1.0	INTRODUCTION AND DESCRIPTION
1.1.1.1.1.	11.
1	Purpose and Scope <u>1</u> 4
1.2	Relationship to Other Documents
1.3	Functional Overview
1.4	Flight Management Computer Description4
1.5	Interchangeability4
1.5.1	General
1.5.2	Interchangeability for the ARINC 702A Flight Management Computer System4
1.5.3	Generation Interchangeability Considerations
1.6	Regulatory Approval
1.7	Integrity and Availability
1.8	Reliability
1.9	Testability and Maintainability
1.10	Flight Simulators
1.10	-
2.0	INTERCHANGEABILITY STANDARDS
2.1	Introduction
2.2	Form Factor, Connectors, and Index Pin Coding
2.3	Standard Interwiring77
2.4	Power Circuitry
2.4.1	Primary Power Input
2.4.2	Power Control Circuitry
2.4.3	The AC Common Cold
2.4.4	The Common Ground
2.4.5	Batteries
2.5	Standardized Signaling
2.5.1	General Accuracy and Operating Ranges
2.5.2	Resolution
2.5.3	ARINC 429 Data Bus
2.5.4	Standard "Open"
2.5.5	Standard Open
2.5.5	Standard Ground
2.5.6	Standard Applied Voltage Output
	Standard Discrete Input
2.5.8	Standard Discrete Output
2.5.9	Ethernet Interfaces
2.5.10	Standard Annunciators
2.6	Environmental Conditions
2.7	Cooling
2.8	Weights
2.9	Grounding and Bonding
3.0	SYSTEM DESIGN CONSIDERATIONS
3.1	System Configurations
3.1.1	Single System Configuration
3.1.2	Single System/Dual MCDU Configuration
3.1.2	Dual System Configuration
3.1.3	Other Configurations
3.1.4	Certification Design Considerations
3.2.1	Partitioning Considerations
3.2.2 3.2.3	Operational Functional Independence
3.2.3	Unit Identification Considerations

iii

3.3	System Response to Power Interrupts	
3.4	FMC Performance	. <u>16</u> 16
3.4.1	Accuracy, Integrity, and Continuity	. <u>16</u> 16
3.4.2	Response Time	. <u>1616</u>
3.5	Dual System Design Considerations	. <u>17</u> 17
4.0	FLIGHT MANAGEMENT FUNCTIONS	.18 18
4.1	Introduction	
4.2	Functional Initialization and Activation	1818
4.2.1	Navigation Sensor Initialization	
4.2.1.1	IRS Initialization	.1818
4.2.1.2	IRS Heading Set	1818
4.2.1.3	GNSS Initialization	
4.2.2	Flight Plan Initialization and Activation	.1818
4.2.3	Performance and Predictions Initialization	.1919
4.2.4	Lateral and Vertical Guidance Activation	. <u>19</u> 19
4.2.5	Use of Data Link for System Initialization	.1919
4.3	Functional Description	. <u>19</u> 19
4.3.1	Navigation	. <u>19</u> 19
4.3.1.1	Multi-Sensor Navigation	.2020
4.3.1.2	Navigation Modes	.2020
4.3.1.3	RNP-Based Navigation	.2121
4.3.1.3.1	RNP Determination	.2221
4.3.1.3.1		.2222
4.3.1.3.1		2322
4.3.1.3.1		.2323
4.3.1.3.1		.2423
4.3.1.3.2		. <u>24</u> 24
4.3.1.3.3		. <u>24</u> 24
4.3.1.4	Navaid Data	. <u>25</u> 24
4.3.1.5	Crew Controlled Navigation Options	. <u>2525</u>
4.3.1.6	VHF Radio Tuning	. <u>2525</u>
4.3.1.6.1	Automatic Station Selection	. <u>2525</u>
4.3.1.6.2		
4.3.1.7	Real Time Clock	
4.3.2	Flight Planning	. <u>2626</u>
4.3.2.1	Flight Plan States	. <u>2626</u>
4.3.2.2	Navigation Data Base	. <u>27</u> 27
4.3.2.3	Supplemental and Temporary NDB Creation and Management	
4.3.2.3.1	PBD Waypoints	
4.3.2.3.2		. <u>2928</u>
4.3.2.3.3		. <u>29</u> 28
4.3.2.3.4		. <u>29</u> 28
4.3.2.3.5		. <u>2929</u>
4.3.2.3.6		.2929
4.3.2.3.7		. <u>29</u> 29
4.3.2.3.8		. <u>30</u> 29
4.3.2.3.9		
4.3.2.3.1		. <u>30</u> 29
4.3.2.3.1		
4.3.2.4	Lateral Flight Planning	
4.3.2.4.1	Flight Plan Construction	.31 30

iv

4.3.2.4.2	Terminal Area Procedures
4.3.2.4.3	Flight Plan Editing
4.3.2.4.3.1	Direct/Intercept Option
4.3.2.4.3.2	Entry of Waypoints
4.3.2.4.3.3	Flight Plan Linking
4.3.2.4.3.4	Flight Plan Delete
4.3.2.4.3.5	Procedure Selection
4.3.2.4.3.6	Holding Patterns (HM Leg)
4.3.2.4.3.7	Flight Plan Editing using Data Link
4.3.2.4.3.8	Flight Plan Editing using a Pointing Device
4.3.2.4.4	Flight Planning Support for ATM
4.3.2.4.5	Missed Approach Procedures
4.3.2.4.6	Lateral Offset Construction
4.3.2.4.7	Magnetic Variation
4.3.2.5	Vertical Flight Planning
4.3.2.5.1	Wind, Temperature, and Atmospheric Model
4.3.2.5.2	Waypoint Altitude Constraints
4.3.2.5.3	Waypoint Speed Constraints
4.3.2.5.4	Temperature Compensation
4.3.3	Lateral and Vertical Guidance
4.3.3.1	Lateral Guidance and Path Construction
4.3.3.1.1	Lateral Reference Path Construction
4.3.3.1.2	Lateral Leg Transitions
4.3.3.1.2.1	Fly-By Turns
4.3.3.1.2.1	Fly-Over Turns
4.3.3.1.2.2	Fix Radius Transitions (FRT)
4.3.3.1.2.3	Special Lateral Path Construction
4.3.3.1.3	Lateral Guidance Roll Command
4.3.3.1.5	Lateral Guidance Roll Command
4.3.3.1.6	Lateral Capture Path Construction
4.3.3.1.7	Localizer/MLS Capture
4.3.3.1.7	Earth Reference Model
4.3.3.1.0	Vertical Guidance and Trajectory Predictions
4.3.3.2	Trajectory Predictions
4.3.3.2.1.1	Takeoff Phase Predictions
	Climb Phase Predictions
4.3.3.2.1.2	
	Cruise Phase Predictions
4.3.3.2.1.4	Descent Phase Path Construction and Predictions
4.3.3.2.1.4.1	
4.3.3.2.1.4.2	
4.3.3.2.1.5	Approach Phase Path Construction and Predictions
4.3.3.2.1.6	
4.3.3.2.2	Vertical Guidance
4.3.3.2.2.1	Climb Phase Operation
4.3.3.2.2.2	Cruise Phase Operation
4.3.3.2.2.3	Descent Phase Operation
4.3.3.2.2.4	Selected Altitude Compliance
4.3.3.2.2.5	Altimeter Barometric Correction for Terminal Area Operations
4.3.3.2.2.6	Altitude Constraints
4.3.3.2.2.7	Speed Restrictions
4.3.3.2.3	Estimated Time of Arrival (ETA)
4.3.3.2.4	Required Time of Arrival (RTA)

۷

4.3.3.2.5	Time of Arrival Control (TOAC)
4.3.3.3	Three-Dimensional RNAV Approach <u>79</u> 74
4.3.4	Performance Calculations Function <u>79</u> 74
4.3.4.1	Performance Modes
4.3.4.1.1	Climb Mode
4.3.4.1.2	Cruise Mode
4.3.4.1.3	Descent Mode
4.3.4.2	Maximum and Optimum Altitudes Calculation
4.3.4.3	Trip Altitude Calculations
4.3.4.4	Alternate Destinations Calculation
4.3.4.5	Step Climb/Descent
4.3.4.6	Cruise Climb
4.3.4.7	Vertical Advisory Calculations
4.3.4.8	Thrust Limit Data Calculations
4.3.4.9	Takeoff Reference Data8274
4.3.4.10	Approach Reference Data
4.3.4.11	Reserve Fuel Calculation
4.3.4.12	Engine-Out Performance Calculation
4.3.4.13	Other Predictions
4.3.4.13.1	Maximum Range Computation8375
4.3.4.13.2	Maximum Endurance Computation
4.3.4.13.3	Descent Energy Circles
4.3.5	Printer Functions
4.3.6	AOC Function
4.3.7	ATS Datalink
4.3.7.1	Future Air Navigation System 1/A (FANS 1/A)
4.3.7.1.1	Air Traffic Services Facilities Notification (AFN)
4.3.7.1.2	Controller/Pilot Data Link Communication (CPDLC)
4.3.7.1.3	Automatic Dependent Surveillance - Contract (ADS-C)
4.3.7.2	Link 2000+
4.3.7.2.1	Context Management (CM)
4.3.7.2.2	Controller Pilot Data Link Communication (CPDLC)
4.3.7.3	Baseline 2 (B2)
4.3.7.3.1	Context Management (CM)
4.3.7.3.2	Controller Pilot Data Link Communication (CPDLC)
4.3.7.3.3	Automatic Dependent Surveillance (ADS-C)
4.3.8	Airport Surface Guidance
4.3.9	Terrain and Obstacle Data9183
4.3.10	Electronic Map Interfaces
4.3.10.1	Navigation Display Interface
4.3.10.2	Vertical Situation Display Interface
4.3.11	CMU Interface
4.3.12	Predictive Receiver Autonomous Integrity Monitoring (RAIM)
4.3.13	Precision-Like Approach Guidance
4.3.13.1	LP/LPV Approach Guidance
4.3.13.2	FMS Landing System (FLS)
4.3.14	Integrity Monitoring and Alerting
4.3.14.1	Sensor Status
4.3.14.2	System Status Alert
4.3.14.3	Self-Test
4.3.14.4	Failure Response
4.4 T	raining Simulator Support Functions

vi

5.0	STANDARD INTERFACES			
5.1	FMC Digital Data Input Ports			
5.1.1	VOR Input Ports <u>96</u> 87			
5.1.2	DME Input Ports <u>96</u> 87			
5.1.3	ILS/MMR Input Port			
5.1.4	Air Data Input Ports			
5.1.5	IRS/AHRS Input Ports			
5.1.6	GNSS Input Ports			
5.1.7	Flight Control System Input Ports			
5.1.8	MCDU Input Ports			
5.1.9	Data Loader Input Ports (ARINC 615)			
5.1.10	Data Link Input Ports			
5.1.11	Intersystem Data Input Port			
5.1.12	Propulsion/Configuration Data Input Ports			
5.1.13	Electronic Flight Instrument System Input Ports			
5.1.14	Printer			
5.1.15	Digital Clock Input			
5.1.16	Maintenance Input			
5.1.17	WBS Input			
5.1.18	Simulator Input			
5.1.19	Pointing Device			
5.1.20	ASAS Input			
5.1.21	Reserved Ports for Growth Inputs			
5.2	FMC Digital Data Outputs			
5.2.1	FMC Intersystem Output			
5.2.2	General Data Output			
5.2.3	Primary Display Data Output			
5.2.4	MCDU Output Ports			
5.2.5	Data Loader Output			
5.2.6	Data Link Output Ports			
5.2.7	Autothrottle (Reserved)			
5.2.8	Printer			
5.2.9	Onboard Maintenance			
5.2.10	Programmable Data Output			
5.2.11	Simulator			
5.2.12	Aircraft State and Intent Path Output (Trajectory Bus)			
5.2.12.1	Aircraft State Data			
5.2.12.1.				
5.2.12.1.				
5.2.12.2	Trajectory Intent Data			
5.2.12.2.				
5.2.12.2.				
5.2.13	Reserved Ports for Growth			
5.3	Discrete Inputs and Outputs			
5.4	FMC/FMC Intersystem Communications			
5.5	Ethernet Interface (ARINC 646)			
6.0	CONTROL DISPLAY UNIT INTERFACE			
6.1	General			
6.2	Standby Navigation			
6.3	Self-Test			
6.4	MCDU Annunciators			

vii

6.5	MCDU Alerting <u>117</u> 107
6.6	MCDU Color and Font Usage
7.0	ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE
7.1	Introduction
7.2	FMC Outputs to EFI
7.3	FMC Inputs from EFI
7.4	EFI Design Features
7.4.1	Map
7.4.2	Plan
7.4.3	HSI Mode
7.4.4	Map Scales
7.4.5	Map Projection
7.4.6	Option Selection
7.4.7	Symbol Repertoire
7.4.8	EFI Data Conditioning
7.4.9	Pointing Device
7.4.10	Surface Map Mode
7.5	FMC Design Features
7.5.1	Flight Plans
7.5.2	Map Display Edit Areas
7.5.3	Pointing Device
7.6	Interface Design
7.6.1	General
7.6.2	Map Data Updating
7.6.3	Background Data Prioritizing
7.6.4	Background Data Editing
7.6.5	Mode Change Response
7.6.6	Map Translation and Rotation Data
7.6.7	Resolution
7.6.8	Interface Data Errors
7.6.9	FMC-to-EFI Data Transfer Protocol
7.6.9.1	Data Block Format
7.6.9.2	Data Type Word Formats
7.6.10	EFI-to-FMC Data Transfer
0.0	
8.0	COMMUNICATIONS MANAGEMENT UNIT INTERFACE
8.1	General
9.0	DATA BASE STORAGE CONSIDERATIONS
9.1	Introduction
9.2	Navigation Data Base
9.3	Airline Modifiable Information (AMI) Data Base
9.4	Performance Data Base
9.5	Magnetic Variation Data Base
9.6	Terrain and Obstacle Data
9.7	Airport Surface Map Data
9.8	Configuration Data Base
10.0	BUILT-IN TEST AND MAINTENANCE PROVISIONS
10.0	
10.1 10.2	General Discussion
10.2	Fault Detection and Reporting
10.2.1 10.2.2	General
10.2.2	00ii womonitoning

viii

10.2.3	Debugging Tools	
10.2.4	Failure Rate Monitor	
10.2.5	Fault Messaging	
10.3	Ramp Maintenance	
10.3.1	Return to Service Testing	
10.3.2	Programmable Data Bus Interface	
10.3.3	Data Loading <u>133</u> 124	
10.3.4	Cross Loadable Software	
10.3.5	Data Loading Fault Recovery	
10.4	Provisions for Automatic Test Equipment	
10.4.1	General <u>134</u> 125	
10.4.2	ATE Testing <u>134</u> 125	

ATTACHMENTS

	FLIGHT MANAGEMENT SYSTEM	ATTACHMENT 1
I	1 FMC CONNECTOR POSITIONING	<u>135</u> 426 ATTACHMENT 2-1
		<u>137</u> 128
I	-2STANDARD INTERWIRING	ATTACHMENT 2-2 138 129
	-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING	
I	-4 CONNECTOR INSERT LAYOUT	<u>145</u> 136 ATTACHMENT 2-4
1		<u>147</u> 138
1	FLIGHT MANAGEMENT SYSTEM CONFIGURATIONS	ATTACHMENT 3 150 141
l	ENVIRONMENTAL TEST CATEGORIES	<u>151</u> 42 ATTACHMENT 5
L		155 146
		<u>156</u> 147 ATTACHMENT 7
l		<u>176</u> 167 ATTACHMENT 8
l		<u>263</u> 254
		APPENDICES
1		
I		<u>264255</u> APPENDIX B

<u>264</u> 255	
APPENDIX B	ACRONYMS
267 258	
271 262	

|

ix

1.0 INTRODUCTION AND DESCRIPTION

1.0 INTRODUCTION AND DESCRIPTION

2.01.1 Purpose and Scope

1

3

4

5 6

7

8

9

10

11

12 13

14

15

16

17

18 19

20 21

22 23

24

25

26

27

28 29

30

31

32

33

34 35

36 37

38 39

40 41

42

43

44

45

46

47

This document sets forth the characteristics of an advanced Flight Management Computer System (FMS) specifically designed for installation in new generation aircraft. The system is also intended for retrofit in aircraft that presently use ARINC 700 series equipment. The advanced FMS is expected to provide expanded functional capability beyond that defined in ARINC Characteristic 702, and support the necessary requirements for operation in the future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) operational environment.

ARINC Report 660B, CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts identifies the attributes of the Global Navigation Satellite System (GNSS), Required Navigation Performance (RNP) based navigation, air to ground data link for communications and surveillance, and the associated crew interface control/display capabilities, all of which will be necessary for operations in an evolving Communications Navigation Surveillance/Air Traffic environment. Those concepts and the relative effects on the FMS are addressed in this document.As described in ARINC Report 660B: *CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts*, Global Navigation Satellite System (GNSS), Required Navigation Performance (RNP) based navigation, air to ground data link for communications and surveillance, and the associated crew interface control/display capabilities are included. The functional requirements defined herein also apply to a Flight Management Function (FMF) in an Integrated Modular Avionics (IMA) architecture with software partitions.

