer System (DITS)
5336	4.	ARINC Specification 600: Air Transport Avionics Equipment Interfaces
5337	5.	ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment (BITE)
5338	6.	ARINC Report 607: Design Guidance for Avionic Equipment
5339	7.	ARINC Report 608A: Design Guidance for Avionics Test Equipment
5340	8.	ARINC Report 610B: Guidance for Use of Avionics Equipment and Software in Simulators
5341	9.	ARINC Specification 615: Airborne Computer High Speed Data Loader
5342	10.	ARINC Specification 615A: Software Data Loader with High Density Storage Medium
5343	11.	ARINC Specification 618: Air-Ground Character-Oriented Protocol Specification
5344	12.	ARINC Specification 622: ATS Data Link Applications Over ACARS Air-Ground Network
5345	13.	ARINC Report 624: Design Guidance for Onboard Maintenance System
5346	14.	ARINC Report 625: Industry Guide for Component Test Development and Management
5347	15.	ARINC Report 626: Standard ATLAS Language for Modular Test
5348	16.	ARINC Specification 646: Ethernet Local Area Network (ELAN)
5349	17.	ARINC Report 651: Design Guidance for Integrated Modular Avionics
5350	18.	ARINC Specification 653: Avionics Application Software Standard Interface
5351 5352	19.	ARINC Report 660B: CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts
5353	20.	ARINC Specification 661: Cockpit Display System Interfaces to User Systems
5354	21.	ARINC Specification 664: Aircraft Data Network
5355	22.	ARINC Characteristic 701: Flight Control Computer System
5356	23.	ARINC Characteristic 704: Inertial Reference System
5357	24.	ARINC Characteristic 705: Attitude and Heading Reference System
5358	25.	ARINC Characteristic 706: Subsonic Air Data System
5359 5360	26.	ARINC Characteristic 708A: Airborne Weather Radar with Forward Looking Windshear Detection Capability
5361	27.	ARINC Characteristic 709: Airborne Distance Measuring Equipment
5362	28.	ARINC Characteristic 710: Mark 2 Airborne ILS Receiver
5363	29.	ARINC Characteristic 711: Mark 2 Airborne VOR ILS Receiver
5364 5365	30.	ARINC Characteristic 724B: Aircraft Communication Addressing and Reporting System (ACARS)
5366	31.	ARINC Characteristic 725: Electronic Flight Instruments (EFI)
5367	32.	ARINC Characteristic 737: On-Board Weight and Balance System
5368	33.	ARINC Characteristic 738: Air Data and Inertial Reference System (ADIRS)
5369	34.	ARINC Characteristic 739A: Multi-Purpose Control and Display Unit
5370	35.	ARINC Characteristic 740: Multiple-Input Cockpit Printer

APPENDIX A REFERENCE DOCUMENTS

5371	36.	ARINC Characteristic 743A: GNSS Sensor
5372		ARINC Characteristic 743B: GNSS Landing System Sensor Unit (GLSSU)
5373	38.	ARINC Characteristic 744: Full-Format Printer
5374	39.	ARINC Characteristic 744A: Full-Format Printer with Graphics Capability
5375	40.	ARINC Characteristic 745: Automatic Dependent Surveillance
5376	41.	ARINC Characteristic 755: Multi-Mode Landing System – Digital
5377	42.	ARINC Characteristic 756: GNSS Navigation and Landing Unit (GNLU)
5378	43.	ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2
5379	44.	ARINC Characteristic 760: GNSS Navigation Unit (GNU)
5380	45.	EUROCONTROL SPEC-0116: EUROCONTROL Specification on Data Link Services (DLS)
5381	46.	ICAO Doc 4444: Procedures for Air Navigation Services - Air Traffic Management
5382	47.	ICAO Doc 9613: Performance-Based Navigation Manual
5383 5384	48.	RTCA DO-160/EUROCAE ED-14: Environmental Conditions and Test Procedures for Airborne Equipment
5385 5386	49.	RTCA DO-178/EUROCAE ED-12: Software Considerations in Airborne Systems and Equipment Certification
5387	50.	RTCA DO-200/EUROCAE ED-76: Standards for Processing Aeronautical Data
5388	51.	RTCA DO-201/EUROCAE ED-77: Standards for Aeronautical Information
5389 5390	52.	RTCA DO-219: <i>Minimum Operational Performance Standards for ATC Two-Way Data Link</i> <i>Communications</i>
5391 5392	53.	RTCA DO-229: Minimum Operational Performance Standards for Global Positioning System/Satellite-Based Augmentation System Airborne Equipment
5393 5394	54.	RTCA DO-236/EUROCAE ED-75: Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation
5395 5396	55.	RTCA DO-257B: Minimum Operational Performance Standards for the Depiction of Navigational Information on Electronic Maps.
5397 5398	56.	RTCA DO-258/EUROCAE ED-100: Interoperability Requirements for ATS Applications Using ARINC 622 Data Communications
5399 5400	57.	RTCA DO-264/EUROCAE ED-78: Guidelines for Approval of the Provision and Use of Air Traffic Services Supported by Data Communications
5401 5402	58.	RTCA DO-280/EUROCAE ED-110: Interoperability Requirements Standard for Aeronautical Telecommunication Network Baseline 1
5403 5404	59.	RTCA DO-283: Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation
5405 5406	60.	RTCA DO-290/EUROCAE ED-120: Safety and Performance Requirements Standard for Air Traffic Data Link Services in Continental Airspace
5407 5408 5409	61.	RTCA DO-305/EUROCAE ED-154: Future Air Navigation Systems 1/A – Aeronautical Telecommunication Network Interoperability Standard (FANS 1/A ATN B1 Interop Standard)
5410 5411	62.	RTCA DO-306/EUROCAE ED-122: Safety and Performance Standard for Air Traffic Data Link Services in Oceanic and Remote Airspace (Oceanic SPR Standard)
5412 5413	63.	RTCA DO-308: Operational Services and Environment Definition (OSED) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services

APPENDIX A REFERENCE DOCUMENTS

- 5414 64. RTCA DO-324: Safety and Performance Requirements (SPR) for Aeronautical Information
 5415 Services (AIS) and Meteorological (MET) Data Link Services
- 5416 65. RTCA DO-350/EUROCAE ED-229: Safety and Performance Standard for Baseline 2 ATS
 5417 Data Communications
- 5418 66. RTCA DO-353/EUROCAE ED-231: Interoperability Requirements Standard for Baseline 2
 5419 ATS Data Communications

APPENDIX B ACRONYMS

5420 APPENDIX B ACRONYMS

5421	ACARS	Aircraft Communications Addressing and Reporting System
5422	ACK	Acknowledgement
5423	ADC	Air Data Computer
5424	ADIRS	Air Data/Inertial Reference System
5425	ADIRU	Air Data/Inertial Reference Unit
5426	ADS	Automatic Dependent Surveillance
5427	ADS-B	Automatic Dependent Surveillance – Broadcast
5428	ADS-C	Automatic Dependent Surveillance - Contract
5429	AEEC	Airlines Electronic Engineering Committee
5430	AF	Arc to a Fix
5431	AFM	Airplane Flight Manual
5432	AFN	ATS Facilities Notification
5433	AFCS	Auto Flight Control System
5434	AHRS	Altitude Heading Reference System
5435	AMI	Airline Modifiable Information
5436	ANP	Actual Navigation Performance
5437	AOC	Airline Operational Communication
5438	APM	Airplane Personality Module
5439	ASAS	Aircraft Separation Assurance System
5440	ATC	Air Traffic Control
5441	ATM	Air Traffic Management
5442	ATN	Aeronautical Telecommunication Network
5443	ATS	Air Traffic Services
5444	ATO	Along Track Offset
5445	ATS	Air Traffic Services
5446	BITE	Built-In Test Equipment
5447	BP	Bottom Plug
5448	CAS	Computed Air Speed
5449	CDA	Continuous Descent Approach
5450	CDO	Continuous Descent Operation
5451	CDU	Control Display Unit
5452	CF	Course to a Fix
5453	CMU	Communications Management Unit
5454	CNS	Communications, Navigation and Surveillance
5455	CPDLC	Controller/Pilot Data Link Communication
5456	CRC	Cyclic Redundancy Check
5457	CTS	Clear to Send
5458	DA	Decision Altitude
5459	DITS	Digital Information Transfer System

APPENDIX B ACRONYMS

F 400		Data Liele Initiation of Communications
5460	DLIC	Data Link Initiation of Communications
5461	DME	Distance Measurement Equipment
5462	EFIS	Electronic Flight Information System
5463	EIS	Electronic Information System
5464	ELAN	Ethernet Local Area Network
5465	EMD	Electronic Map Display
5466	EPU	Estimated Position Uncertainty
5467	ETA	Estimated Time of Arrival
5468	ETE	Estimated Time Enroute
5469	ETOPS	Extended-range Twin-engine Operations
5470	EUROCAE	European Organization for Civil Aviation Electronics
5471	FAF	Final Approach Fix
5472	FANS	Future Air Navigation System
5473	FAS	Final Approach Segment
5474	FASDM	Final Approach Segment Data Message
5475	FCOM	Flight Crew Operations Manual
5476	FEP	Final End Point
5477	FIR	Flight Information Region
5478	FLS	FMS-based Landing System
5479	FMC	Flight Management Computer
5480	FMCS	Flight Management Computer System
5481	FMF	Flight Management Function
5482	FMS	Flight Management System
5483	FRT	Fixed Radius Transition
5484	GBAS	Ground Based Augmentation System
5485	GLS	GNSS-based Landing System
5486	GLSSU	GPS/SBAS Landing System Sensor Unit
5487	GNLU	GNSS-based Navigation and Landing Unit
5488	GNSS	Global Navigation Satellite System
5489	GNSSU	Global Navigation Satellite System Unit
5490	GPS	Global Positioning System
5491	HSI	Horizontal Situation Indicator
5492	IAF	Initial Approach Fix
5493	ICAO	International Civil Aviation Organization
5494	IF	Initial Fix
5495	IFR	Instrument Flight Rules
5496	IGS	Instrument Guidance System
5497	ILS	Instrument Landing System
5498	IMI	Imbedded Message Identifier
5499	IPC	Illustrated Parts Catalog
5500	IRS	Inertial Reference System
	-	······································