The ICAO Future Air Navigation System (FANS) Standards and Recommended Practices (SARPs) for CNS/ATM are currently evolving and are expected to continue to evolve. The requirements included in this document are intended to support pPerformance bBased nNavigation (PBN) and tTrajectory-bBased oOperations (TBO) and be consistent with the latest versions of the following documents:

- ICAO Doc 9613: Performance-Based Navigation Manual (PBN Manual)
- RTCA DO-236: Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation (RNP MASP)
- RTCA DO-283: Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation (RNP MOPS)

This document does not specify the requirements for a Control Display Unit (CDU). While the CDU is included in the original version of ARINC Characteristic 702, the capabilities of the Multi-Purpose Control Display Unit (MCDU) are separately defined in ARINC Characteristic 739A.

This document defines the functional and interface characteristics of the FMS and assumes that the appropriate MCDU characteristics are defined separately in ARINC Characteristic 739A or elsewhere.

ARINC originated with the airlines and the ARINC Standards are created as airline requirements for system implementers. Therefore, the use of the word "should" in this document carries with it the expectation of incorporation. This is especially true in the context of fit, form, interface requirements, and crew indication requirements. In allowing for the various architectures described in this document it is expected that the functions will operate, at a system level, as described in this document.

1.0 INTRODUCTION AND DESCRIPTION

COMMENTARY

48		COMMENTARY
49 50 51 52 53 54 55		End users should be aware that there can be possible differences in hardware and/or tailored implementation of certain functions from ARINC 702A standard so that the FMC may meet fit, form, and intended functional requirements for the particular airframe. Differences may be due to the various airplane architectures, system limitations, and/or specific end user needs which take precedence over complete compliance with ARINC 702A.
56	1.2	Relationship to Other Documents
57 58		This document is one of a family of ARINC Characteristics for advanced navigation equipment that includes:
59		ARINC Characteristic 756: GNSS Navigation and Landing Unit
60		ARINC Characteristic 760: GNSS Navigation Unit
61 62 63 64		The functional characteristics of these three systems are very similar, and consequently, significant portions of these three equipment characteristics are highly common. Users of these documents should consider this commonality issue when planning future revisions.
65 66 67 68 69 70 71 72		The vast majority of military and government specifications for equipment design and construction usually employ specification language; that is, terms such as thou shalt and thou shalt not. However, that type of language makes it difficult to describe preferences which have grown out of airline experience which designers might weigh differently. For this reason, this standard, like other ARINC Standards, represents guidance material which attempts to acquaint the manufacturer with the need for specific design practices rather than to tell them that they must meet certain requirements under all circumstances.
73 74		A complete list of documents referenced herein can be found in Appendix A. The latest versions apply.
75	1.3	Functional Overview
76 77 78 79 80 81		The FMS provides the following functions: navigation, flight planning, lateral and vertical guidance, performance optimization and prediction, air ground data link, and pilot interfaces via the Electronic Flight Information System (EFIS) and MCDU displays or, in newer architectures, a graphical Cockpit Display System (CDS). The following paragraphs provide a summary description of these characteristics, with references to their functional descriptions in later sections of this characteristic.
82 83 84 85 86		Navigation (Section 4.3.1) – The navigation function determines the position and velocity of the aircraft using input data from all appropriate sources. The outputs include position in terms of altitude, latitude and longitude, and velocity in terms of ground speed and track angle, wind, true and magnetic headings, drift angle, magnetic variation, and inertial flight path angle.
87 88 89 90 91		Flight Planning (Section 4.3.2) – This function provides the sequence of waypoints, airways, flight levels, departure procedures, and arrival procedures to fly from the origin to the destination and/or alternates. The flight plan may be entered manually on the MCDU or automatically by uplink via the air-ground data link. A navigation data base in the Flight Management Computer (FMC) contains the necessary data

1.0 INTRODUCTION AND DESCRIPTION

associated with every flight plan element identifier for the entire aircraft flight domain.

Lateral and Vertical Guidance (Section 4.3.3) – Lateral guidance is computed with respect to geodesic paths defined by the flight plan, and to transitional paths between the geodesic paths, or to preset headings or courses. Vertical guidance is computed with respect to altitudes assigned to waypointsaltitude constraints, or to a vertical paths defined by stored or computedaltitude constraints, vertical angles, and a reference descent profiles. Speed control along the desired path is provided during all phases of flight.

Trajectory Predictions (Section 4.3.3.2.1) – This function predicts distance, time, speed, altitude, and gross weight at each future waypoint in the flight plan, including computed waypoints such as top-of-climb and top-of-descent.

Performance Calculations (Section 4.3.4) – The objective of this function is to optimize the vertical and speed profiles to minimize the cost of the flight or meet some other criterion, subject to a variety of constraints.

Air-Ground Data Link – Two-way data communication can be provided to the Airline Operations Facility and to Air Traffic Services (ATS). Airline Operational Communication (AOC) data link (Section 4.3.6) is used for flight plans, weather data, takeoff speeds, preflight initializations, etc., from the airline operations facility directly into the FMC. Air Traffic Control (ATC) data link (Section 4.3.7) is used to communicate predefined ATS controller-to-pilot uplink and pilot-to-controller downlink messages via the MCDU.

Pilot Interface via the MCDU (Section 6.0) – In legacy architectures, the MCDU is the pilot interface to the FMS. It transmits button pushes to the FMC and displays data on the MCDU screen in response to transmissions from the FMC. The MCDU may also provide backup functions should both FMCs fail. In newer architectures, the MCDU is replaced by a graphical user interface which may be provided by a provided by the Cockpit Display System (CDS). The FMS is a User Application (UA) (UA) wwhich requests graphical widgets to be displayed on the display and the CDS provides the FMS with actions performed on those widgets. The CDS interface is documented in ARINC 661.

COMMENTARY

Within this document, references to crew input from the MCDU and display of FMS information on the MCDU should be treated as generic references which also apply to a CDS architectures with graphical user interfaces.

Electronic Flight Instrument System (Section 7.0) - The FMC generates a variety of outputs in support of Electronic Map Displays (EMD): Primary Flight Display (PFD), Navigation Display (ND), and optionally a Vertical Situation Display (VSD). Within this document, the terms Electronic Flight Instrument System (EFIS) and Cockpit Display System (CDS) are used in reference to the display system hardware and associated interfaces; the terms EMD, PFD, ND, and VSD are used generically to refer to the various graphical display areas or windows. Based on the interface, the FMC may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC Specification 661. The requirements within this document are intended to be consistent with RTCA DO-257: *Minimum Operational*

1.0 INTRODUCTION AND DESCRIPTION

139 140		Performance Standards for the Depiction of Navigational Information on Electronic Maps.
141		COMMENTARY
142 143 144 145 146 147 148 149 150 151		The airlines wish to avoid the installation of equipment that becomes throw-away when additional related functionality is added. Provisions for growth need to be inherent to the initial configuration of the equipment. The equipment also needs to be designed to support the flexibility that allows the airline to configure the system for the specific capabilities required for different aircraft types and operational needs without incurring unnecessary penalties for unused functionality. The growth and flexibility provisions must allow the system to be easily upgraded after initial installation and certification to accommodate the changes in airline and airspace operational requirements.
152	1.4	Flight Management Computer Description
153 154 155 156 157 158 159 160 161 162 163 164		The FMC should contain all of the components, electronic circuitry, memory, etc., incident to the functioning of the system. The unit should also contain, as a minimum, sufficient data storage for all required active engine and airplane performance data, all navigation data required to support the active flight plan and any secondary flight plan which may have been entered into the system. The FMC should be capable of storing all data required by the system. The computer should be designed such that normal and abnormal power switching transients and other primary power interruptions as defined in RTCA DO-160 do not cause essential memory contents to be lost. Provisions should be made in the design of the computer should be possible with a minimum of rework and at a minimum cost to the airline customer.
165	1.5	Interchangeability
166	2.1 <u>1.5</u>	.1 General
167 168 169		One of the primary functions of an ARINC Characteristic is to designate, in addition to certain performance parameters, the interchangeability desired for aircraft equipment produced by various manufacturers.
170	1.5.2	Interchangeability for the ARINC 702A Flight Management Computer System
171 172 173 174		System interchangeability of the FMC with respect to the standard aircraft installation is desired regardless of the manufacturing source. The standards necessary to ensure this level of interchangeability are set forth in Section 2.0 of this Characteristic.
175	1.5.3	Generation Interchangeability Considerations
176 177 178 179		The advanced FMS defined by ARINC 702A represents an evolutionary development beyond the FMS originally defined by ARINC 702. Consequently, general form factors and interwiring are similar, but strict interchangeability is not the intended goal.
180 181 182		The air transport industry desires that future evolutionary equipment improvements and the inclusion of additional functions in new equipment during the next few years do not violate the interwiring and form factor standards set forth in this document.

1.0 INTRODUCTION AND DESCRIPTION

183 184 185		Provisions to ensure forward-looking generation interchangeability (as best can be predicted) are included in this document to guide manufacturers in future developments.
186	1.6	Regulatory Approval
187 188 189 190		The equipment should meet all applicable regulatory requirements. This ARINC Standard does not and cannot set forth the specific requirements that an equipment must meet to be assured of approval. Such information must be obtained from the appropriate regulatory authority.
191	1.7	Integrity and Availability
192 193 194 195 196 197 198 199 200 201		Since this equipment is the primary means of navigation on most aircraft, the utmost attention should be paid to the need for integrity and availability in all phases of system design, production, and installation. This equipment should provide the system performance, design and operational integrity, and availability necessary for CNS/ATM and Required Navigation Performance (RNP) operations. Integrity should consider design assurance for reduced risk of operational excursions beyond RNP containment limits, and functional assurance via system capabilities and features consistent with CNS/ATM and RNP operations. The system production and installation processes and methods should be consistent with the required integrity and availability of the system.
202	1.8	Reliability
203 204 205 206 207 208 209		The anticipated operational use of the system demands the utmost attention to the need for reliability in all phases of system design, production, installation, and operation of the FMC. It is of paramount importance to the airlines to operate a trouble-free unit with minimum impact on scheduling and maintenance. A special emphasis should be given to total system quality, including built in testing, ramp testing, and shop testing to increase the Mean Time Between Unscheduled Removals (MTBUR). MTBUR affects airline operations despite a high MTBF.
210		COMMENTARY

COMMENTARY

211	Airlines have a heightened interest in identifying and correcting the
212	root cause(s) of unnecessary LRU removals, many of which result in
213	a No Fault Found (NFF) disposition. Each NFF occurrence
214	represents an unacceptable additional and excessive cost of
215	ownership to the airline. All efforts in the developmental process to
216	eliminate NFF occurrences will help improve the MTBUR.

217 1.9 Testability and Maintainability

218 The total system quality should include adequate ability for the operator to test and 219 maintain the FMS effectively. The FMS designer should confer with the user to establish goals and guidelines for testability to minimize unnecessary removals. The use of advanced Built-In Test Equipment (BITE), ramp testing equipment, and adequate documentation will help the operators improve MTBUR. For airline 220 221 222 223 operations, MTBUR is at least as important, perhaps more so, than MTBF. 224 Testability should provide for the rapid identification of the root cause(s) of repeat removals and ultimate elimination of unconfirmed faults. 225

226 For shop maintainability, the design of physical access and functional partitioning of the FMS should be such to minimize repair time. Where possible, excessive unit 227 228 disassembly should not be required for internal component replacement. Full and

1.0 INTRODUCTION AND DESCRIPTION

229 230		complete documentation included in a Component Maintenance Manual will also facilitate effective maintainability.
231	1.10 Flight	Simulators
232		Flight simulators are recognized as an important part of the aviation industry.
233		Airlines depend upon simulators for flight crew and maintenance training. FMS
234		equipment should be designed for use in flight simulators. Airlines typically desire
235		simulators to be available as early as possible to allow for crew training prior to
236		introduction into revenue service. The guidelines of ARINC Report 610: Guidance
237		for Use of Avionics Equipment and Software in Simulators apply.
238		

2.0 INTERCHANGEABILITY STANDARDS

239 2.0 INTERCHANGEABILITY STANDARDS

240 3.02.1 Introduction

This section sets forth the specific form factor, mounting provisions, interwiring, input and output interfaces, and power supply characteristics desired for the Flight Management Computer (FMC). These standards are necessary to ensure the continued independent design and development of both the equipment and the airframe installations. Manufacturers should recognize the practical advantages of developing equipment in accordance with the form factor, interwiring, and signal standards of this document.

248 2.2 Form Factor, Connectors, and Index Pin Coding

The FMC should comply with the dimensional standards in **ARINC Specification 600:** Air Transport Avionics Equipment Interfaces, for the 8 Modular Concept Unit (MCU) or the 4 MCU form factor. The FMC should also comply with ARINC Specification 600 with respect to weight, racking attachments, front and rear projections, and cooling.

254The FMC should be provided with a low insertion force, ARINC 600 size 2 service255connector. This connector should be located on the center grid of the FMC rear256panel, and index code 04 should be used. The top and center inserts of the257connector Top Plug (TP) and Middle Plug (MP) should each provide 150 socket-258type contacts. The lower insert Bottom Plug (BP) should provide 11 pin-type259contacts and spaces for two small diameter coaxial contacts. Attachment 2 to this260document shows the connector arrangement and pin assignments.

If functions (not assigned pins on the service connector in Attachment 2-2 to this document) are needed to be brought to the outside world to facilitate testing, they should be assigned pins on an auxiliary connector whose type and location is selected by the equipment manufacturer. The manufacturer should refer to ARINC Specification 600 when choosing the location for this connector and note that, other than to accommodate the needs for equipment identification by the ATE described in this document, he is free to make whatever pin assignments he wishes. The airlines do not want the unassigned (future spare) pins of the service connector used for functions associated solely with ATE use.

270 2.3 Standard Interwiring

The standard interwiring for the FMC is set forth in Attachment 2-2. The interwiring for a given installation needs only to ensure interconnection with those sub-systems actually installed and supported on a particular aircraft type. Wiring associated with alternate sub-systems shown in Attachment 2-2 need not be installed. Equipment manufacturers are cautioned not to rely on special wires, cabling, or shielding for their particular units because they will not exist in an ARINC 702A installation.

277 2.4 Power Circuitry

279	The FMC should be designed to use 115 volt 400Hz single phase power from a
280	system designed for Category (A) utilization equipment per ARINC
281	Specification 413A.

282The primary power inputs to the FMC will be protected by a circuit breaker.283Installation designers should note that the FMC circuit breaker may need to be284capable of handling the current drain of an ARINC 615 or 615A data loader. When

285 286	such a device is used with the FMC, it may derive its power from the FMC power source.
287 288 289 290 291 292	The equipment designer should be aware that severe switching and other transient interruptions to primary power occur during normal aircraft operations. He should ensure that such interruptions do not cause the computer to lose the contents of its memory or impose the need to provide an external battery to maintain operations. No pilot action should be needed to cause the system to return to normal operation following such normal power interruptions.
293 294 295 296 297 298 299	Equipment designers should take precautions to prevent anomalous operation of equipment during and after interruptions or transients in the aircraft power system. The equipment should, as a design goal, continue normal operation while sourcing current to all active guidance and flag outputs during power interruptions of up to 200 milliseconds. If the equipment shuts down during a power interruption, normal operation should resume without the need to recycle circuit breakers or clear memories when power is restored.
300 301	System response and data retention requirements for primary power interruptions longer than 200 milliseconds are discussed in Section 3.3.
302 303 304	Note: Airframe installation designers should verify that the aircraft power systems satisfy the primary power interruption criteria of ARINC Specification 413A.
305 2.4.2	Power Control Circuitry
306	There should be no master on/off power switching within the FMC system.
307 2.4.3	The AC Common Cold
308 309 310 311	The wire connected to the FMC connector pin labeled 115 Vac Cold will be grounded to the same structure that provides the dc chassis ground but at a separate ground stud. Airframe manufacturers are advised to keep AC ground wires as short as practicable in order to minimize noise pick-up and radiation.
312 2.4.4	The Common Ground
313 314 315 316	The wire connected to the FMC connector pin labeled Chassis Ground should be employed as the DC ground return to aircraft structure. It is not intended as a common return for circuits carrying heavy ac currents, and equipment manufacturers should design their equipment accordingly.
317 2.4.5	Batteries
318 319 320	If battery devices are used in equipment designs, they should not degrade the MTBF and MTBUR targets for the equipment and should also have a life expectancy greater than the MTBF target.
321	COMMENTARY
322 323 324 325 326 327 328	Airline experience has shown that batteries have proven to be maintenance problems in avionic equipment. Manufacturers may consider the use of batteries to hold-up memory devices through power transients or long-term power outages. Batteries might also be utilized to maintain real time clock circuits or for other purposes. However, the airlines encourage the manufacturers to consider other design solutions instead of using batteries for these functions.