APPENDIX B ACRONYMS

5501 5502 5503	IRU ISA LDA	Inertial Reference Unit International Standard Atmosphere Localizer Directional Aid
5504	LDU	Link Data Unit
5505	LNAV	Lateral Navigation
5506	LOC	Localizer
5507	LP	Localizer Performance
5508	LPV	Localizer Performance with Vertical Guidance
5509	LRC	Long Range Cruise
5510	LRU	Line Replaceable Unit
5511	LSB	Least Significant Bit
5512	LTP	Landing Threshold Point
5513	MAHP	Missed Approach Holding Point
5514	MAP	Missed Approach Decision Point
5515	MASPS	Minimum Airborne System Performance Standards
5516	MCDU	Multi-Purpose Control Display Unit
5517	MCU	Modular Concept Unit
5518	MDA	Minimum Decision Altitude
5519	MDH	Minimum Decision Height
5520	MEA	Minimum Enroute IFR Altitude
5521	MLS	Microwave Landing System
5522	MMO	Maximum Operating Mach
5523	MMR	Multi-Mode Receiver
5524	MOCA	Minimum Obstruction Clearance Altitude
5525	MOPS	Minimum Operational Performance Standards
5526	MORA	Minimum Off-Route Altitude
5527	MP	Middle Plug
5528	MSB	Most Significant Bit
5529	MTBF	Mean Time Between Failure
5530	MTBUR	Mean Time Between Unit Removal
5531	MU	Management Unit
5532	NAK	Negative Acknowledgement
5533	ND	Navigational Display
5534	NDB	Non-Directional Beacon or Navigation Data Base
5535	NFF	No Fault Found
5536	PBD	Point Bearing/Distance
5537	PBN	Performance-Based Navigation
5538	PDC	Predeparture Clearance
5539	PDMV	Procedure Design Magnetic Variation
5540	PFD	Primary Flight Display
5541	PVT	Position Velocity and Time

APPENDIX B ACRONYMS

5542 5543	QFE*	Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above the station
5544 5545	QNH*	Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above mean sea level
5546	RAIM	Receiver Autonomous Integrity Monitoring
5547	RF	Constant Radius Arc to a Fix
5548	RNAV	Area Navigation
5549	RNP	Required Navigation Performance
5550	RTA	Required Time of Arrival
5551	RTS	Request to Send
5552	RVSM	Reduced Vertical Separation Minima
5553	SARPS	Standards and Recommended Practices
5554	SBAS	Satellite Based Augmentation System
5555	SDI	Source Destination Identifier
5556	SID	Standard Instrument Departure
5557	STAR	Standard Terminal Arrival Route
5558	SUA	Special Use Airspace
5559	TACAN	Tactical Air Navigation System
5560	TAWS	Terrain Awareness and Warning System
5561	TCC	Thrust Control Computer
5562	TOAC	Time of Arrival Control
5563	TP	Top Plug
5564	TTE	Total Time Error
5565	UIR	Upper Flight Information Region
5566	UTC	Universal Time Coordinated
5567	VFR	Visual Flight Rules
5568	VMO	Maximum Operating Speed
5569	VNAV	Vertical Navigation
5570	VOR	VHF Omni-Range Navigation
5571	VORTAC	Co-Located VOR and TACAN
5572	VSD	Vertical Situation Display
5573	WBS	Weight and Balance System

5574	APPENDIX C	GLOSSARY
5575	ACA	RS – Aircraft Communications Addressing and Reporting System:
5576		A digital datalink network providing connectivity between aircraft and ground end
5577		systems (command and control, air traffic control, etc.).
5578	Αςςι	uracy – For Navigation:
5579	-	The degree of conformance between calculated position and true position.
5580	Αςςι	uracy – For Navigation Data:
5581	-	The degree of conformance between estimated or measured value and its true
5582	,	value.
5583	Actu	al Time of Arrival (ATA)
5584		The time at which the aircraft crosses a fix.
5585	ADS	-B – Automatic Dependent Surveillance-Broadcast:
5586		A vehicle or object will broadcast a message on a set regular basis which includes
5587	i	its position (such as lat, long, altitude), velocity, and possibly other information.
5588	-	These position reports are based on accurate navigation systems. There are three
5589		accepted links, ADS-B: 1090 Extended Squitter (see also 1090 Extended Squitter),
5590		Universal Access Transceiver (see also UAT), and VDL-4 (see alsoVDL-4). Military
5591		aircraft will use 1090 ES with few exceptions.
5592	ADS	-C – Automatic Dependant Surveillance-Contract:
5593		ADS-C is the same as ADS-A. Automatic Dependent Surveillance-Addressed is a
5594	(datalink application that provides for contracted services between ground systems
5595	i	and aircraft. Contracts are established such that the aircraft will automatically
5596		provide information obtained from its own on-board sensors, and pass this
5597	i	information to the ground system under specific circumstances dictated by the
5598	9	ground system (except in emergencies).
5599	Airw	ray
5600		A control area or portion thereof established in the form of a corridor equipped with
5601	I	radio navigation aids.
5602	Altit	ude
5603	-	The vertical distance of a level, a point or an object considered as a point,
5604	I	measured from mean sea level (MSL).
5605	AOC	- Airline Operational Control (Aeronautical Operational Control):
5606		Operational messages used between aircraft and airline dispatch centers or, by
5607		extension, the DoD to support flight operations. This includes, but is not limited to,
5608	1	flight planning, flight following, and the distribution of information to flights and
5609		affected personnel.
5610	APV	- Approach Procedure with Vertical Guidance:

5611 5612 5613	A non-precision approach using GPS that has some vertical guidance. This vertical guidance is less precise than that for a precision approach (e.g., ILS) and therefore the approach minimums (weather, ceiling, and visibility) are higher.
5614	Area Navigation (RNAV)
5615	A method of navigation which permits aircraft operation on any desired flight path
5616	within the coverage of station-referenced navigation aids or within the limits of the
5617	capability of self-contained aids, or a combination of these. Note that the desired
5618	path can be designated by any point(s) in a common reference coordinate system.
5619	ATN – Aeronautical Telecommunications Network:
5620	An internetwork architecture that allows ground/ground, air/ground, and avionic data
5621	subnetworks to interoperate by using common interface services and protocols
5622	based on the ISO OSI Reference Model.
5623	ATSU – Air Traffic Services Unit:
5624	A unit established for the purpose of receiving reports concerning air traffic services
5625	and flight plans submitted before departure. It is a generic term meaning air traffic
5626	control unit, flight information center, or air traffic service reporting office.
5627	Availability – For Navigation:
5628	It is the percentage of the time that the required accuracy and integrity are useable
5629	to meet a specified flight phase.
5630	Bearing
5631	The horizontal direction to or from any point, usually measured clockwise from true
5632	north, magnetic north, or some other reference point. through 360 degrees.
5633	CDTI – Cockpit Display of Traffic Information:
5634	Avionics technology that displays the relative location of nearby aircraft to enhance
5635	the pilot's awareness of the surrounding environment.
5636	CMU – Communication Management Unit:
5637	The CMU performs two important functions: it manages access to the various
5638	datalink sub-networks and services available to the aircraft and hosts various
5639	applications related to datalink. It also interfaces to the flight management system
5640	(FMS) and to the crew displays.
5641	CNS/ATM – Communication, Navigation, Surveillance/Air Traffic Management:
5642	CNS/ATM is a system based on digital technologies, satellite systems, and
5643	enhanced automation to achieve a seamless global Air Traffic Management in the
5644	future. Modern CNS systems will eliminate or reduce a variety of constraints
5645	imposed on ATM operations today.
5646	Containment
5647	A set of interrelated parameters used to define the performance of an RNP RNAV
5648	navigation system. These parameters are containment integrity, containment
5649	continuity, and containment region.

5650 5651 5652 5653 5654 5655 5656 5656 5657 5658 5659	Continuity The continuity of a system is the capability of the total system (comprising all elements necessary to maintain aircraft position within the defined airspace) to perform its function without nonscheduled interruptions during the intended operation. The continuity risk is the probability that the system will be unintentionally interrupted and not provide guidance information for the intended operation. More specifically, continuity is the probability that the system will be available for the duration of a phase of operation, presuming that the system was available at the beginning of that phase of operation. See the definition of containment continuity for how this parameter applies to RNP airspace.
5660	Coordinates
5661	The intersection of lines of reference, usually expressed in degrees / minutes /
5662	seconds of latitude and longitude, used to determine a position or location.
5663 5664 5665	Course 1. The intended direction of flight in the horizontal plane measured in degrees from north.
5666	 The ILS localizer signal pattern usually specified as the front course or
5667	the back course.
5668	3. The intended track along a straight, curved, or segmented MLS path.
5669 5670 5671 5672 5673	CPDLC – Controller-Pilot Data Link Communications: The CPDLC application provides for the exchange of flight planning, clearance, and informational data between a flight crew and air traffic control. This application supplements voice communications and in some areas will likely supersede it in the future.
5674	Cross-Track Containment Limit
5675	A distance that defines the one-dimensional containment limit in the cross-track
5676	dimension. The resulting containment region is centered upon the desired path and
5677	is bounded by +/- the cross-track containment limit. There is a required cross-track
5678	containment limit associated with a particular RNP.
5679	Cross-Track Error
5680	The perpendicular deviation that the airplane is to the left or right of the desired
5681	path. This error is equal to the cross-track component of the total system error.
5682	Curvilinear Optimum Path
5683	A vertical flight path composed of multiple straight segments that enable improved
5684	flight efficiency through the specification of a path optimized for aircraft
5685	performance.
5686	Defined Path
5687	The output of the FMS' path definition function.
5688	Desired Path