329	2.5	Standardized Signaling
330 331		The desire for interchangeability necessitates standardization of the FMC input and output interface parameters.
332 333 334 335		The FMC should be capable of exchanging data in digital form and as discrete inputs and outputs. The characteristics of digital signals and discrete signals are defined herein. These standards should be used as design guidelines to assure the desired interchangeability of equipment.
336 337 338		Certain basic standards established herein are applicable to all signals. Unless otherwise specified, the signals should conform with the standards set forth in the subparagraphs below.
339	2.5.1	General Accuracy and Operating Ranges
340 341 342 343 344		The accuracies specified herein should apply under all combinations of the environmental conditions referenced in Section 2.5 of this document. Accuracy measurements should be made on the assumption that the inputs to the FMC are perfect. Accuracies are specified on the basis of 95% of observations and do not include typical reading inaccuracies of the pilot's instruments.
345	2.5.2	Resolution
346 347 348 349 350 351		For the purposes of this Characteristic, the resolution or the function threshold sensitivity is considered to be the maximum cyclic input change (double amplitude) that can occur without detectable change in the output. The specific figures set forth for threshold sensitivity of each function should be made without vibration of any kind being applied and it should be checked approaching the reading with signals from either direction.
352	2.5.3	ARINC 429 Data Bus
353 354		The FMS equipment utilizes digital signal interfaces defined by ARINC Specification 429: Digital Information Transfer System (DITS).
355 356		ARINC 429 data bus input labels are defined in Attachment 4 of the document. Material in this document is included for reference purpose only.
357		COMMENTARY
358 359 360		In the event of conflict between this document and ARINC Specification 429, the equipment designer is encouraged to contact the supplier of equipment sourcing the ARINC 429 data words.
361 362 363		ARINC 429 data bus output labels sent by the FMS are defined in Attachment 4 of this document. Material in this document is intended to be used by the FMS equipment designer.
364	2.5.4	Standard "Open"
365 366		The standard "open" signal is characterized by a resistance of 100,000 ohms or more with respect to signal common.
367		COMMENTARY
368 369 370		In many installations, a single switch is used to supply a logic input to several Line Replaceable Units (LRUs). One or more of these LRUs may utilize a pull up resistor in its input circuitry. The result is that an

371 372		open may be accompanied by the presence of +27.5 Vdc nominal. The signal could range from 18.5 to 36 Vdc.
373	2.5.5	Standard "Ground"
374 375 376 377 378		The standard "ground" signal may be generated by either a solid state or mechanical type switch. For mechanical switch type circuitry, a resistance of 10 ohms or less to signal common would represent the ground condition. Semiconductor circuitry would exhibit a voltage of 3.5 Vdc or less with respect to signal common in the ground condition.
379	2.5.6	Standard "Applied Voltage" Output
380 381 382 383 384		The standard "applied voltage" is defined as having a nominal value of +27.5 Vdc. This voltage should be considered to be applied when the actual voltage under the specified load conditions exceeds 18.5 Vdc (+36 Vdc maximum) and should be considered to be not applied when the voltage at the output is 3.5 Vdc or less when loaded with no less than 50,000 ohms.
385	2.5.7	Standard Discrete Input
386 387 388 389		A standard Discrete Input should recognize incoming signals having two possible states, open and ground. The characteristics of these two states are defined in Sections 2.5.4 and 2.5.5. The maximum current flow in the ground state should not exceed 20 milliamperes.
390		COMMENTARY
391 392 393 394 395 396 397 398 399 400		Some older installations use a number of voltage levels and resistances for discrete states. In addition, the assignments of valid and invalid states for the various voltage levels and resistances were sometimes interchanged, which caused additional complications. A single definition of discrete levels is being used in an attempt to standardize conditions for discrete signals. The voltage levels and resistances used are, in general, acceptable to hardware manufacturers and airlines. This definition of discrete is also being used in the other ARINC 700-series characteristics. However, there are few exceptions for special conditions.
401 402 403 404 405 406 407 408		The logic sources for the Discrete Inputs to the unit are expected to take the form of switches mounted on the airframe component (flap, landing gear, etc.) from which the input is desired. These switches will either connect the Discrete Input pins on the connector to airframe dc ground or leave an open circuit as necessary to reflect the physical condition of the related components. The unit will, in each case, be expected to provide the DC signal to be switched. Typically, this is done through a pull-up resistor. The equipment input should sense the voltage on each pin to determine the state (open or closed) of each switch.
409 410 411 412 413 414 415 416		The selection of the values of voltages and resistances is based on the assumption that the Discrete Input will utilize a ground-seeking circuit. When the circuit senses a low resistance or a voltage of less than +3.5 Vdc, current flow from the input will signify a ground state. When a voltage level between +18.5 and +36 Vdc is present or a resistance of 100,000 ohms or greater is connected to the input, little or no current should flow. The input should be in a quiescent state. The input should also utilize an internal pull-up to provide for better noise immunity when a true open is present at the input.

		2.0 INTERCHANGEABILITY STANDARDS
417 418 419 420 421 422 423 424 425		The probability is quite high that the sensors (switches) will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit from other equipment, especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the ground (less than +3.5 Vdc) state of each input. Also, both equipment and airframe suppliers are cautioned concerning the need for isolation to prevent sneak circuits from contaminating the logic. Typically, diode isolation is used in the avionics equipment to prevent this from happening.
426	2.5.8	Standard Discrete Output
427 428 429 430 431 432 433		A standard Discrete Output should exhibit two states, open and ground, as defined in Sections 2.5.4 and 2.5.5. The open state of each discrete is defined as a voltage greater than +18.5 Vdc (+36 Vdc max.), or a resistance of 100,000 ohms or more, from the assigned equipment connector pin to airframe dc ground. The ground state is defined as a voltage less than +3.5 Vdc (0 Vdc min.) to airframe dc ground at the assigned pin. The maximum current flow through the discrete wire in the ground state should not exceed 20 mA.
434		COMMENTARY
435 436 437 438 439 440 441 442		The probability is quite high that the switches will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the standard ground (less than +3.5 Vdc) state of each input. Avionics suppliers are alerted to the need for isolating diodes in the equipment to prevent sneak circuits from contaminating the logic.
443	2.5.9	Ethernet Interfaces
444		This document refers to two types of Ethernet buses:
445 446		 ARINC Specification 646: Ethernet Local Area Network (ELAN) ARINC Specification 664: Aircraft Data Network
447		ARINC 664 Ethernet is widely used on later model aircraft.
448	2.5.1	0 Standard Annunciators
449 450 451		A standard annunciator output should exhibit the same characteristics as the standard discrete output described in Section 2.5.8, except the annunciator output should be capable of sinking up to 200 mA when in the ground state.
452	2.6	Environmental Conditions
453 454 455		The FMC should meet the requirements of the latest versions of RTCA DO-160 and EUROCAE ED-14. Attachment 5 to this document tabulates the relevant environmental categories.
456	2.7	Cooling
457 458 459 460		The FMC may be designed to utilize, and the airframe installation should provide, cooling air in the manner described in Section 3.5 of ARINC Specification 600. The airflow rate provided to the FMC in the aircraft installation should be 44 kg per hour and the pressure drop of the coolant airflow through the equipment should be 25 ± 5

461 462 463		mm of water at this rate. The unit should be designed to expend the pressure drop in a manner to maximize the cooling effect within the equipment. Adherence to the pressure drop standard is needed to allow interchangeability of equipment.
464 465 466		In addition to the above, individual aircraft installations may require operation with loss of cooling air to meet Extended-Range Twin-Engine Operations (ETOPS) operating requirements.
467		COMMENTARY
468 469		Current ETOPS rules can require operation up to 180 minutes without cooling air.
470 471 472 473 474 475		Equipment failures in aircraft due to inadequate thermal management have plagued the airlines for many years. Section 3.5 of ARINC Specification 600 provides design guidance for airframe equipment suppliers to prevent such problems in the future. Airlines regard this material as required reading for all potential suppliers of unit and aircraft installations.
476	2.8	Weights
477 478		System manufacturers should take note of the guidance information on weights contained in ARINC Specification 600.
479	2.9	Grounding and Bonding
480 481 482 483		The attention of equipment and airframe manufacturers is drawn to the guidance material in Section 3.2.4 of ARINC Specification 600 and Appendix 2 of ARINC Specification 404A on the subject of equipment and radio rack grounding and bonding.
484		COMMENTARY
485 486 487 488 489 490 491 492		A perennial problem for the airlines is the location and repair of airframe ground connections whose resistance has risen as the airframe aged. A high resistance ground usually manifests itself as a system problem that resists all usual approaches to rectification, and invariably consumes a wholly unreasonable amount of time and effort on the part of maintenance personnel to fix. Airframe manufacturers are urged, therefore, to pay close attention to assuring the longevity of ground connections.

3.0 SYSTEM DESIGN CONSIDERATIONS

3.0 SYSTEM DESIGN CONSIDERATIONS 493

494 4.03.1 System Configurations

495

496 497

498

499

501

503

504

507

508

521

522

523

525

526

527 528

529

530

531 532

533

Different configurations of the ARINC 702A Flight Management Computer System, illustrated in ATTACHMENT 1 to this document, are described in this section. The FMC is expected to be capable of operating interchangeably in all configurations. In an Integrated Modular Avionics (IMA) architecture, the FMF is analogous to the FMC for the purpose of these system configurations.

500 3.1.1 Single System Configuration

In this configuration, the system accepts inputs from one, two, or three Inertial 502 Reference System (IRS), Air Data/Inertial Reference System (ADIRS), or Altitude Heading Reference System (AHRS); one or two GNSS Sensors; two each Air Data System, VHF Omni-Range Navigation (VOR), and Distance Measuring Equipment 505 (DME); and one Instrument Landing System (ILS)/Microwave Landing System (MLS) to provide the various navigation and guidance functions. An ARINC 615 and 506 ARINC 615A (growth) data loader input is provided for both software and navigation data base loading. Also, an interface is provided for an ACARS Management Unit 509 (MU) or an ARINC 758 Communications Management Unit (CMU).

- Inputs of fuel quantity, fuel flow, and engine/airplane configuration parameters and 510 511 inputs from the flight control computer (and for some installations, the thrust control 512 computer) combined with the air data inputs are used to provide the performance and prediction functions. Initial condition inputs may be inserted manually using the 513 514 MCDU, automatically from airplane sensor systems or loaded using the data link 515 function.
- 516 The system should be capable of driving interfacing to a minimum of two flight 517 control computers, two communication management units, and independently 518 driving ttwo navigation displays. It should support independent mode and range selection of the navigation displays. 519

520 3.1.2 Single System/Dual MCDU Configuration

In this configuration, the interface is the same as for the single system, with the addition of a second MCDU. Both MCDUs have the capability of data entry and display independently.

524 3.1.3 Dual System Configuration

A typical Flight Management System installation is dual, consisting of two MCDUs and two FMCs. The FMCs are linked together via the intersystem bus and both the MCDUs are connected to both FMCs. MCDU button pushes are processed for mode control and display changes. The left and right MCDUs may be operated independently; they can display different data pages and the crew can insert data using either of them to affect the FM operation. The FMCs transmit certain data to each other for comparison and validation. For example, if the computed position between the FMCs differs by more than a set threshold, a message is issued to warn the crew.

534 Refer to Section 3.5 for Dual System Design Considerations.

535 3.1.4 Other Configurations

Some installations have provided for a third MCDU since one of the MCDUs is 536 537 primarily used to manage the data link activity. For this configuration, the third

3.0 SYSTEM DESIGN CONSIDERATIONS

538 539		MCDU may be used as a repeater hot spare that can be switched in or out as necessary.	
540 541 542 543		Additionally, some installations have provided for a third FMC. This unit is usually not synchronized with the other two FMCs unless it is switched in as a replacement because of a unit failure. At this point the unit is fully synchronized by the remaining FMC and used in the dual configuration.	
544	3.2 Certific	cation Design Considerations	
545	4.1 <u>3.2.1</u>	Partitioning Considerations	
546 547 548 549 550 551 552 553 554 555		Manufacturers should carefully consider the internal structure of software in partitioning sub-functions within an overall function. In an integrated architecture, the FMF may be a partition within a system which provides all CNS/ATM airborne functions. The flight management function itself may consist of several sub-functions such as Navigation, Flight Planning, Crew Interface, I/O, etc., which may be separate partitions. As the objectives of software partitioning are efficient design and effective functional allocation, as well as reduced software change costs and lead times, manufacturers must ensure that the software structure eliminates the need to revalidate software partitions and modules that have not been affected by a particular change.	
556 557 558		In some configurations, the system may be a mixed criticality unit. In other words, this unit may house software of more than one RTCA DO-178B/C level. In these configurations, manufacturers must ensure that partitioning is robust enough to	

this unit may house software of more than one RTCA DO-178B/C level. In these configurations, manufacturers must ensure that partitioning is robust enough to accommodate changes in any lower level software (i.e., less critical software) without the rigors of the more critical software validation, certification, and maintenance.

562 3.2.2 Operational Functional Independence

559 560

561

563

564

565

566

While the system makes extensive use of shared resources as a multi-function system (e.g., power supplies, processors), manufacturers may provide for some system functions to be retained during failure conditions.

COMMENTARY

EZO 22	Unit Identification Considerations
572	system functions.
571	sensor should not adversely impact normal operation of any other
570	function(s). Therefore, a failure condition unique to one function or
569	aircraft operation is not predicated on the use of the failed sensor or
568	or more functions or external interfaces have failed, as long as the
567	Airlines strongly desire to continue to operate the system even if one

573 **3.2.3 Unit Identification Considerations** 574 4

4.1.1 COMMENTARY

575 576	Avionics and airframe manufacturers are strongly encouraged to implement an FMS unit identification methodology that does not
577	correlate the software version with the basic face plate part number
578	of the unit. The objective is that a software revision should not result
579	in the re-identification – part number roll – of the unit. A further
580	objective is that a common FMS platform (i.e., a single face plate part
581	number) could be used across multiple fleets and airframe

3.0 SYSTEM DESIGN CONSIDERATIONS

582 583		manufacturers without re-identification of the unit, even if fleet specific software is required for each fleet type.
584 585 586 587 588 589 590		With this approach an individual manufacturer's part numbers are assigned and maintained for (1) the FMC hardware, (2) the FMC software, and (3) the overall unit (i.e., face plate part number). In this case, the face plate part number is referred to as the generic or system part number and is not affected by normal revisions to the FMS software (e.g., all software or data that can be loaded into the unit via a data loader will not require a re-identification of the unit).
591 592 593 594 595 596 597		For this scenario, the operator may stock a given FMC under its system part number. This unit could be effective across multiple fleet types, each with fleet specific software requirements. When an FMC is replaced on an aircraft, the software configuration can be verified from the MCDU. If necessary, the FMC may be loaded with the applicable certified software for that fleet via data loader or system crossload.
598 599 600 601 602		This scheme allows the operator to minimize sparing when a given FMC is used on multiple fleet types, even when unique software is required for each fleet. It will also enable new FMC software loads on the aircraft without requiring a revision to the FMC ID plates or the aircraft Illustrated Parts Catalog (IPC).
603	3.3	System Response to Power Interrupts
604 605 606 607		An appropriate period of time, usually between 5 and 10 seconds, should be selected to differentiate between inadvertent power loss and normal equipment turn on. The reason for this distinction is to provide a basis for when the system should be reinitialized.
608 609 610 611 612 613 614		For power outages greater than this time period, the system should automatically perform a power-up test cycle. Failure to complete this test cycle successfully should cause appropriate flight deck annunciation. The system should also reset any flight dependent data such as initial position, flight plan, performance initialization, etc., and prompt the crew for entry of this data. Configuration related data from program strapping, configuration files, or Airplane Personality Module (APM) should be read.
615 616 617 618 619 620		For power outages less than this time period the system should resume normal functions as quickly as possible. The power up test cycle should not be performed and initialization, configuration, and flight plan data should not be reset and the crew should not be prompted for data entry. The crew may be prompted to select the appropriate fly-to waypoint since flight plan points may have been passed during the power outage.
621		COMMENTARY
622 623 624 625 626 627 628		Some systems may also make a distinction of being on the ground or in the air. Typically, in-air power ups will be treated as inadvertent power outages regardless of the power outage time period. The system should be designed to protect data from a power interrupt for a period of time consistent with its intended use. Since some methods of protecting data do not ensure data validity indefinitely, data integrity should be checked before it is used after a power

3.0 SYSTEM DESIGN CONSIDERATIONS

629 630	outage, especially if the system uses in-air status for determining normal power turn on.
631	3.4 FMC Performance
632	4.23.4.1 Accuracy, Integrity, and Continuity
633 634 635 636	Accuracy, integrity, and continuity requirements for the Lateral Guidance function are defined by RTCA DO-28336 and RTCA DO-283. RTCA DO-283 also addresses accuracy requirements for the Vertical Guidance and Trajectory Predictions functions.
637 638	The system design should comply with the aeronautical data quality and integrity requirements set forth in RTCA DO-200A and RTCA DO-201A.
639	The system should ensure data integrity in all operations such as:
640	 Dataload of program and databases into system memory
641	 Reading of program and databases from memory
642	 Input of sensor information into the system
643	 Entry and edit of information in the flight plan
644	 Navigation, performance, and guidance computations
645	 Output of information to the various external systems and displays
646	•3.4.2 Response Time
647 648 649	Specification of precise response time standards is dependent on the detailed system operational design. This section provides general guidelines that should be considered by system designers in determining computer processing requirements

647 Specification of precise response time standards is dependent on the detailed
648 system operational design. This section provides general guidelines that should be
649 considered by system designers in determining computer processing requirements
650 and software architecture.
651 Unless explicitly stated otherwise, flight plan response times throughout this

Unless explicitly stated otherwise, flight plan response times throughout this document are for modifications to the active flight plan. The response times listed below are from the completion of crew action until the output of data on the display.