5689 5690	The path that the flight crew and air traffic control can expect the aircraft to fly, given a particular route leg or transition.
5691	Direct
5692	Geodesic track between two navigational aids, fixes, points or any combination
5693	thereof. When used by pilots in describing off-airway routes, points defining direct
5694	route segments become compulsory reporting points unless the aircraft is under
5695	radar contact.
5696 5697 5698 5699	Distance-To-Go The distance between the aircraft present position and the waypoint to which the aircraft is flying. In the case of an aircraft flying a parallel offset, the distance-to-go is measured to the offset reference point.
5700	EFIS – Electronic Flight Instrumentation System:
5701	Digital display that combines aircraft attitude and performance data from different
5702	sources on a single display.
5703	EGNOS – European Geostationary Navigation Overlay Service:
5704	Europe's SBAS implementation (see also SBAS).
5705	Estimate of Position Uncertainty (EPU)
5706	A measure based on a defined scale in nautical miles or kilometers which conveys
5707	the current position estimation performance.
5708	Estimated Position
5709	The output of the FMS' position estimation function.
5710	Estimated Time of Arrival
5711	The time at which the FMS predicts that a fix will be crossed.
5712 5713 5714 5715 5716	FANS-1/A – Future Aircraft Navigation System 1/A: A set of operational capabilities centered around direct datalink communications between the flight crew and air traffic control. Operators benefit from FANS-1/A in oceanic and remote airspace around the world.

5717	Fix
5718	A fix is a generic name for a geographical position. A fix is referred to as a fix,
5719	waypoint, intersection, reporting point, etc.
5720	Flight Level (FL)
5721	A surface of constant atmospheric pressure which is related to a specific pressure
5722	datum, 1013.2 hPa and is separated from other surfaces by specific pressure
5723	intervals.
5724	Flight Path Angle
5725	The angular displacement of the vertical flight path from a horizontal plane that
5726	passes through a reference datum point. The specified angle is from the TO fix or
5727	reference datum point.
5728	Flight Technical Error (FTE)
5729	The accuracy with which the aircraft is controlled as measured by the indicated
5730	aircraft position with respect to the indicated command or desired position. It does
5731	not include blunder errors.
5732 5733 5734 5735 5736 5737	FMF – Flight Management Function: A collection of processes or applications that facilitates area navigation (RNAV) and related functions to be executed during all phases of flight. The FMF is resident in an avionics computer and automates navigational functions reducing flight crew workload particularly during instrument meteorological conditions. The Flight Management System encompasses the FMF.
5738	FMS – Flight Management System:
5739	A computer system that uses a large database to allow routes to be
5740	preprogrammed and fed into the system by a means of a data loader. The system is
5741	constantly updated with respect to position by reference to designated sensors. The
5742	sophisticated program and its associated database insure that the most appropriate
5743	aids are automatically selected during the information update cycle. The flight
5743	management system is interfaced/coupled to cockpit displays to provide the flight
5745	crew situational awareness and/or an autopilot.
5746 5747 5748 5749 5750	GBAS – Ground-Based Augmentation System: The ICAO defines GBAS as a system that augments ground systems (typically at an airport) with equipment similar in functionality to a GPS satellite. This augmentation allows an aircraft to determine its vertical/lateral position to very great accuracy. The ultimate goal is CAT IIIC operation. The US LAAS is a GBAS.
5751 5752 5753 5754 5755 5756 5757 5758	Geodesic Line A line of shortest distance between any two points on a mathematically defined surface. A geodesic line is a line of double curvature and usually lies between the two normal section lines which the two points determine. If the two terminal points are nearly in the same latitude, the geodesic line may cross one of the normal section lines. It should be noted that, except along the equator and along the meridians, the geodesic line is not a plane curve and cannot be sighted over directly.