Table 3.4.2-13.4.2-1 Response Time Requirements

Task Description	Max. Response Time
Direct to a Waypoint – Display of direct-to lateral path on ND	2 seconds
Lateral Guidance Output following flight plan change	3 seconds
Revise Speed or Altitude Constraint while airplane in climb or cruise – Time to display target altitude and target speed for current phase	3 seconds
Revise Speed or Altitude Constraint while airplane in descent (no RTA) – Time to display target altitude, target speed, and vertical deviation for current phase	5 seconds
Revise RTA target speed	30 seconds (15 seconds typical)
Full Flight Plan Prediction – 4D Trajectory (Note 1)	30 seconds (15 seconds typical)
Background data update in response to a Mode, Scale, or Option change on the Navigation Display	1 second
Software and Data Base Loading (Note 2)	Goal: Less than 15 minutes
ATS Uplink Messages	Note 3
ATS Downlink Messages	Note 3

Formatted: Caption

652 653 654

3.0 SYSTEM DESIGN CONSIDERATIONS

656	Notes:
657 658 659 660	 4D Trajectory includes predictions of distance, altitude, airspeed, time, and fuel. The response time depends on many factors such as the number of flight plan waypoints.
661 662	1.2. The response time depends on file size, media, and/or data loader interface. Refer to Section 10.3.3 for additional data loader requirements.
663 664 665 666 667	2.3. The International Civil Aviation Organization (ICAO) CNS/ATM-1 SARPS allocate part of the total system end to end response time to the avionics. Further allocation to individual avionics subsystems (e.g., FMS, CMU, EFIS) is system architecture dependent and beyond the scope of this document.
668	3.3.5 Dual System Design Considerations
669 670 671 672 673 674 675	Different approaches may be followed in defining the functional architecture of the dual system installation. Design considerations should include operational independence of the two MCDUs, redundancy management, system integrity, functional availability, and failure response mechanisms. The dual FMCs should exchange information so that in the event of a failure or loss of power in one FMC, the second FMC is available for engagement without additional crew input and without significant discontinuity in the outputs.
676 677 678 679 680 681 682	In a dual synchronous configuration, one of the FMCs is designated as master and the other as slave. The master designation may be based on the FMC operational status, autopilot or flight director engagement logic, and for some installations, a source select switch. The master FMC performs tasks such as directing the slave to tune radios, determining the order of MCDU button push processing, initiating flight plan leg sequencing, and other system events. Otherwise, the FMCs operate independently.
683 684 685 686	In another possible dual configuration, a master FMC may be designated that directs all FM operations and synchronizes its data with the spare FMC such that the spare FMC can resume FM operations should the master fail or the spare be selected as the master. Other dual system configurations may exist as well.
687	
688	

689	4.0 FLIGHT MANAGEMENT FUNCTIONS
690	5.0 <u>4.1</u> Introduction
691	This section describes the characteristics of the flight management functions.
692	4.2 Functional Initialization and Activation
693	5.14.2.1 Navigation Sensor Initialization
694	The system should provide for the initialization of various navigation sensors.
695	4.2.1.1 IRS Initialization
696 697 698 699 700 701 702 703 704	The system should be capable of initializing up to three ARINC 704 Inertial Reference Systems or ARINC 738 ADIRS when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the system should output on its general data buses a burst of not more than four or less than two initial position latitude/longitude pairs. This data should consist of BCD-encoded set latitude and set longitude words having the labels and data standards defined for these quantities in ARINC Specification 429. Position data can be entered as a latitude/longitude or selected from the navigation data base as an airport and optionally gate, or input from the Global Navigation Satellite System Unit (GNSSU).
705	4.2.1.2 IRS Heading Set
706 707 708 709 710 711	The system should also be optionally capable of setting the IRS magnetic heading output to the value entered by the crew at the MCDU. The system should respond to the set heading command by transmitting a burst of not more than four or less than two BCD-encoded set heading words. ARINC Specification 429 defines the applicable label and data standards. Consult ARINC Specification 704: Inertial Reference System, for further information on initialization and heading set.
712	4.2.1.3 GNSS Initialization
713 714 715 716 717 718 719	The system should be optionally capable of initializing up to two ARINC 743A GNSS Sensors when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the navigation system should output on its general data buses, current time and date and a burst of not more than four or less than two initial position of a latitude/longitude pair. This data should consist of BNR encoded current time in Universal Time Coordinated (UTC), and BCD encoded current date, set latitude, and set longitude words.
720	COMMENTARY
721 722	GNSS sensors may be indirectly connected to the navigation system through the IRS or ADIRS.
723	4.2.2 Flight Plan Initialization and Activation
724	There are various methods for constructing a flight plan such as:
725	Pre-defined company routes
726	Entry using FROM/TO format
727	 Menu selection of procedures and/or airways
728	Individual waypoint entry
729	Flight Plan Copy
730	AOC Uplink

 /ATC Uplink Refer to Section 4.3.2.4 for additional details regarding these methods. This initialization should be performed for every desired flight plan type. Once a flight plan has been constructed, a means facilities should be provided to allow the crew to select a flight plan as the active flight plan or route. 4.2.3 Performance and Predictions Initialization To initialize performance and trajectory prediction computations, gross weight (or zero fuel weight and block fuel), cost index, and cruise altitude are required as a minimum. Cost index is typically required on systems which support minimum trip cost (ECON) speed profiles (See Section <u>4.3.4.1</u>). Other vertical flight planning parameters may also be initialized as desired. These are discussed in Section <u>04.3.2.5</u>.
 This initialization should be performed for every desired flight plan type. Once a flight plan has been constructed, a means facilities should be provided to allow the crew to select a flight plan as the active flight plan or route. 4.2.3 Performance and Predictions Initialization To initialize performance and trajectory prediction computations, gross weight (or zero fuel weight and block fuel), cost index, and cruise altitude are required as a minimum. Cost index is typically required on systems which support minimum trip cost (ECON) speed profiles (See Section <u>4.3.4.1</u>). Other vertical flight planning parameters may also be initialized as desired. These are discussed in Section
734flight plan has been constructed, a means facilities should be provided to allow the crew to select a flight plan as the active flight plan or route.7364.2.3Performance and Predictions Initialization737To initialize performance and trajectory prediction computations, gross weight (or zero fuel weight and block fuel), cost index, and cruise altitude are required as a minimum. Cost index is typically required on systems which support minimum trip cost (ECON) speed profiles (See Section 4.3.4.1). Other vertical flight planning parameters may also be initialized as desired. These are discussed in Section
737To initialize performance and trajectory prediction computations, gross weight (or738zero fuel weight and block fuel), cost index, and cruise altitude are required as a739minimum. Cost index is typically required on systems which support minimum trip740cost (ECON) speed profiles (See Section 4.3.4.1). Other vertical flight planning741parameters may also be initialized as desired. These are discussed in Section
738zero fuel weight and block fuel), cost index, and cruise altitude are required as a739minimum. Cost index is typically required on systems which support minimum trip740cost (ECON) speed profiles (See Section 4.3.4.1). Other vertical flight planning741parameters may also be initialized as desired. These are discussed in Section
743The trajectory prediction function also requires a specified flight plan or routing;744most of the performance functions do not.
745 4.2.4 Lateral and Vertical Guidance Activation
746Lateral Guidance computations are activated by a valid position initialization and the747presence of an active route. Vertical Guidance computations are activated by a valid748position initialization, an active route, and crew entry of gross weight, cost index,749and and cruise altitude (at a minimum). Coupled guidance can be selected using750the Auto Flight Control System (AFCS) Control Panel. In most systems, lateral and751vertical guidance are independent selections on the AFCS Control Panel. Of those752systems with independent selections, lateral guidance may or may not be a753prerequisite for vertical guidance. Both methods are acceptable. In some systems,754vertical guidance speed target) can be selected engaged independent of vertical755guidance managed level change control. On other systems, vertical guidance756guidance managed level change control. Both methods are757managed speed control requires managed level change control. Both methods are758acceptable.
759 4.2.5 Use of Data Link for System Initialization
760The data link function can also be used to provide the initialization data as described761in Sections 4.2.2 and 4.2.3.
762 4.3 Functional Description
763 <u>5.24.3.1</u> Navigation
764The navigation function furnishes continuous, real-time, three two dimensional765solutions to the crew and provides the following navigational outputs:
• Estimated Aircraft Position (latitude, longitude, altitude)
767 • Aircraft Velocity
768 • Drift Angle (optional)
769 • Track Angle
 770 • Magnetic Variation (optional) 771 • Wind Velocity and Direction
 Wind Velocity and Direction Time
 773 Required Navigation Performance (RNP)

774 775 776		 Estimate of Position Uncertainty (EPU) or Actual Navigation Performance (ANP) or Estimate of Position Error (EPE)or Estimate of Position Uncertainty (EPU) 	
777		COMMENTARY	
778 779 780		For the purpose of this document, EPU, ANP, and EPE are synonymous and refer to the statistical indication of the system's current position estimation performance.	
781 782 783 784		For the purpose of this document, ANP and EPU are intended to mean the same thing. In system architectures utilizing IRS sensors, drift angle and magnetic variation may be provided directly by the IRS and are not required to be computed by the FMS.	
785 786 787 788 789 790 791		For vertical aspects, the navigation function may provides altitude, vertical speed and flight path angle. Unless explicitly stated otherwise, altitude computations operate upon inputs of smoothed inertial altitude from the Inertial Reference Units (IRUs), Air Data/Inertial Reference Units (ADIRUs), or Attitude and Heading Reference System (AHRS), corrected by barometric (corrected or uncorrected) pressure altitude from the air data system. Flight path angle is derived from vertical speed and computed ground speed.	
792	4.3.1.1	Multi-Sensor Navigation	
793		The navigational output data is computed using the following inputs when available:	
794		Attitude and Heading	
795		o IRU or	
796		 ADIRU or 	
797		o GPIRU or	
798		• AHRS	
799		e_GNSS Receiver	
800		DME Transponder	
801		VOR/LOC Receiver	
802		ILS/MLS Receiver(s)	
803		Air Data Computer	
804 805 806 807 808		The navigation function automatically selects the combination of available sensors that provides the best solution for estimating the aircraft position and velocity. Using the sensor accuracy characteristics, sensor raw data, and information about the current conditions, the best combination of position sensors (GNSS, IRU, DME, VOR, etc.) is selected to minimize the position determination error.	
809 810 811 812		As a minimum, the navigation function must provide for GNSS data integrated with a heading/attitude sensor and air data system as some aircraft installations may not include other navigation radios. Adequate navigation availability must be a consideration in any implementation.	
813	4.3.1.2	Navigation Modes	
814 815 816		Available navigation sensor data is validated before it is used for updates to the aircraft position. On aircraft with IRUs installed, the primary mode of operation utilizes IRS heading, attitude, position, and velocity, with IRS position and velocity	

817 818 819 820 821 822 823 823 824	combined with GNSS or VHF radio data (e.g., DME, Tactical Air Navigation System (TACAN), VOR, and LOC). On aircraft without IRUs the primary mode of operation is position and velocity from available sensors with heading and attitude being provided from an AHRS. The filtering algorithm should give appropriate weighting based on the sensor accuracy and should provide for sensor error modeling such that the navigation solution accuracy can be maintained through short term unavailability of various sensors. The navigation function should behave smoothly regardless of sensor availability or sensor transitions.
825	COMMENTARY
826 827 828 829	With the transition to RNP-basedPBN navigation, standardized navigation sensor selection logic is not required; however, in some implementations, a navigation mode sensor hierarchy such as the following may be utilized:
830	LOC (approach only)
831	• GNSS
832	DME/DME
833	DME/VOR
834 835 836	It may be desirable for non-IRU aircraft to correct heading/attitude sensor data based on the other available sensors to provide for a more accurate coasting mode of operation.
837	4.3.1.3 RNP-Based Navigation
838 839	The navigation function should satisfy the accuracy, integrity, and availability criteria set forth for aircraft systems intended to operate in RNP airspace.
840	OOMMENT A DY
040	COMMENTARY
841 842 843	COMMENTARY The complete set of criteria is provided in RTCA DO-283. The systems criteria are specified in the latest versions of RTCA DO-236 and RTCA DO- 283.
841 842	The complete set of criteria is provided in RTCA DO-283. The systems criteria are specified in the latest versions of RTCA DO-236 and RTCA DO-
841 842 843 844 845 846 847 848 849 850 851	The complete set of criteria is provided in RTCA DO-283. The systems criteria are specified in the latest versions of RTCA DO-236 and RTCA DO-283. The capabilities of the system should encompass position estimation, path definition, and path control and tracking, as well as computing position uncertainty. These capabilities, in addition to a means to evaluate and mitigate flight technical error, should form the basis for evaluating and determining total aircraft systems performance for RNP operations. The system should provide design, function, and operational integrity to ensure acceptable, repeatable, and error-free performance. The system should provide for clear and unambiguous indications of the navigation situation, including alerting to the flight crew when the navigation system does not
841 842 843 844 845 846 845 846 847 848 849 850 851 852	The complete set of criteria is provided in RTCA DO-283. The systems criteria are specified in the latest versions of RTCA DO-236 and RTCA DO-283. The capabilities of the system should encompass position estimation, path definition, and path control and tracking, as well as computing position uncertainty. These capabilities, in addition to a means to evaluate and mitigate flight technical error, should form the basis for evaluating and determining total aircraft systems performance for RNP operations. The system should provide design, function, and operational integrity to ensure acceptable, repeatable, and error-free performance. The system should provide for clear and unambiguous indications of the navigation situation, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace.

861	4.3.1.3.1 RNP Determination	
862 863 864	The system should provide the appropriate RNP selection and entry capabilities to support determination of the applicable RNP for a flight plan path terminator (leg), procedure, or environment based upon the following, in order of priority:	
865	Manual RNP entry by the crew	
866	Leg-Based RNP value from the navigation database or ATS datalink	
867	The default RNP value	
868	COMMENTARY	
869 870 871 872 873 874 875 876 877 878	RNP flight plans will consist of a limited subset of the path terminators defined in Section 4.3.2.2. These RNP routes and procedures will contain embedded information which establishes the RNP values which apply to the active or next path terminator; in the absence of the embedded RNP information, RNP may be determined or designated by default according to the airspace or environment. When the system is operated using the default RNP values, the system will require navigation environment (i.e., oceanic, enroute, terminal, approach) logic to ensure the proper transition from one RNP default value to another.	
879 880	The system should output the current RNP and ANPEPU values on the general- purpose output buses.	
881	4.3.1.3.1.1 Manually Entered RNP Values	
882 883	The system should support manual entry within a range of possible RNP values appropriate for the PBN operation to be flown.	
884 885 886 887 888 889 890 891	A manually entered RNP value should supersede any pre-programmed RNP value associated with a route, procedure or leg, or any default value. The manually entered RNP value should be clearly distinguishable as a manually entered value. In the event of a manually entered value larger than the value being overridden, an advisory alert or annunciation, as appropriate, should be provided to the crew. When a manual entry is deleted, the system should return to the appropriate RNP value based upon its priority. Unless deleted by the crew, the manual entry should remain the active RNP value.	
892	COMMENTARY	
893 894 895 896 897 898 899 900 901 902 903	The annunciation and alerting requirement for manually entered RNP values which exceed the active RNP value may be applied in various ways. One instance is upon entry of the value; this assures pilot awareness of his action relative to overriding limits applicable to the route, procedure, leg, or airspace, and which form the basis for separation. However, conditions such as NOTAMs or diversions due to weather may be among the reasons why a manual entry is made. Once accepted, the system should also actively monitor the manual entry relative to the RNP for the procedure, route, leg or default, in the event they change to a smaller value. Advance annunciation or alerting would also be advisable in this case.	

4.0 FLIGHT MANAGEMENT FUNCTIONS 4.3.1.3.1.2 Preplanned RNP Values 904 When an RNP Authorization Required (AR) approach procedure offers multiple lines 905 906 of minima, the system should allow the flight crew to specify or pre-select the 907 desired RNP value for the final approach segment. COMMENTARY 908 909 Some RNP Authorization Required -(AR) approaches are designed 910 with multiple lines of minima corresponding to the respective RNP requirement. For these approaches, ARINC 424 specifies that the 911 least restrictive "level of service" be coded in the primary record of 912 the approach procedure. Additional lines of minima are contained in 913 914 the approach continuation records. For RNP approaches designed 915 with multiple RNP values associated with lines of minima, the flight 916 crew may desire a more restrictive RNP value than the one coded in the NDB. The system should provide a means for the flight crew to 917 918 specify or pre-select the RNP value to use on the final approach 919 segment prior to reaching commencing the initial approach 920 fix.procedure. 921 4.3.1.3.1.3 Leg-Based RNP Values The system should support the definition of an RNP on a leg-by-leg basis. The Leg-922 923 Based RNP value should be initialized to the navigation database value associated with the leg upon insertion of the navigation procedure into the flight plan. Uplink of 924 a Leq-Based RNP Value via ATS datalink should be supported as part of dynamic 925 926 RNP operations. Display of uplinked Leg-Based RNP values should be provided to allow crew review and acceptance of the uplinked values and provide situational 927 awareness in lieu of a navigation chart. 928 929 COMMENTARY 930 The system designer may need to consider that although an RNP 931 value may be specified for individual leg(s) of a procedure (SID, STAR, Airway, Approach, Transition, etc.), one is not required. The 932 procedure designer may develop procedures where the RNP value is 933 934 designated leg by leg, or possibly for only selected flight legs. In this 935 case, where nothing is specified, the system default value would 936 apply. 937 On some routes and terminal procedures, restrictions along the route 938 939

940

941

942

943 944

945 946

947

948

949

(e.g., terrain, airspace, environmental) may require that RNP values be placed on individual legs. These values may be other than the default values (for the respective navigation environment), and the values may decrease as the aircraft proceeds along the arrival procedure route. This RNP structure is referred to as the "Scalable RNPScalability" element of Advanced RNP. It is assumed that published procedures which employ the sScalable RNP element will retrieve the respective RNP value for each leg from the NDB. In addition to the values coded in the NDB, RNP values may be transmitted via ATS datalink for dynamic operations.