5759	Geometric Path
5760	A vertical flight path defined by a straight line between two points or based upon a
5761	specified flight path angle from a reference datum point.
5762	GLS – GNSS Landing System:
5763	A safety-critical system consisting of the hardware and software that augments the
5764	GPS SPS to provide for precision approach and landing capability (much like the
5765	ground-based ILS does now). The positioning service provided by GPS is
5766	insufficient to meet the integrity, continuity, accuracy, and availability demands of
5767	precision approach and landing navigation. The GLS augments the basic GPS
5768	position data in order to meet these requirements. These augmentations are based
5769	on differential GPS concepts.
5770	GNSS – Global Navigation Satellite System:
5771	GNSS is the ICAO recognized term for space-based navigation systems that
5772	provide en route/terminal navigation with non-precision approach and precision
5773	approach capabilities. The US system is GPS.
5774	GPS – Global Positioning System:
5775	A minimum of 24 satellite constellation in six orbits 11,000 miles above the earth.
5776	Positioned so that users can receive signals from six satellites nearly 100% of the
5777	time at any point on Earth. Developed by DoD primarily for military purposes. When
5778	receiving signals from at least four satellites, a GPS receiver can determine latitude,
5779	longitude, altitude and time. Without RAIM (see also RAIM) and FDE (see also
5780	FDE), the user cannot be certain that GPS meets the accuracy, availability, and
5781	integrity requirements critical to safety of flight.
5782	Heading
5783	The direction in which the longitudinal axis of an aircraft is pointed, usually
5784	expressed in degrees from North (true, magnetic, compass or grid).
5705	Hall's a Barra has
5785	Holding Procedure
5786	A predetermined maneuver which keeps an aircraft within specified a airspace while
5787	awaiting further clearance.
5788	Host Track/Route
5789	The track or route defined by the waypoints in the active flight plan.
5705	The track of foure defined by the waypoints in the active hight plan.
5790	Integrity – For Navigation:
5791	Ability of a system to provide timely warnings or shut itself down when it shouldn't
5792	be used for navigation.
0.02	
5793	IRS – Inertial Reference System:
5794	Uses laser gyros vice an INS' accelerometers placed on gyro-stabilized platforms.
5795	LINK 2000+ – The EUROCONTROL LINK 2000+ Program:
5796	Packages a first set of en-route controller-pilot data-link-communication (CPDLC)
5797	services into a set for implementation in the European Airspace using the ATN and
5798	VDL Mode 2 (Aeronautical Telecommunication Network and VHF Digital Link).

5799	Leg
5800	A leg is a segment of the flight plan consisting of a path type (e.g., Track, Course,
5801	Heading) and a termination type (e.g., fix, altitude). In an RNP environment, a leg is
5802	typically a path over the earth terminating at a fixed waypoint.
5803	LNAV – Lateral Navigation:
5804	The terminology for a DME/DME or GPS approach where lateral guidance is being
5805	provided along a designated course. LNAV incorporates RNP requirements,
5806	generally RNP 0.3 accuracy, and all monitoring, alerting, integrity and continuity
5807	limits for the navigation system and aircraft.
5808	Magnetic Variation
5809	The angle between the magnetic and geographic meridians at any place, expressed
5810	in degrees and minutes east or west to indicate the direction of magnetic north from
5811	true north. The angle between magnetic and grid meridians is called grid magnetic
5812	angle, or grivation. Also called magnetic declination.
5813	MASPS – Minimum Aviation System Performance Standards:
5814	High level documents produced by RTCA that establish minimum system
5815	performance characteristics.
5816	MMR – Multi-Mode Receiver:
5817	Contains Instrument Landing System, ILS Marker Beacon, VOR, Microwave
5818	Landing System, and GPS functions.
5819	Multi-Sensor Navigation
5820	Where aircraft position is determined using data derived from two or more
5821	independent sensors, each of which is useable (i.e., meets required navigation
5822	performance including accuracy, availability and integrity) for airborne navigation.
5823	MOPS – Minimum Operational Performance Standards:
5824	Standards produced by RTCA that describe typical equipment applications and
5825	operational goals and establish the basis for required performance. Definitions and
5826	assumptions essential to proper understanding are included as well as installed
5827	equipment tests and operational performance characteristics for equipment
5828	installations. MOPS are often used by the FAA as a basis for certification.
5829	Nautical Mile (Nm)
5830	The length equal to 1,852 meters exactly.
5831	Navigation Performance Accuracy
5832	Total navigation accuracy based on the combination of the navigation sensor error,
5833	airborne receiver error, path definition error and flight technical error. Also called
5834	system use accuracy. This performance accuracy is the uncertainty of the horizontal
5835	total system error.
5836	ΝΟΤΑΜ

5837 A notice containing information concerning the establishment, condition or change in any aeronautical facility, service, procedure or hazard, the timely knowledge of 5838 which is essential to personnel concerned with flight operations. 5839 5840 **Offset Distance** 5841 The lateral distance, measured in nautical miles left or right, that the offset track center line is offset from the host track centerline. 5842 **Offset Track/Route** 5843 5844 The track or route that describes a flight path that is offset from the host track as 5845 defined by the waypoints in the active flight plan. The offset track/route is defined by the offset reference point computed by the navigation system. 5846 5847 **Offset Reference Point** 5848 The computed offset reference point is located on the line that bisects the track angle between route segments. The location of the offset reference point for each 5849 5850 waypoint of the host track/route is computed by the navigation system so that it lies 5851 on the intersection of the lines drawn parallel to the host track/route at the desired 5852 offset distance and the line that bisects the track change angle. 5853 Parallel Offset 5854 The parallel offset path is defined by one or more offset reference points computed by the navigation system that comprise the active flight plan. The magnitude of the 5855 offset is defined by the offset distance. 5856 5857 **Path Definition Error** 5858 The difference between the defined path and the desired path at a specific point and time. 5859 5860 Path Steering Error (PSE) 5861 This error is determined by the difference between the defined path and the 5862 estimated position. The PSE includes both FTE and display error (e.g., CDI centering error). 5863 5864 **PBN – Performance Based Navigation:** 5865 PBN is a concept based on the use of Area Navigation (RNAV) systems that defines required performance in terms of accuracy, integrity, continuity and 5866 5867 availability. The defined performance includes descriptions of how this capability is 5868 to be achieved in terms of aircraft and crew requirements. The general capabilities are defined in International Civil Aviation Organization (ICAO) Doc 9613. 5869 Performance Based Navigation Manual Implementation Guidance for National 5870 5871 Airspace System (NAS) through Federal Aviation Administration Advisory Circulars. **Position Estimation Error** 5872 5873 The difference between true position and estimated position 5874 **Position Uncertainty** 5875 A measure that bounds the magnitude of an unknown position estimation error at a 5876 specific confidence level (e.g. 95%)

5877	P-RAIM – Predictive RAIM:
5878	Determines RAIM availability for the ETA at the destination airport. While en route
5879	to the destination, predictive RAIM is automatically revised as the receiver
5880	continually calculates a new ETA. It's critical to understand that just because the
5881	receiver predicts RAIM will be available at the destination, it doesn't guarantee there
5882	will be sufficient satellite coverage on arrival, only that the receiver expects to have
5883	sufficient coverage to calculate RAIM. It's possible, for example, that a satellite
5884	could go unhealthy while en route. R signals from satellites low on the horizon could
5885	be masked by terrain (the receiver's RAIM function has no way of knowing about
5886	terrain masking). P-RAIM does not have to reside in the GPS receiver. It can be
5887	provided by FAA Flight Service (US NAS only) and other ground-based RAIM
5888	algorithms.
5889	RAIM – Receiver Autonomous Integrity Monitoring:
5890	RAIM is a two-step process. First, the receiver has to determine if five or more
5891	working satellites are above the horizon and in the proper geometry to make RAIM
5892	available. Second, it must determine if the RAIM algorithm indicates a potential
5893	navigation error, based upon the range solutions from those satellites. In other
5894	words, when the receiver indicates a "RAIM-not-available" alarm, it's saying, "there
5895	may/may not be something wrong with the GPS navigation solution, but I do not
5896	have enough satellite information to know for sure." If it indicates a "RAIM error"
5897	alarm, it is saying, "I have enough satellites available and there is something wrong
5898	with one of them and the GPS navigation solution in general." Flight in some civil
5899	airspace requires RAIM and FDE (see also FDE).
0000	
5900	RNAV – Area Navigation:
5900 5901	RNAV – Area Navigation: Rather than fly established airways from one ground navigation aid to another (that
	-
5901	Rather than fly established airways from one ground navigation aid to another (that
5901 5902	Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go
5901 5902 5903 5904	Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were).
5901 5902 5903 5904 5905	Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were).
5901 5902 5903 5904 5905 5906	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified
5901 5902 5903 5904 5905 5906 5907	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy
5901 5902 5903 5904 5905 5906 5907 5908	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles
5901 5902 5903 5904 5905 5906 5907 5908 5909	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are
5901 5902 5903 5904 5905 5906 5907 5908	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles
5901 5902 5903 5904 5905 5906 5907 5908 5909	Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type.
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type.
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911	Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type.
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance requirements (RNP) have been established and aircraft must meet or exceed that performance to fly in that airspace.
 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance requirements (RNP) have been established and aircraft must meet or exceed that performance to fly in that airspace. RNP-AR – RNP Authorization Required
 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance requirements (RNP) have been established and aircraft must meet or exceed that performance to fly in that airspace. RNP-AR – RNP Authorization Required Special authorization to conduct RNP approaches/missed approaches designated
 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance to fly in that airspace. RNP-AR – RNP Authorization Required Special authorization to conduct RNP approaches/missed approaches designated as such. Operators can be authorized for any subset of these characteristics: (1)
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance requirements (RNP) have been established and aircraft must meet or exceed that performance to fly in that airspace. RNP-AR – RNP Authorization Required Special authorization to conduct RNP approaches/missed approaches designated as such. Operators can be authorized for any subset of these characteristics: (1) ability to fly a published arc (also referred to as a RF leg); (2) reduced lateral
 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 	 Rather than fly established airways from one ground navigation aid to another (that possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go directly from departure to destination using virtual waypoints in space ("ghost" NAVAIDs, as it were). RNP – Required Navigation Performance: Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are additional requirements, beyond accuracy, applied to a particular RNP type. RNP Airspace Generic term referring to airspace, route(s), leg(s), where minimum navigation performance to fly in that airspace. RNP-AR – RNP Authorization Required Special authorization to conduct RNP approaches/missed approaches designated as such. Operators can be authorized for any subset of these characteristics: (1)