When the RNP value is provided on downpath legs, the system should provide an indication to the flight crew when the RNP performance cannot be met at the next

950		
951	waypoint. The indication should be provided sufficiently early such that the flight crew can take action to resolve the situation.	
952	4.3.1.3.1.4 Stored Default Values	
953 954 955 956	The system should provide the capability for stored default RNP values for the various navigation environments (e.g., oceanic, enroute, terminal, approach). These values may be established as pre-programmed values and/or loadable into the system.	
957 958 959	The stored default RNP value for each respective navigation environment should correlate to one of the Navigation Specification values as defined in ICAO Doc 9613: <i>Performance-Based Navigation Manual.</i>	
960	COMMENTARY	
961 962 963 964 965 966	The system design may establish the stored defaults with pre- programmed default values which can be overridden by loadable values via a separately loadable data file. As an alternative, the default values may be established by the loadable data file only. The approach taken will be influenced by the system built-in test design for faults and response, as well as the system design integrity.	
967	4.3.1.3.2 Determination of Navigation System Performance	
968 969 970 971	Navigation system performance should be evaluated considering position estimation error, path definition error, and flight technical error, which are the key elements of total system error. The total system error components in the cross-track and along track directions should be less than the RNP value 95% of the flying time.	
972	COMMENTARY	
973 974 975 976 977 978 979 980 981 982 983 984 985 986 986 987	The complete set of criteria for evaluating navigation system performance is provided in RTCA DO-283. It should be noted that while all system integrators will need to evaluate their systems using the same standards and criteria, the systems implementations will vary and will dictate the acceptable operating modes and systems configurations. In one method, the system operation will be predicated on a design which relies upon comparisons of the systems' estimate of position uncertainty versus RNP, while at the same time evaluating integrity. However, this may carry with it restrictions on the mode of system operation (e.g., flight director mode or coupled with autopilot for RNP 1) necessary to achieve and assure consistent performance. In another method, the system operation will be predicated upon a real-time evaluation of all factors in total system error such that mode limitations or restrictions may not apply.	
988	4.3.1.3.3 Navigation Alerting and Display	
989 990	The system should provide for clear and unambiguous indications of the state of the aircraft navigation system, including situational awareness information and alerts.	
991	COMMENTARY	
992	The system should provide information which allows the	
982 983	restrictions on the mode of system operation (e.g., flight director mode or coupled with autopilot for RNP 1) necessary to achieve and	

4.0 FLIGHT MANAGEMENT FUNCTIONS

995 996 997 998 999 1000 1001 1002 1003	the navigation sensors in use and the actual level of navigation performance. The system should also provide annunciations and alerting of unacceptable degradation in navigation performance, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace, routes, and procedures. Some solutions for this could include indications and alerts when the system estimate of position uncertainty exceeds the RNP value. In others, the estimate of position uncertainty and flight technical error may have correlated indications and alerts.
1004 1005 1006	Additional display and alerting requirements relative to manually entered RNPs and determination of navigation system performance are described in Sections 4.3.1.3.1.1 and 4.3.1.3.2.
1007	4.3.1.4 Navaid Data
1008 1009 1010 1011 1012 1013	In support of the navigation function, the system must contain an extensive navigation data base. This database typically includes the enroute, terminal, and approach procedures (including RNP criteriavalues), the navigation aid ground station information, and the procedure recommended navaid information required for flight in the area in which the aircraft operates. See Section 9.2 for additional details regarding the navigation database.
1014	4.3.1.5 Crew Controlled Navigation Options
1015 1016 1017 1018 1019 1020 1021	Some sensor inputs to the navigation function should be capable of being blocked by pilot action. Localizer updates should always occur when in approach with an ILS approach selected as part of the flight plan. LOC, DME, VOR, and GNSS updating may be stopped by manual selection on the MCDU. Additionally, DME and VOR navaids may be individually blocked from the navigation solution by entering their identifiers on the MCDU or by data link. This manual blockage of individual navaids should be cleared at flight completion.
1022 1023 1024 1025 1026 1027	Capability may also be provided for navigation override where the operator can force the navigation position to coincide with a selected navigation sensor or reference position (e.g., takeoff runway threshold or intersection point). This position shift action aligns the system position to the selected sensor. Override of the navigation position to a manual reference point (i.e., overfly fix) is inconsistent with RNP operation.
1028 1029 1030	These options are intended as backup options for use in the event that a system generated message, such as verify position, alerts the crew to a problem in the navigation that the system cannot correct itself.
1031 1032 1033 1034 1035 1036	Facilities A means should be provided to accommodate manual tuning by the crew of the DME/VOR radios. If a receiver is being manually tuned, the navigation function should continue to auto tune any available channels with station selection as specified for auto tuning. If insufficient channels remain for satisfactory auto- tuning, then the navigation function may utilize the manually tuned stations if appropriate.
1037	4.3.1.6 VHF Radio Tuning
1038	5.2.1.14.3.1.6.1 Automatic Station Selection
1020	When the paying tion VHE radio receivers are available for automatic tuning the

1039When the navigation VHF radio receivers are available for automatic tuning, the1040navigation function should select and tune appropriate ground radio navigation

1041 1042 1043 1044 1045	facilities and use their position fixing data to refine the current navigation position. The navaids considered to be available for selection should be those contained within a usable distance from the estimated current aircraft position. This group of navaids, combined with any additional navaids defined by crew entry, should make up the set of navaids from which the best navigation aids can be drawn.	
1046 1047 1048 1049 1050	With scanning DME installations, up to five frequencies can be allocated to tune each interrogator and, depending upon the aircraft, may be designated for multiple DME range measurements, VOR/DME position fixing, ILS/DME or procedure- specified or pilot-selected navaids. If a procedure being flown has a specified navaid associated with it, then that navaid must be tuned and used for navigation purposes.	
1051 1052	Station selection criteria should be designed to limit station switching activity to a minimum.	
1053	4.3.1.6.2 Navaid Reasonableness Determination	
1054 1055 1056 1057	DME range measurements received by the navigation function should be compared with that of the expected radio range measurement as a reasonableness test. When the comparison is outside of a reasonable tolerance, the data should be rejected and should not be used in the position computations.	
1058	4.3.1.7 Real Time Clock	
1059 1060 1061 1062 1063 1064	The system should receive real time (UTC) clock data from the GNSS. For back up purposes, the system should utilize a GNSS-updated (or manually synchronized) on-board clock (See Section 5.1.15), or provide an internal UTC time clock capability which is synchronized with the external input or may be manually initialized. In the event of loss of the external input, the internal time clock should maintain UTC within a ± 1 second accuracy over the duration of the flight.	
1065	4.3.2 Flight Planning	
1066 1067 1068 1069 1070 1071 1072 1073 1074	The flight planning facilities capabilities provide for the assembly, modification, and selection of active and secondary flight plans. Data can be extracted from the navigation data base that contains airline-unique company flight plans, navigational aids, airways, waypoints, published departure and arrival procedures, approaches along with associated missed approach procedures, etc. The selection of flight planning data is done through the MCDU, through the data link function or optionally via a graphical user interface. Flight plan capacity should be a minimum of 150 waypoints in each flight plan. For longer range aircraft, a minimum of 200 waypoints in each flight plan is highly encouraged.	
1075	COMMENTARY	
1076 1077 1078 1079 1080 1081 1082	Various system implementations use different flight plan designations such as active, modified, temporary, primary, and secondary. Within this document, the following designations are used: Active, Modified, and Secondary. With respect to a flight plan, the terms Primary and Alternate are also used and refer to the series of waypoints in an active, modified, or secondary flight plan associated with the route to the primary and alternate destination respectively.	
1083	4.3.2.1 Flight Plan States	
1084 1085	Once a route is entered or selected as the active flight plan, it becomes the basis from which all guidance and advisory data is referenced. The secondary flight plan	

1086 1087		can have the same t waypoints.	erminus or can be completely different with no shared	
1088 1089 1090 1091 1092 1093 1094		impact of those mod and evaluation, the I unmodified active flig Trajectory prediction	to make modifications to the active flight plan and review the ifications without affecting the active flight plan. For crew review ND should show the modified flight plan together with the ght plan, with unique symbology to differentiate between them. s should be available on the MCDU for the modified flight plan. ion process, all guidance and advisory data is referenced to the ght plan.	
1095 1096 1097 1098 1099		desired changes hav replace the active fliv terminate the exister	becess should use a separate modified flight plan. When all the ve been made, the crew must invoke the modified flight plan to ght plan. This action will replace the active flight plan and nee of the modified flight plan. All guidance and advisory data eferenced to the newly invoked flight plan.	
1100 1101 1102			hould be provided to access the independent secondary flight flight plan into the active flight plan when requested by the	
1103	4.3.2.2 Navigation Data Base			
1104 1105 1106 1107 1108 1109		The Navigation Data Base (NDB) contains enroute, terminal, and airline custom defined data needed to support the flight management functions. It should be packed in a format to efficiently use available memory and to provide rapid access to the data. The format of the source data for the navigation data base is defined in ARINC 424. The supplier of the data, packing format, and maintenance of the data is to be specified by the supplier.		
1110 1111		Section 9.2 of this document provides a more complete description of the content of the navigation data base.		
1112 1113 1114 1115 1116	Each navigation data base is valid for a specific effectivity period and is updated typically on a 28-day cycle. The effectivity dates for a set of data are displayed for reference on the system's configuration definition page. The navigation data base effectivity period should be compared automatically with the current date and discrepancies annunciated.			
1117 1118	The system should be capable of defining a flight path based on standard ARINC 424 path terminators as shown below:			
1119		AF	DME Arc to a Fix	
1120		CA	Course to an Altitude	
1121		CD	Course to a Distance	
1122		CF *	Course to a Fix	
1123		CI	Course to an Intercept	
1124		CR	Course to Intercept a Radial	
1125		DF *	Direct to a Fix	
1126		FA *	Course from Fix to Altitude	
1127		FC	Course from Fix to Distance	
1128		FD	Course from Fix to DME Distance	
1129		FM	Course from Fix to Manual Term	

1130	HA * Hold to an Altitude		
1130	HF * Hold, Terminate at Fix after 1 Circuit		
1132	HM * Hold, Manual Termination		
1133	IF * Initial Fix		
1134	PI Procedure Turn		
1135	RF * Constant Radius to a Fix		
1136	TF * Track to Fix		
1137	VA Heading to Altitude		
1138	VD Heading to Distance		
1139	VI Heading to Intercept next leg		
1140	VM Heading to Manual Termination		
1141	VR Heading to Intercept Radial		
1142	COMMENTARY		
1143	Even though it is expected that in the future only a limited set of these		
1144	terminator types will be used, as defined (*) above and as specified in		
1145 1146	RTCA DO-236 and RTCA DO-283, the advanced system should continue to support this list as long as procedures exist that use		
1140	these terminator types.		
1148	4.3.2.3 Supplemental and Temporary NDB Creation and Management		
1149	Besides waypoints and navaids contained in the data base, new waypoints that can		
1150	be used in flight plan construction may be created in a number of ways.		
1151	The system should support creation of new waypoints in the following ways:		
1152	 Point Bearing/Distance (PBD) 		
1153	 Point Bearing/Point Bearing (PB/PB) 		
1154	Along Track Fix		
1155	Latitude/Longitude		
1156	Dir-To Abeam Waypoint(s)		
1157	The system may support creation of new waypoints in the following ways:		
1158	Latitude/Longitude Crossing		
1159	Unnamed Airway Intersection		
1160	Latitude/Longitude Crossing		
1161	Unnamed Airway Intersection		
1162	Fix Intersection		
1163	Runway Extension		
1164	 Direct-To Abeam Waypoint(s) 		
1165	FIR/SUA Intersection		
1166	 Point Bearing/Point Distance (PB/PD) 		
1100	J		
1167 1168	When Tthese waypoints are created, they should be stored in the temporary navigation database.		

4.0 FLIGHT MANAGEMENT FUNCTIONS

1170	42224	PPD Weyneinte
1175		data bases.
1174		provided for the crew to inspect, review, and select the current contents of these
1173		touchdown). A supplemental and temporary navigation data base summary facility is
1172		temporary data base is retained until flight complete (deleted automatically after
1171		data base facility. The supplemental NDB is retained indefinitely (until deleted). The
1170		directly created by the crew (or data link function) using a supplemental navigation
1169		Optional capability may be provided to allow waypoints, navaids, and airports to be

1176 4.3.2.3.1 PBD Waypoints

1177

1178

1179

1181

1182 1183

1185

1186

1187 1188

1189

1190

1191

1196

1197

1198

1199

The system should support creation of a waypoint Waypoints can be created at an entered as bearing/ and distance off from a existing named specified waypoints, navaids or airports.

1180 4.3.2.3.2 PB/PB Waypoints

The system should support creation of a waypoint Waypoints can be createat d as the intersections of entered bearings from two defined specified waypoints, navaids, and/or airports.

1184 4.3.2.3.3 Along Track Fix Waypoints

The system should support creation of a waypoint Waypoints can be created byat an Along Track Distance from an existing flight plan waypoint. The waypoint that is created is located at the distance entered and along the current flight plan path from the waypoint used as the fix. A positive distance results in a waypoint after the fix point in the flight plan while a negative distance results in a waypoint before the fix point. The system may prevent entry or limit the distance when the entered distance exceeds the leg distance.

1192 4.3.2.3.4 Latitude/Longitude Waypoints

1193The system may support creation of a waypoint Waypoints can be created by1194entering ivia entry ofn the latitude/longitude coordinates of the desired waypoint.

1195 4.3.2.3.5 Latitude/Longitude Crossing Waypoints

The system may support creation of one or more waypoints via entry of a latitude or longitude. Waypoints can be created by specifying a latitude or longitude. In this case, one or more a waypoints will be created where the active flight plan crosses that latitude or longitude.

1200The system may support creation of one or more waypoints via entry of a latitude or1201longitude increment.Latitude or longitude increments can optionally be specified In1202this case, one or more waypoints will be created where the in which case several1203waypoints are created that correspond to where the flight plan crosses the specified1204increments of latitude or longitude.

1205 4.3.2.3.6 Unnamed Airway Intersection Waypoints

1206The system may support creation of a waypoint at the computed intersection point1207of two airways.Waypoints can be created as the intersection of two airways.1208Waypoints will be created at all points where the airways cross.

1209 4.3.2.3.7 Fix Intersection Waypoints

1210	The system may support creation of one or more waypoints via entries on a Fix
1211	Reference page. Waypoints can be created by using a Fix Reference MCDU page.
1212	RReference information includes creation of abeam waypoints and creation of

1213 1214		waypoints where the intersections of a sp fix intersects the current flight plan is com	· · · · · · · · · · · · · · · · · · ·
1215	4.3.2.3.8 Ru	Inway Extension Waypoints	
1216 1217 1218 1219			, , , , , , , , , , , , , , , , , , ,
1220	4.3.2.3.9 Di	rect-To Abeam Waypoints	
1221 1222 1223 1224 1225 1226 1227		facility is selected, then temporary waypo	rmation (e.g., speed/altitude constraints, ata, etc.) when a direct-to is performed. s performed, new intervening If the abeam ints will be created at their abeam point of . Any waypoint information associated with
1228		СОММ	ENTARY
1229 1230 1231 1232		Care should be exercised in the ir waypoint function since other effe- changes in the direct-to path and i data link waypoint lists may be un	cts such as inappropriate course inclusion of abeam points in some
1233	4.3.2.3.10	FIR/SUA Intersection Waypoints	
1234 1235 1236		The system may define support creation of Information Region (FIR) boundaries and navigation data base in constructing flight	Special Use Areas (SUA) stored in the
1237	4.3.2.3.11 Po	int Bearing/Point Distance	
1238 1239 1240		The system may support creation entered bearing from one specified waypord distance from another specified waypoint	
1241	4.3.2.3.12 Su	ggested Waypoint Naming Convention	
1242 1243		Flight plan waypoints created using the al plan identifiers in accordance with the foll	
1244		Place/Bearing/Distance	wptnn
1245		Place-Bearing/Place-Bearing	wptnn
1246		Along Track Waypoint	wptnn
1247		Latitude/Longitude	wxxyzzz or xxwzzzy
1248		Crossing Fix	WXX Or yZZZ
1249		Airway Intercept	Xawy
1250 1251		Dir-To Abeam Waypoint	wptnn
1251 1252		Radial or abeam intercept	wptnn
1252		Runway extension FIR/SUA intersection	RXrwyhdg FIRnn or SUAnn
1200			

4.0 FLIGHT MANAGEMENT FUNCTIONS

1254 1255	Upper case indicates actua content as follows:	I characters used, and lower case indicates variable
1256	nn	FMS-determined sequence number
1257	awy	Full identifier of airway following the intersection
1258	wpt	First 3 characters of the base waypoint identifier
1259	W	N or S, as appropriate
1260	У	E or W, as appropriate
1261	xx	Degrees of latitude
1262	ZZZ	Degrees of longitude
1263	rwyhdg	Two-digit nominal runway heading
1264	, ,	COMMENTARY
1265	To minimize the nee	ed for the crew to resolve duplicate waypoints, the
1266		ould choose naming conventions or methods that
1267	are unlikely to matc	h waypoints in the Navigation Database.
1268	4.3.2.4 Lateral Flight Planning	
1269	5.2.1.24.3.2.4.1 Flight Plan Constru	uction
1270	Flight plans can be constru	cted in a variety of ways:
1271	Terminal Area p	rocedures
1272	 Airways 	
1273	 Pre-stored comp 	bany routes
1274	Waypoints	
1275	Navaids	
1276	Runways	
1277	 Supplemental/T 	emporary waypoints
1278	 Combinations the 	iereof
1279 1280 1281		trung together by menu selection from the NDB or by plans can also be constructed and edited through the
1282	4.3.2.4.2 Terminal Area Procedures	
1283	The following navigation da	tabase procedure types should be supported:
1284	Standard Instrur	ment Departure (SID)
1285	Engine-Out SID	
1286	Standard Termin	nal Arrival Route (STAR)
1287	 RNAV Approach 	1
1288	 /RNP Approach 	including LP/LPV (SBAS)
1289	GPS (GNSS) Ap	pproach
1290	•	
1291	 ILS/LOC Approa 	ach

1292	MLS Approach
1293	GLS (GBAS) Approach
1294 1295	The following navigation database approach procedure types may be supported based on individual system or customer requirements:
1296 1297	 RNP Authorization Required (RNP-AR)RNP Authorization Required (RNP-AR)
1298	 RNAV Approach with LP/LPV (SBAS)
1299	RNP Approach with LP/LPV (SBAS)
1300	• VOR
1301	Non-Directional Beacon
1302	Localizer Directional Aid (LDA)
1303	 Instrument Guidance System (IGS)
1304	RNAV Visual Approach
1305	Circling Approach
1306	• COMMENTARY
1307 1308	Visual Prescribed Track (VPT) and Visual Guided Approach (VGA) are examples of RNAV Visual Approach procedures.
1309 1310	The following navigation database departure procedure types may be supported based on individual system or customer requirements:
1311	RNP Authorization Required (RNP-AR)
1312 1313 1314	 RNP Authorization Required (RNP-AR) navigation database SID procedure types may be provided based on individual system or customer requirements.
1315	4.3.2.4.3 Flight Plan Editing
1316 1317	The flight planning function offers various ways to modify the flight plan at the crew's discretion. These are described in the following sections.
1318	4.3.2.4.3.1 Direct/Intercept Option
1319 1320 1321 1322 1323 1324 1325 1326	The direct/intercept feature allows the crew to select any fixed waypoint as the active waypoint and for the intercept option, to select the desired course into this waypoint. If the direct-to option is selected, the waypoint becomes the active waypoint and the flight plan that results goes direct from the current aircraft position to that waypoint. Any waypoints in the flight plan before that waypoint are deleted from the flight plan. Whenever the intercept option is selected on a given fixed waypoint, either the direct-to course or an entered course can be selected as the course to that waypoint.
1327	4.3.2.4.3.2 Entry of Waypoints
1328 1329 1330 1331 1332	Waypoints may be entered at any point in the flight plan provided that it results in a valid leg combination. Refer to ARINC 424 for valid leg combinations. These waypoints may be from the navigation data base, supplemental data base, or temporary data base. It is possible that more than one waypoint uses the same identifier. Therefore, facilities a means must be provided to display a sorted list

1333 1334	(based on distance from the aircraft) of the coordinates for all selections and allow the crew to make the choice.
1335	4.3.2.4.3.3 Flight Plan Linking
1336 1337	Facilities A means should be provided to select portions of the flight plan and re-link that portion with another portion of the flight plan.
1338	4.3.2.4.3.4 Flight Plan Delete
1339 1340	Facilities A means should be provided to allow the use of a delete function to remove unwanted portions of a flight plan.
1341	4.3.2.4.3.5 Procedure Selection
1342 1343 1344 1345	Selecting procedures from the data base will replace a previous procedure selection, retaining the active waypoint if it was part of the previous procedure selection and optionally retaining constraints previously sent by the ATC on waypoints part of the selected procedure.
1346	5.2.1.2.1.14.3.2.4.3.6 Holding Patterns (HM Leg)
1347 1348 1349 1350 1351	A means should be provided to create a Hholding patterns can be defined by data base procedure or manually specified at the current aircraft present position or at a selected waypoint. MostAt a minimum, the following parameters for a holding patterns areshould be editable: including inbound course, turn direction, leg time/length, and optionally hold speed.
1352	COMMENTARY
1353	HM legs may also be created via insertion of a navigation database
1354 1355	procedure into the flight plan. HF and HA legs can only be created via insertion of a navigation database procedure into the flight plan.
1355	
1355 1356	insertion of a navigation database procedure into the flight plan.
1355 1356 1357 1358 1359 1360	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review
1355 1356 1357 1358 1359 1360 1361	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review and to accept or reject the data link action must be provided.
1355 1356 1357 1358 1359 1360 1361 1362	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review and to accept or reject the data link action must be provided. A.3.2.4.3.8 Flight Plan Editing using a Pointing Device
1355 1356 1357 1358 1359 1360 1361 1362 1363	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review and to accept or reject the data link action must be provided. A.3.2.4.3.8 Flight Plan Editing using a Pointing Device [Deleted by Supplement 5]
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review and to accept or reject the data link action must be provided. 4.3.2.4.3.8 Flight Plan Editing using a Pointing Device [Deleted by Supplement 5] 4.3.2.4.4 Flight Planning Support for ATM
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365	 A.3.2.4.3.7 Flight Plan Editing using Data Link Facilities A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities A means to review and to accept or reject the data link action must be provided. 4.3.2.4.3.8 Flight Plan Editing using a Pointing Device [Deleted by Supplement 5] 4.3.2.4.4 Flight Planning Support for ATM [Deleted by Supplement 5]

4.0 FLIGHT MANAGEMENT FUNCTIONS

1375 1376	available upon activation of the missed approach. The system should support continuous Lateral Guidance throughout the transition to missed approach.
1377	4.3.2.4.6 Lateral Offset Construction
1378 1379 1380 1381 1382	The flight planning function should support the creation of a parallel offset path via specification of a direction (left or right of path) and distance. For the offset distance, the system should support a maximum value of at least 20 NM with a resolution of 0.1 NM for at least the first 10 NM. Multiple pre-planned parallel offsets may be supported but are not required.

4.0 FLIGHT MANAGEMENT FUNCTIONS

COMMENTARY

1384	COMMENTARY	
1385 1386 1387 1388 1389 1390 1391 1392	RTCA DO-236 and RTCA DO-283 require the system to support a resolution of 0.1 NM. The above requirement ensures that the manual entry of a parallel offset will support the 0.1 NM resolution. However, it should be noted that at the time of publication of this characteristic, some datalink systems industry standards do not currently support such resolution. For instance, RTCA DO-258A, which specifies the FANS 1/A+ Interoperability Requirements, currently supports only a 1 NM resolution.	
1393 1394	The system should allow initiation of the parallel offset at the current aircraft position or at a specified downpath waypoint.	
1395 1396	The system should allow termination of the parallel offset immediately when commanded by the crew, at a specified downpath waypoint, or automatically:	
1397	 At the first fix of an instrument approach procedure (IAF, IF or FAF); or 	
1398	• When a leg type other than TF, CF, DF, RF is encountered; or	
1399 1400 1401	 When the offset path is not flyable (i.e. when a combination of ground speed, track change geometry and waypoint proximity forces course reversals); or 	
1402	When reaching a lateral discontinuity	
1403 1404 1405	When transitioning to and from the offset path, a 30-degree intercept angle should be used by default. Entry or selection of another intercept angle may be optionally provided.	
1406 1407	The system should provide the capability to offset predefined curved paths such as Fixed Radius Transitions (FRT) and optionally, RF legs.	
1408 1409 1410 1411 1412 1413 1414	When executing a parallel offset, all performance requirements and constraints of the <u>original original pathroute (host route)</u> should be applicable to the offset <u>pathroute</u> . Guidance parameters (e.g., cross-track deviation, distance-to-go) should be referenced to the offset path and offset waypoints. The system should provide a means for display of both the parallel offset path and the original path. Display of the transition paths between the original path and the parallel path is highly recommended.	
1415	Refer to RTCA DO-236 and RTCA DO-283 for additional lateral offset requirements.	
1416	4.3.2.4.7 Magnetic Variation	
1417 1418 1419 1420 1421 1422	THE SYSTEM SHOULD HAVE THE CAPABILITY OF ASSIGNING A MAGNETIC VARIATION (MAGVAR) AT ANY FIX/LOCATION WHEN OPERATIONS ARE CONDUCTED RELATIVE TO MAGNETIC NORTH. THE MAGVAR VALUE MAY BE RETRIEVED FROM THE NDB, OR IN THE ABSENCE OF AN NDB- SPECIFIED VALUE, COMPUTED USING AN INTERNAL MAGNETIC REFERENCE.	
1423		
1424	COMMENTARY	
1425 1426 1427	RTCA DO-283 provides requirements for the treatment of MagVar on terminal procedures, airports, leg types, enroute areas and an internal set of magnetic variation tables.	

4.0 FLIGHT MANAGEMENT FUNCTIONS

1428 1429 1430 1431 1432 1433 1434 1435		ARINC 424 specifies NDB requirements for MagVar on certain leg types. Additionally, ARINC 424-19 introduced the concept of a Procedure Design MagVar (PDMV) which attempts to relieve the confusion on which MagVar value to use (when the various options conflict) by coding an appropriate MagVar value on the respective instrument procedure or individual procedure legs. The system should incorporate a hierarchy to determine the use of MagVar sources in the following order (note that 1, 2, and 3 will be coded in the NDB):
1436 1437 1438		 If the leg is part of a navigation database terminal area procedure, the MagVar to be used is the PDMV for the procedure or individual procedure legs, when available.
1439 1440 1441 1442		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination exists for the leg,, the MagVar to be used is the recommended VHF navaid magnetic declination of the leg.
1443 1444 1445 1446		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination does not exist for the leg, the MagVar to be used is the MagVar of record for the airport.
1447 1448		 If the leg is not part of a procedure and the terminating fix is a VOR, the MagVar to be used is the station declination of the VOR.
1449 1450 1451		 If the leg is not part of a procedure and the terminating fix is not a navaid, the MagVar to be used is defined by the system using an internal model (See Section 9.5).
1452 1453 1454 1455 1456 1457 1458		The system should have a means to accept an input or entry from the crew of the selected heading reference (Magnetic or True). For a given leg, when a heading reference has not been assigned in the navigation database, the leg bearing should be displayed in the selected heading reference; when a heading reference has been assigned, the leg bearing should be displayed in the assigned reference. The system should provide an indication to the crew when the selected heading reference differs from the (assigned) reference of the active leg.
1459		COMMENTARY
1460 1461 1462 1463		Considerations to provide the crew with a timely reminder in advance of a potential heading discrepancy are encouraged. Considerations which allow the crew to specify the reference of bearing entries are also encouraged.
1464		Refer to RTCA DO-283 for additional requirements and considerations.
1465	4.3.2.5	Vertical Flight Planning
1466 1467 1468 1469		Vertical flight planning consists of entry and deletion of altitude and speed constraints at waypoints (Section 4.3.2.5.2 and 4.3.2.5.3) as well as other parameters listed below which are used by the Vertical Guidance, Trajectory Predictions, and Performance Calculations functions.
1470 1471		The system should provide for entry and modification of the following performance parameters:
1472		Zero Fuel Weight (or Gross Weight)

4.0 FLIGHT MANAGEMENT FUNCTIONS

1473	Block Fuel	
1474	Cost Index	
1475	Cruise Altitude	
1476	Climb Mode (Section 4.3.4.1.1)	
1477	Cruise Mode (Section 4.3.4.1.2)	
1478	Descent Mode (Section 4.3.4.1.3)	
1479	Hold Pattern Speed	
1480	Airport Speed Limit	
1481	Thrust Reduction Altitude/Height	
1482	Climb Acceleration Altitude/Height	
1483	RTA Waypoint, Time, and Tolerance (Section 4.3.3.2.4 & 4.3.3.2.5)	
1484	Climb and Descent Winds and Temperatures (Section 4.3.2.5.1)	
1485	Cruise Wind at Waypoint (Section 4.3.2.5.1)	
1486	Transition Altitude/Level	
1487	Destination QNH	
1488	Takeoff Derate(s)	
1489	Climb Derate	
1490	All of these parameters should be considered in the trajectory predictions and	
1491	performance function computations.	
1492	The system may provide for entry and modification of the following parameters:	
1493	Maneuver Margin	
1494	Min Cruise Time	
1495	Min Rate of Climb (All-Engine – Max Climb thrust rating)	
1496	 Min Rate of Climb (All-Engine – Max Cruise thrust rating) 	
1497	Min Rate of Climb (Engine-Out – Max Continuous thrust rating)	
1498	Idle Factor	
1499	Drag Factor	
1500	and FFuel Flow Factor	
1501	Anti-Ice Bands	
1502	Tropopause Altitude	
1503	Minimum Step Climb Size	
1504	Preplanned Cruise Altitude Step(s)	
1505	Optimal Cruise Altitude Step(s)	
1506	Cruise-Climb Block Altitude (Drift-Up Cruise)	
1507	Preplanned Cruise Speed Changes	
1508	Multiple Cruise Winds at Waypoints (Section 4.3.2.5.1)	
1509	Cruise Temperature at Waypoints (Section 4.3.2.5.1)	
1510 1511	When supported, these parameters should be considered in the trajectory predictions and performance function computations.	

predictions and performance function computations.

1512	4.3.2.5.1	Wind, Temperature, and Atmospheric Model
1513 1514 1515 1516		Wind and temperature may be entered via the MCDU or data link. The wind model for the climb phase should be a set of wind magnitudes and bearings that are entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed wind.
1517 1518 1519		The temperature model for the climb phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.
1520 1521 1522 1523		Wind models for use in the cruise phase should allow for the entry of one or more winds (altitude, magnitude, and bearing) at a waypoint. Systems should merge these entries with current winds obtained from sensor data in a method which gives a heavier weighting to sensed winds close to the aircraft.
1524 1525 1526 1527 1528 1529		Temperature models for use in the cruise phase may allow for entry of a temperature and altitude at a waypoint or an ISA deviation at a waypoint. As a minimum, the system should allow for entry of a single cruise temperature or ISA deviation value that applies throughout cruise. Systems should merge these entries with current temperature (ISA deviation) obtained from sensor data in a method which gives a heavier weighting to sensed values close to the aircraft.
1530 1531 1532		The wind model used for the descent phase should be a set of wind magnitudes and bearings entered for different altitudes. The value at any altitude should then be computed from these values, and merged with the current sensed wind.
1533 1534 1535		The temperature model for the descent phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.
1536 1537 1538 1539		Temperature should be based on the International Standard Atmosphere (ISA) with an offset (Δ ISA) obtained from pilot entries or the actual sensed temperature. Likewise, the tropopause altitude (altitude at which constant temperature begins) may be crew enterable (with 36,089 ft. as default).
1540	4.3.2.5.2	Waypoint Altitude Constraints
1541 1542 1543 1544 1545 1546		The system should allow insertion of AT, AT or ABOVE, AT or BELOW, and WINDOW (i.e., both an AT or ABOVE and AT or BELOW) altitude constraints at waypoints in the flight plan. Waypoint altitude constraints may be inserted directly via crew entry or datalink, or indirectly via selection of a procedure in the navigation database. The system should allow for entry and modification of WINDOW altitude constraints.
1547		COMMENTARY
1548 1549 1550 1551 1552		Historically, crew entry and modification of WINDOW altitude constraints was not possible on some systems. On such systems, WINDOW constraints could only be inserted via selection of a navigation database procedure. Per RTCA DO-283, the system is required to support crew entry of each type of altitude constraint.
1553 1554		The system should avoid automatic deletion of altitude constraints above cruise altitude.

4.0 FLIGHT MANAGEMENT FUNCTIONS

COMMENTARY

1556	Upon cruise altitude modification or procedure insertion, some
1557	systems will automatically delete altitude constraints that are above
1558	cruise altitude. This design has led to airline and ATC complaints as it
1559	is susceptible to order of operation and situational awareness issues.
1560	System designs where altitude constraints are retained and ignored
1561	and/or where altitude constraints are retained and the cruise altitude
1562	modified are preferable.
1563	The system should designate altitude constraints as either CLIMB constraints of
1564	DESCENT constraints. The system should designate an altitude constraint on

The system should designate altitude constraints as either CLIMB constraints or DESCENT constraints. The system should designate an altitude constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. The system should designate an altitude constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate additional rules to designate an altitude constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.

The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4.3.2.5.2-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4.3.2.5.2-1 below.