5921 5922	where the final approach segment procedure requires RNP values less than 0.3 NM.
5923	RNP-RNAV – RNP Area Navigation:
5924	A method of area navigation that includes the concept of navigation performance
5925	(RNP), area navigation (RNAV) and the elements of containment integrity and
5925 5926	containment continuity.
5920	
5927	SARPS – Standards and Recommended Practices:
5928	Produced by ICAO, they become the international standards for member states. As
5929	the name implies, they are only "recommended" practices. It is up to each member
5930	states to decide how/if to implement them.
= /	
5931	SBAS – Satellite Based Augmentation System:
5932	A complex infrastructure of ground-based monitors and control centers that
5933	augments the satellite-based position measurement system to meet accuracy,
5934	availability, and integrity requirements for navigation systems. The WAAS in the US,
5935	the EGNOS in the Europe, and the MSAS in Japan are examples of an SBAS.
5936	SESAR – Single European Sky ATM Research:
5937	European air traffic control infrastructure modernization program. SESAR aims at
5938	developing the new generation ATM system capable of ensuring the safety and
5939	fluidity of air transport worldwide over the next 30 years.
5940	TAWS – Terrain Awareness Warning System:
5941	Generic term for systems, including EGPWS (see also EGPWS), that provide
5942	situational awareness relative to Controlled Flight Into Terrain (CFIT) and protection
5943	by providing three functions : Forward-Looking Terrain-Avoidance (FLTA),
5944	Premature Decent Alert (PDA) and Ground Proximity Warning.
5945	TOAC – Time of Arrival Control:
5946	The TOAC function provides the temporal or speed control that enables 4
5947	dimensional (4D) navigation to be accomplished. This function supports the spacing
5948	and metering associated with air traffic management and will be used for NextGen
5949	and SESAR operations.
5950	Total System Error
5951	The difference between true position and desired position. This error is equal to the
5952	vector sum of the Path Steering Error (PSE), Path Definition Error (PDE) and
5953	Position Estimation Error (PEE).
5954	Track
5955	The projection on the earth's surface of the path of an aircraft, the direction of which
5955 5956	is usually expressed in degrees from north (true, magnetic or grid).
0.900	is usually expressed in degrees north north (true, magnetic of grid).
5957	Transition Altitude
5958	The altitude at or below which the vertical position of an aircraft is controlled by
5959	reference to altitudes.

5960	Transition Level
5961	The lowest flight level available for use above the transition altitude.
5962	VNAV – Vertical Navigation:
5963	A capability that allows the aircraft to fly a computed vertical speed profile which
5964	associates lateral waypoints with given altitude/speed constraints through the
5965	control of FMS, Autopilot and Auto-throttle. The vertical/speed profile can be either
5966	entered by the pilot or generated by the FMS. VNAV is not currently a required
5967	RNP/RNAV capability; however, ATM upgrades, such as NextGen, will include
5968	VNAV requirements. VNAV altitude can be based on either the aircraft's barometric
5969	altimetry system (BARO VNAV) or on GPS. Without differential augmentation
5970	(LAAS/WAAS), BARO VNAV will be the primary method of VNAV altitude
5971	determination. Since BARO VNAV is affected by nonstandard temperature effects
5972	and requires an accurate local altimeter setting, use of BARO VNAV is prohibited on
5973	RNAV instrument approach procedures below VNAV DA(H).
5974	Vertical Flight Technical Error
5975	The accuracy with which the aircraft is controlled as measured by the indicated
5976	aircraft position with respect to the indicated vertical command or desired vertical
5977	position. It does not include blunder errors
5978	Vertical Path Definition Error
5979	The vertical difference between the defined path and the desired path at a specific
5980	point and time
5981	Vertical Path Steering Error
5982	The distance from the estimated vertical position to the defined path. It includes
5983	both FTE and display error (e.g., vertical deviation centering error).
5984	Vertical Total System Error
5985	The difference between true vertical position and desired vertical position. This error
5986	is equal to the vector sum of the vertical path steering error, path definition error,
5987	and altimetry system error. Barometric altitude correction setting error is not
5988	included.
5989	Waypoint
5990	A predetermined geographical position used for route definition and/or progress
5991	reporting purposes that is defined by latitude/longitude.
5992 5993 5994 5995	WGS-84 – World Geodetic System 1984: Developed by the US for world mapping, WGS 84 is an earth fixed global reference frame. It is the ICAO standard.