Table 4.3.2.5.2-1 Altitude Constraint Applicability

Altitude Constraint	Altitude Constraint Phase/Applicability	
Туре	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT ofr ABOVE	Do not go below AT and AFTER	Do not go below PRIOPR to, cross AT, Do not exceed AFTER and AT
AT	Do not exceed PRIOR to, cross AT Do not go below AFTER	Do not go below PRIOR to, cross AT, Do not exceed AFTER
WINDOW	Do not exceed upper bound PRIOR to and AT Do not go below lower bound AT and AFTER	Do not exceed upper bound AT and AFTER Do not go below lower bound PRIOR to and AT

1576	COMMENTARY
1577 1578	PRIOR to, AFTER, and AT in Table 4.3.2.5.2-1 refer to sequence of the waypoint with the altitude constraint.
1579 1580 1581 1582 1583 1584 1585	The descent path is typically constructed using a series of straight line segments. For waypoints with a descent AT constraint, the descent path will typically cross at the specified altitude. When flown using the Vertical Guidance function, some systems may cross above or below the altitude constraint value due to a vertical fly-by transition. RTCA DO-283 defines the acceptable altitude deviation for a vertical fly-by transition.
1586 1587	Upon procedure selection, most systems combine common waypoints between departure, arrival, and/or approach segments. In rare situations, the altitude

Formatted: Caption

4.0 FLIGHT MANAGEMENT FUNCTIONS

1588 1589 1590 1591 1592 1593	other procedu different logic the altitude co	led in one procedure differs from the altitude constraint coded in the re (e.g., STAR and APPROACH). When this occurs, systems may use to meld the altitude constraints; however, the system should ensure instraint on the common waypoint always originates from one of the cted navigation procedures (provided the crew did not modify the raint).
1594 1595 1596 1597 1598	the lateral path deleting any a inhibit deletion	hould provide a means to initiate a vertical direct-to, without affecting hflight plan definition, to a vertically constrained fix in descent, by lititude constraints prior to the vertical direct-to fix. The system should of altitude constraints on waypoints which are part of the final , FAF, MAP/RW, and step-down fixes) via a vertical direct-to.
1599		COMMENTARY
1600 1601 1602 1603	specific optiona	llows the aircraft to proceed from present altitude direct-to a ed altitude in the flight plan. When in climb, systems may ally provide a means to delete all altitude constraints between craft and a vertically constrained fix.
1604	4.3.2.5.3 Waypoint Speed	Constraints
1605 1606 1607 1608	constraints at	nould allow insertion of AT, AT or ABOVE, and AT or BELOW speed waypoints in the flight plan. Waypoint speed constraints may be tly via crew entry or datalink, or indirectly via selection of a procedure on database.
1609 1610 1611 1612 1613 1614 1615 1616	DESCENT co waypoint in the The system sh approach proc additional rule	nould designate speed constraints as either CLIMB constraints or nstraints. The system should designate a speed constraint on a e departure or missed approach procedure as a CLIMB constraint. nould designate a speed constraint on a waypoint in the arrival or cedure as a DESCENT constraint. The system may incorporate as to designate a speed constraint as either a CLIMB or DESCENT on the constraint is on a waypoint which is not part of a procedure
1617 1618 1619 1620	in accordance	nould apply CLIMB constraints to the takeoff and climb phases of flight with Table 4.3.2.5.3-1 below. The system should apply DESCENT the descent and approach phases of flight in accordance with Table low.
1621	Tabl	e 4.3.2.5.3-1 Speed Constraint Applicability
	Speed Constraint	Speed Constraint Phase/Applicability
	Туре	CLIMB DESCENT

Speed Constraint	Speed Constraint Phase/Applicability	
Туре	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT ofr ABOVE	Do not go below AT and AFTER	Do not go below PRIOPR to and AT, cross AT,
AT	Do not exceed PRIOR to, cross AT, do not go below AFTER	Do not go below PRIOR to, cross AT, do not exceed AFTER

COMMENTARY PRIOR to, AFTER, and AT in refer to sequence of the waypoint with the altitudespeed constraint. Formatted: Caption

1622 1623

4.0 FLIGHT MANAGEMENT FUNCTIONS

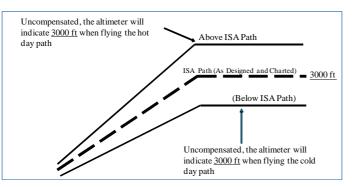
1625	In accordance with Table 4.3.2.5.3-1, the system should apply ABOVE climb speed
1626	constraints after sequence of the speed constraint waypoint until transition to the
1627	climb MACH or transition to cruise flight phase. The system should apply ABOVE
1628	descent speed constraints upon transition to the descent CAS (from the cruise flight
1629	phase or descent MACH) until sequence of the speed constraint waypoint.

1630BELOW constraints may be applied in cruise flight phase in accordance with Table16314.3.2.5.3-1. This is recommended for missed approach and low(er) cruise altitude1632scenarios where procedural waypoint speed constraints may operationally be1633encountered while in cruise.

1634 Upon procedure selection, most systems combine common waypoints between 1635 departure, arrival, and/or approach segments. In rare situations, the speed constraint coded in one procedure differs from the speed constraint coded in the 1636 other procedure (e.g., STAR and APPROACH). When this occurs, systems may use 1637 1638 different logic to select or meld the speed constraints; however, the system should 1639 ensure the speed constraint on the common waypoint always originates from one of 1640 the currently selected navigation procedures (provided the crew did not modify the 1641 speed constraint).

1642 4.3.2.5.4 Temperature Compensation

1652


1643 For Baro-VNAV approach operations, unless compensated for temperature, unless 1644 compensated for temperature, the system can only be used within the temperature 1645 limitations (if any) published on approach procedure charts (if any). For systems 1646 intended to supportTo enable baro-VNAV approach operations outside published 1647 temperature limits or operations in non-ISA temperature environments, the preferred 1648 method is for the system tomust correct for the effects of temperature on the 1649 barometric altitude upon crew entry of a destination temperature. Systems providing 1650 automatic temperature compensation to the baro-VNAV guidance must comply with 1651 RTCA DO-236 Appendix H and RTCA DO-283 Appendix H.

COMMENTARY

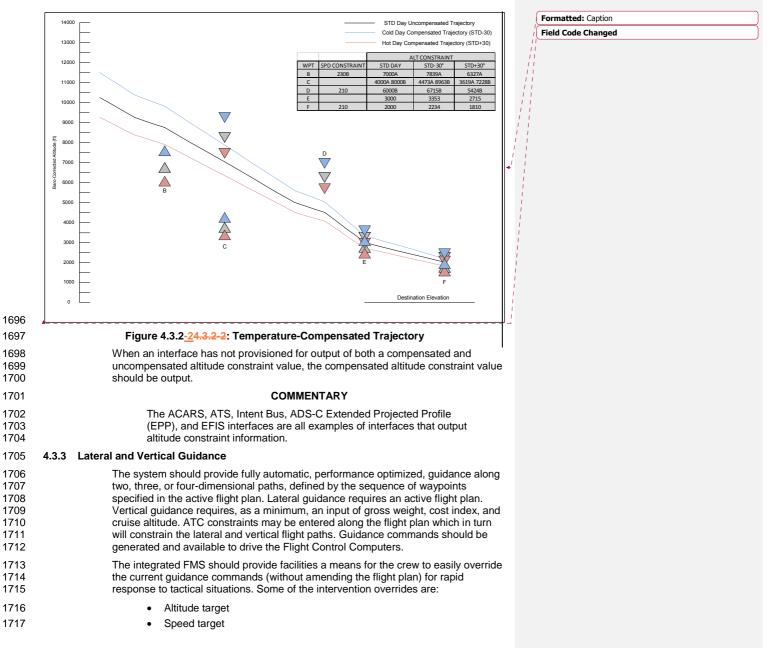
1653 The barometric altimeter indication is influenced by temperature 1654 variations. During cold temperature operations (below ISA), the 1655 airplane's true altitude is lower than the indicated altitude. Similarly, 1656 during hot temperature operations (above ISA), the airplane's true 1657 altitude is higher than the indicated altitude. This results in an aircraft 1658 flying a vertical path angle shallower than (or steeper than for hot temperature) the designed vertical path angle (or gradient) without an 1659 1660 indication in the flight deck.

1661Temperature compensation corrects altitude constraints and vertical1662angles to those intended by the procedure designer. When the1663aircraft flies the compensated altitudes, the aircraft is actually flying1664the intended descent/approach path. However, the indicated altitude1665will be different than the charted value.

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.2-14.3.2-1 Temperature Effects on Altimetry

The system should use a flight crew-entered temperature and standard temperature lapse rate to compute altitude and flight path angle corrections accounting for the bias in the barometric altimetry system indications caused by deviations from ISA at the aerodrome's field elevation. The temperature compensation method used should be within 10% of the "accurate method" as described in RTCA DO-283. These corrections should be applied, at a minimum, to the altitudes and flight path angles contained in any approach procedure selected from the navigation database from the initial approach fix (IAF) through the missed approach procedure up to and including the missed approach holding point (MAHP), and including altitude-terminated legs in the missed approach segment. For all approach types (including SBAS, GLS, ILS, MLS) temperature compensation should be applied to all segments where vertical guidance is dependent on barometric altimetry, including the FAF altitude.


When temperature compensation has been applied, altitudes that are manually entered into a procedure by the flight crew should not be temperature compensated. The system should clearly differentiate the display of temperature compensated altitudes from uncompensated altitudes.

1685Since the MDA/DA is not an assigned altitude, this procedural altitude is eligible for1686temperature compensation. When the system loads the uncompensated MDA/DA1687from the database or the flight crew enters it, the system should provide a means to1688determine and display the temperature compensated MDA/DA.

1689When temperature compensation adjusts the vertical path, the system should1690ensure that the path construction precludes the insertion of a climb segment in the1691descent path. This will typically apply when transitioning from a path segment based1692upon uncompensated fix altitudes to a path segment whose altitudes have been1693compensated for temperature. When temperature compensation results in an1694altitude conflict, the system should provide an annunciation suitable to prompt flight1695crew action.

Formatted: Caption

1718 • Course/Heading target 1719 • Vertical Speed target 1720 This temporary override should replace the applicable guidance output until the override is terminated at which point the internally generated guidance commands should resume. 1723 COMMENTARY 1724 Different autoflight system implementations may allocate these intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AFCS functions. 1727 4.3.1. Lateral Guidance and Path Construction 1728 The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures. 1736 The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 8SN or south of 8SS), the required in polar areas. 1741 Flying a specified course/heading, holding pattern, parallel		
1720 This temporary override should replace the applicable guidance output until the override is terminated at which point the internally generated guidance commands should resume. 1723 COMMENTARY 1724 Different autoflight system implementations may allocate these intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AFCS functions. 1727 4.3.1 Lateral Guidance and Path Construction 1728 The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure truns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures. 1736 The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any wappoint or to intercept a course to awaycoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions. 1741 Flying a specified course/heading, holding pattern, parallel offset or desired track change large trass.	1718	Course/Heading target
1721 override is terminated at which point the internally generated guidance commands 1723 COMMENTARY 1724 Different autoflight system implementations may allocate these 1725 intervention modes to the FMF, while others may accomplish these 1726 modes through a combination of FMF and AFCS functions. 1727 4.3.1 Lateral Guidance and Path Construction 1728 The lateral guidance of the aircraft is performed using the position data derived by 1729 the navigation function and a lateral reference path. For the active plan, the lateral 1730 guidance function generates a roll command based on the above data to guide the 1731 aircraft to geodesic leg segments between entered waypoints and to transitional 1732 paths at the leg intersections. Special procedural paths such as holding patterns 1733 (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are 1734 automatically flown along with the transitional paths into and out of these 1735 The aircraft's progress along each path segment is continually monitored to 1736 The aircraft's progress to a waypoint to a course to a waypoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 85N or south of 85S), the 17	-	
1724 Different autoflight system implementations may allocate these 1725 intervention modes to the FMF, while others may accomplish these 1726 modes through a combination of FMF and AFCS functions. 1727 4.3.11 Lateral Guidance and Path Construction 1728 The lateral guidance of the aircraft is performed using the position data derived by 1729 the navigation function and a lateral reference path. For the active plan, the lateral 1730 guidance function generates a roll command based on the above data to guide the 1731 aircraft to geodesic leg segments between entered waypoints and to transitional 1732 paths at the leg intersections. Special procedural paths such as holding patterns 1733 (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are 1735 procedures. 1736 The aircraft's progress along each path segment is continually monitored to 1737 determine when a path transition must be initiated. Direct-to guidance is also 1738 available from the aircraft's present position to any waypoint or to intercept a course 1739 to a waypoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 85N or south of 85S), the 1741 system should supp	1721	override is terminated at which point the internally generated guidance commands
1725 intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AFCS functions. 1727 4.3.1 Lateral Guidance and Path Construction 1728 The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures. 1736 The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions. 1744 Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas. 1745 Lateral Reference Path Construction 1746 The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajec	1723	COMMENTARY
1728The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures.1736The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances.1740When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions.1747Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.1747The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be based on the predicted speeds at the leg transitions.1749The lateral function for all ARINC 424 defined waypoint/tleg types and the corresponding transitional paths between them should be generated and flown by the system.1755Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral cocton. This implies a further coupling to	1725	intervention modes to the FMF, while others may accomplish these
1729 the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (P), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures. 1736 The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances. 1740 When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions. 1743 COMMENTARY 1744 Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas. 1747 4.3.3.1.1 Lateral Reference Path Construction 1748 The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. 1745 CommENTARY 1746 The laterai function computes independent continuous lateral paths for a	1727	4.3.3.1 Lateral Guidance and Path Construction
1737determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances.1740When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions.1743COMMENTARY1744Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.17474.3.3.1.1 Lateral Reference Path Construction1748The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions.1754COMMENTARY1755Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the	1729 1730 1731 1732 1733 1733	the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these
1741system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions.1742between two points without geographical restrictions.1743COMMENTARY1744Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.17474.3.3.1.1 Lateral Reference Path Construction1748The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions.1750Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.1754COMMENTARY1755Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the	1737 1738	determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course
1744Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.1747 4.3.3.1.1 Lateral Reference Path Construction 1748The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in 	1741	system should support, at a minimum, lateral guidance along a geodesic track
1745desired track change larger than 45 degrees is assumed not to be required in polar areas.1746 4.3.3.1.1 Lateral Reference Path Construction 1747 4.3.3.1.1 Lateral Reference Path Construction 1748The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions.1751Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.1754 COMMENTARY 1755Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the	1743	COMMENTARY
1748The lateral function computes independent continuous lateral paths for all existing1749flight plans. This computation should be fully integrated with the vertical trajectory in1750that the turn conics should be based on the predicted speeds at the leg transitions.1751Proper construction for all ARINC 424 defined waypoint/leg types and the1752corresponding transitional paths between them should be generated and flown by1753the system.1754COMMENTARY1755Altitude terminated legs are unique in that the termination criteria for1756the leg is based on altitude instead of a lateral location. This implies a1757further coupling to the vertical profile in the construction of the	1745	desired track change larger than 45 degrees is assumed not to be
1749flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.1754COMMENTARY1755Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the	1747	4.3.3.1.1 Lateral Reference Path Construction
1755Altitude terminated legs are unique in that the termination criteria for1756the leg is based on altitude instead of a lateral location. This implies a1757further coupling to the vertical profile in the construction of the	1749 1750 1751 1752	flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by
1756the leg is based on altitude instead of a lateral location. This implies a1757further coupling to the vertical profile in the construction of the	1754	COMMENTARY
	1756 1757	the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the

1759	4.3.3.1.2 Lateral Leg Transitions	
1760 1761 1762 1763 1764	Leg transitions should provide for a continuous path between legs and generally should be determined by the course change between the legs, the type of next leg, waypoint overfly requirement, bank angle limitations, and the predicted speeds for the transition. Leg transition paths must be constructed within the airspace limitations specified in RTCA DO-283 for operation within RNP airspace.	
1765 1766	When a lateral path transition cannot be constructed per the leg definition, the system should provide an indication to the crew.	
1767	COMMENTARY	
1768 1769 1770 1771 1772	Examples of indications provided to the crew when a lateral path transition cannot be constructed per the leg definition include, but are not limited to, the following: display of a discontinuous lateral path on the ND (i.e., gap, overlap), display of a scratchpad message, or display of text associated with the leg on the MCDU.	← Formatted: Commentary Text
1773	There are three categories of turns recognized in RTCA DO-283:	
1774 1775	 Fly-by turns- Subdivided into 2 categories, high altitude (≥FL195) and low altitude (<fl195)< li=""> </fl195)<>	
1776	1.2. Fly-over turns	
1777	2.3. Fixed radius transitions	
1778	3. COMMENTARY	
1779 1780 1781 1782 1783 1784 1785	RTCA DO-283 assumes that course changes at a fly-by fix will not exceed 120 degrees for low altitude operation (<fl195) 70<br="" and="">degrees for high altitude operation (≥FL195). While this assumption is reasonable for a database-defined procedure and enroute definitions, flight crew modifications to the route may make this assumption impractical due to factors such as aircraft performance, course, change, and leg length.</fl195)>	
1786	4.3.3.1.2.1 Fly-By Turns	
1787 1788 1789 1790 1791 1792 1793 1794	RTCA DO-283 provides the requirements for the fly-by leg transition. This relates the radius of the turn to the ground speed and bank angle. It provides a theoretical transition area within which the aircraft should remain throughout the turn. Remaining within the transition area is dependent upon the course change assumptions noted above and the area may not apply if the course change is exceeded. In such exceedance cases, the path to be flown should be displayed to the flight crew. For normal fly-by transitions (i.e., course changes less than 135 degrees), the fix should sequence at the lateral bisector.	
1795	COMMENTARY	
1796 1797	When situations are encountered outside RTCA DO-283 assumptions noted above, the following guidelines are offered:	
1798 1799 1800 1801 1802 1803	For fly-by turns with track changes less than 135 degrees, a circular transition path should be constructed tangential to the current and the next legs. The leg transition should occur at the bisector. For track changes greater than 135 degrees, a circular path should be constructed to be tangential to the current leg and a line normal to the current leg emanating from the waypoint. This path should be	

4.0 FLIGHT MANAGEMENT FUNCTIONS

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813	extended to provide a 40- to 50-degree intercept to the next leg. See Figure 4.3.3-1 Figure 4.3.3-1 below. The fly-by leg transition reduces track miles while also enhancing ride quality. However, enroute air traffic controllers have noted that some aircraft begin the turn initiation earlier than expected and in some cases, have conflicted with other traffic. The criteria specified in RTCA DO-283 are minimum requirements and can result in a generous theoretical transition area. It is recommended that equipment manufacturers give ample consideration to airspace consumption when selecting nominal bank angles.	
	The final curve segment is constructed so the end point is tangent to the outbound track at the waypoint	Formatted: Caption

Waypoint

1814

1815

Figure 4.3.3-14.3.3-1 Fly-By Turn > 135 Degrees

Course in

The turn initiation point of the initial curve segment is located such that the turn is tangent to a line normal to the inbound track passing through the waypoint

1816 4.3.3.1.2.2 Fly-Over Turns

1817	When a fly-over waypoint is specified, the leg transition should occur at the waypoint
1818	prior to transitioning to the next leg. For fly-over waypoints, the next leg type should
1819	define the transition path. When the fly-over waypoint is sequenced, the lateral
1820	guidance function should command an intercept to capture the next leg. The
1821	intercept should be based upon aircraft performance and geometry parameters such
1822	as ground speed, leg length, and bank angle limitations.
1823	

4.0 FLIGHT MANAGEMENT FUNCTIONS

1824 COMMENTARY 1825 RTCA DO-283 discourages the use of fly-over waypoints since the 1826 path is not repeatable and RNP containment cannot be assured. If 1827 fly-over transitions are used, for example at the missed approach point, the leg following the fly-over fix is assumed not to have the 1828 requirements of RNP applied to it. It is recognized, however, that 1829 1830 some terminal area operations may require the use of fly-over 1831 waypoints followed by a defined leg to the next waypoint. 1832 4.3.3.1.2.3 Fix Radius Transitions (FRT) 1833 The FRT is intended to define a fixed radius transition path between airway legs in 1834 the enroute sector when parallel routes are closely spaced at the transition waypoint 1835 and the fly-by turn is not compatible with separation criteria. RTCA DO-283 specifies 1836 the geometry and method of computing the fixed turn radius. The FRT is defined in terms of the track change, turn radius, and lead distance. For those enroute airways 1837 1838 using an FRT, the turn radius is coded in the ARINC 424 navigation database for 1839 the respective airway where the FRT is specified. An FRT may also be provided via 1840 ATS datalink. 1841 COMMENTARY 1842 ICAO Doc 9613: Performance-Based Navigation Manual, lists two 1843 possible radii, 22.5 NM for high altitude routes (≥FL 195) and 15 NM 1844 for low altitude routes. Although these radii are suggested and the 1845 actual radii coded in the navigation database could vary, it is 1846 expected that airspace designers will abide by these guidelines so 1847 that aircraft bank angle limitations in current systems will be 1848 respected. 1849 4.3.3.1.3 Special Lateral Path Construction 1850 All procedural paths such as hold patterns (HM & HA), procedure turns (PI), and 1851 procedure holds (HF) should be continuous paths that allow accurate reference 1852 paths to be constructed for the complete flight plan. 1853 It is recommended that holding patterns be implemented in accordance with ICAO 1854 Doc 8168 Vol 1: Aircraft Operations – Flight Procedures which covers conventional and RNAV holding patterns. Implementation of RNP hold patterns as defined in 1855 1856 RTCA DO-283 is optional. 1857 COMMENTARY 1858 RNP hold patterns were removed from ICAO Doc 8168 Vol 1 1859 because analysis revealed that one of the hold pattern entries and 1860 other associated guidance resulted in aircraft maneuvering that may 1861 exceed conventional airspace protection. 1862 Holding Pattern Entry: 1863 For hold pattern entries, these paths contain all the geodesic and curved segments 1864 of the entry (including transition from the prior leg) and may optionally should be displayed on the ND before the entry maneuverupon transition to the hold speed 1865 Entries into a conventional hold incorporate an overfly of the entry fix. Entries into an 1866 1867 RNAV hold may incorporate an overfly of the entry fix or, alternatively, may 1868 incorporate a fly-by transition at the entry fix to reduce airspace consumption.

Entries into an RNP hold must comply with the entry maneuvers specified in RTCA

1870 1871 1872	DO-283. After the entry is complete, subsequent path updates should account for changes in airspeed, wind speeds and altitude of the airplane. RNP hold entry paths must conform to the airspace limitations specified in RTCA DO-236.	
1873	COMMENTARY	
1874 1875 1876 1877	RNAV and RNP improvements include a fly-by entry into the hold to minimize the necessary protected airspace on the non-holding side of the holding pattern. RNP hold entry maneuvers are consistent with the RNP value provided for the procedure.	
1878	Holding Pattern Exit:	
1879 1880 1881 1882 1883 1884 1885 1886	For holding pattern exits which require a sequence of the hold fix, the lateral path should be updated to include the appropriate fly-by or overfly transition to the following leg. Unless otherwise specified, a fly-by transition must be used for an RNP hold exit and the paths must conform to the airspace limitations specified in RTCA DO-236 for hold exits. For other holding pattern exits (e.g., a direct-to) the lateral path should be updated accordingly, without a return to the hold fix, and should comply with airspace limitations specified in RNP MASPS for those types of maneuvers.	
1887 1888	Similar path construction and path prediction techniques are used when procedure turns and procedure holds are part of the flight plan.	
1889	4.3.3.1.4 Lateral Guidance Roll Command	
1890 1891 1892 1893 1894	Based on the aircraft current state provided by the navigation function and the stored reference path, lateral guidance should compute a roll steering command that is both magnitude and rate limited. This roll command is computed to capture and track the geodesic and curved path segments that comprise the reference path as displayed on the ND.	
1895	4.3.3.1.5 Lateral Guidance Output Parameters	
1896 1897	Lateral guidance should compute and output the following parameters related to the active flight plan:	
1898	Roll command	
1899	 Distance to go (active waypoint) 	
1900	Bearing to go (active waypoint)	
1901	Desired Track	
1902	Cross track error	
1903	Track angle error	
1904	•4.3.3.1.6 Lateral Capture Path Construction	
1905 1906 1907 1908	At engagement, a capture path may be constructed that guides the airplane to the active leg. This capture path should capture the active guidance leg such that smooth path acquisition occurs without excessive roll activity or turns in the wrong direction.	
1909	4.3.3.1.7 Localizer/MLS Capture	
1910	[Deleted by Supplement 5]	

4.0 FLIGHT MANAGEMENT FUNCTIONS

1911 4.3.3.1.8 Earth Reference Model

A WGS-84 based earth model is the standard reference earth model. If geodesic 1912 1913 path definition based on WGS-84 (or equivalent) is not employed (e.g., spherical 1914 earth model), any differences between the selected earth reference model and the 1915 WGS-84 earth model must be included as part as the path definition error. Refer to RTCA DO-236 and/or RTCA DO-283 for additional details. 1916

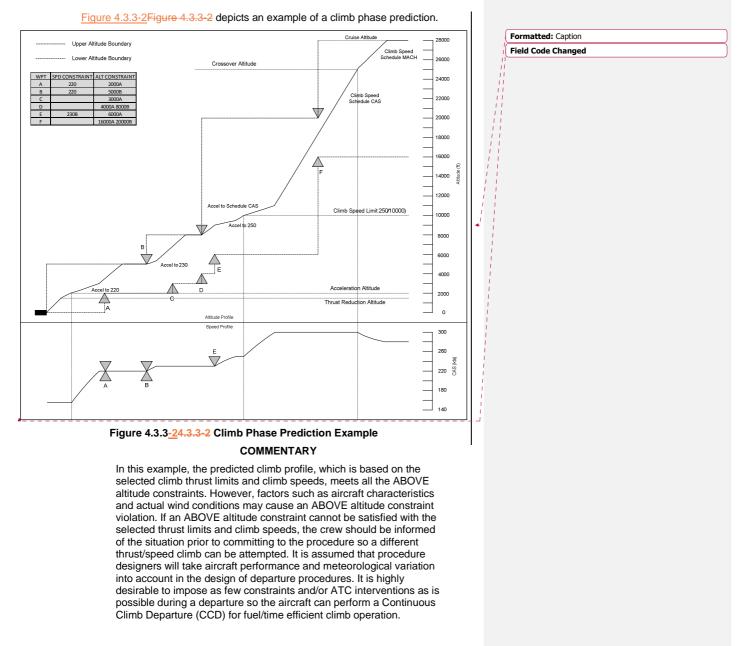
1917 4.3.3.2 Vertical Guidance and Trajectory Predictions

1918 5.2.1.3<u>4.3.3.2.1</u> **Trajectory Predictions**

- 1919 The Trajectory Predictions function computes and stores a 4D trajectory which 1920 represents a prediction of the aircraft state (e.g., distance, altitude, airspeed, fuel, 1921 time) at various points in the flight plan which is used for display and downlink. Trajectory Predictions also computes a reference descent and approach trajectory 1922 1923 which is used by Vertical Guidance for control in descent and approach.
- 1924 The system should compute a complete aircraft trajectory prediction along the 1925 specified lateral route. When in preflight and a destination exists in the flight plan, the trajectory should include a takeoff segment, a climb segment, a cruise segment 1926 which may include cruise altitude changes (cruise steps), a descent segment, and 1927 an approach segment to the destination. When enroute, the trajectory should 1928 1929 include segments for the remaining phases of flight. The trajectory may include 1930 predictions of the missed approach when included in the flight plan. The trajectory 1931 should be continuous from the departure airport (or present position if enroute) to the destination airport. The takeoff, climb, and cruise segments should be a 1932 1933 prediction (i.e. model) of how lateral guidance and vertical guidance will guide the 1934 aircraft from present position along the specified route toward the cruise altitude. 1935 The descent and approach segments should be defined in two parts: (a) a reference descent and approach path that defines a Top of Descent location as well as 1936 1937 reference altitudes and airspeeds for all points between Top of Descent and the 1938 destination and (b) a prediction of how VNAV will guide the aircraft to acquire and 1939 track this descent and approach reference path (both altitude and airspeed) once 1940 the aircraft is in descent or approach.

COMMENTARY

1941	COMMENTARY
1942	The descent/approach may be thought of as two separate
1943	trajectories, one which is a reference and defines path altitudes and
1944	speeds (i.e., where the aircraft should be) and one which is a
1945	prediction based on the aircraft present position and defines
1946	predicted altitudes and speeds (i.e., where the aircraft will be if
1947	prediction assumptions are valid). It should be noted that some
1948	systems display the predicted descent altitudes and speeds while
1949	others display the reference path altitudes and speeds.
1950	The system should compute a vertical trajectory for the following flight plans:
1951	Active
1952	Modified
1953	Secondary


1954 For each point in the vertical trajectory predictions, the following data should be 1955 computed, stored, and made available to other functions:

4.0 FLIGHT MANAGEMENT FUNCTIONS 1956 Predicted Altitude 1957 Predicted Speed 1958 Estimated Time of Arrival (ETA) or Estimated Time Enroute (ETE) 1959 Predicted Fuel Remaining 1960 Refer to Section 4.3.3.2.3 for accuracy requirements related to the ETA. 1961 In addition, for each point between Top of Descent and the destination (inclusive), the following data should be computed, stored, and made available to other 1962 1963 functions: 1964 Reference Path Altitude **Reference Path Speed** 1965 . 1966 The vertical trajectory predictions should include points at each: 1967 the lateral sequence point of each waypoint in the primary flight plan • 1968 speed change points (start and end of an acceleration/deceleration) 1969 CAS/MACH Crossover Altitude Top of Climb 1970 1971 StepStart of Climb 1972 Start of Descent 1973 End of Descent 1974 Top of Descent 1975 Level-Off Start 1976 Level-Off End Descent Path Intercept Point (when off-path in descent) 1977 1978 COMMENTARY 1979 The above points are the minimum required to support display and 1980 datalink requirements including ADS-C Extended Projected Profile. 1981 Additional points may be necessary to support specific capabilities or 1982 to obtain a desired accuracy via linear interpolation at any arbitrary 1983 point in the vertical trajectory. 1984 The vertical trajectory predictions should be based on the following inputs: 1985 Lateral flight plan elements (Section 4.3.2.4) ٠ Vertical flight plan elements (Section 4.3.2.5 1986 1987 Measured and forecast winds/temperatures (Section 4.3.2.5.1) Lateral path including curved transitions between legs, holding pattern 1988 1989 entries and lateral offsets (Section 4.3.3.1) 1990 Models of the airframe lift and drag characteristics Models of airframe speed and altitude limitations (e.g., stall, buffet, VMO, 1991 1992 MMO) 1993 Models of the engine thrust and fuel flow characteristics 1994 Aircraft weight and center of gravity 1995 Crew selected and preselected guidance modes

1996 1997 1998	The vertical trajectory predictions should be updated when an edit is made to a flight plan element or other input into vertical trajectory predictions. Refer to Section 3.4.2 for specific response time requirements related to these modifications.
1999 2000	The vertical trajectory predictions should be updated on a periodic basis to account for tactical interventions as well as wind, temperature, and other modeling errors.
2001 2002 2003	The vertical trajectory should be integrated with the lateral trajectory such that the climb rate and lateral leg distances used to compute the vertical trajectory account for smooth (curved) transitions between lateral legs.
2004	COMMENTARY
2005 2006 2007 2008 2009 2010 2011 2012	The above requirement is not intended to preclude assumptions in the vertical trajectory when lateral discontinuities and manually terminated legs (i.e. HM, VM, and FM legs) are encountered in the flight plan. In these situations, the lateral trajectory is ill-defined and the vertical and lateral trajectory assumptions may differ in order to provide a more reasonable prediction of destination time and fuel. Users of 3D/4D trajectory information should keep these scenarios in mind when using the trajectory information and designing interfaces.
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026	The vertical predictions should comply with all waypoint altitude and speed constraints as specified in Sections 4.3.2.5.2 and 4.3.2.5.3. When this is not possible due to aircraft performance or a conflict in the constraints, appropriate indications should be provided to inform the crew of the specific issue. As with vertical guidance, vertical trajectory predictions should prevent a descending maneuver in a climbing segment in order to satisfy a climb altitude constraint. Likewise, it should prevent an ascending maneuver in a descending segment in order to satisfy a descent altitude constraint. Similarly, vertical predictions should produce a speed profile that is monotonic during a single phase of flight in the presence of speed constraints. The predicted speed profile should remain within the operating envelope of the specific aircraft. It should take into account aircraft/engine performance, flap configuration changes, selected speed schedules, and speed constraints/limits. The trajectory predictions and associated advisories should be consistent with vertical guidance when the vertical guidance function is engaged.
2027 2028	Refer to RTCA DO-283 for specific VNAV performance and operational requirements.
2029	4.3.3.2.1.1 Takeoff Phase Predictions
2030 2031 2032 2033 2034	The takeoff phase may be constructed based on a simple model or more complex first principle models using takeoff thrust, flap setting and other vertical flight plan parameters including derated takeoff off thrust, thrust reduction height/altitude and acceleration height/altitude. The takeoff model should support the overall accuracy requirements and system level advisories.
2035	Refer to Climb Phase Predictions for an example of a typical takeoff segment.
2036	4.3.3.2.1.2 Climb Phase Predictions
2037 2038 2039	The climb phase is typically predicted based on climb thrust, which may be a derated and/or noise abatement climb thrust, and a speed schedule for optimized operations.
2040 2041	When <u>waypoint altitude</u> constraints are encountered as part of the vertical flight plan, these constraints take precedence over the optimal climb profile. Waypoint

2042 2043 2044 2045 2045 2046	altitude constraints are referenced to baro altitude. Predictions may assume a transition to STD pressure at the transition altitude. AT or BELOW and AT altitude constraints apply as an upper limita maximum altitude before the associated waypoint. AT or ABOVE and AT altitude constraints apply as a <u>minimum</u> -lower limit altitude after the associated waypoint.
2047 2048 2049 2050 2051 2052 2053 2054 2055	Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as an-uppermaximum. ⁴ <u>or</u> minimum and/or lower speed limit. AT or BELOW and AT waypoint speed constraints apply as a maximum n upper speed limit before the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a lowerminimum speed limit after the associated waypoint until climb mach is achieved or cruise altitude is captured. A series of identical AT speed constraints forms a constant speed segment in the climb speed profile. Altitude associated speed limits are referenced to calibrated airspeed and apply below the specified altitude.
2056	

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.0 FLIGHT MANAGEMENT FUNCTIONS

2074 4.3.3.2.1.3 Cruise Phase Predictions

- 2075 The cruise phase is typically predicted based on an optimal speed profile at a 2076 specified cruise altitude. When a step climb is active or the aircraft is in cruise below 2077 the cruise altitude, the system should predict a climb to cruise altitude assuming 2078 engagement of the vertical guidance function. Likewise, when a step descent is 2079 active or the aircraft is in cruise above the cruise altitude, the system should predict 2080 a descent to cruise altitude assuming engagement of the vertical guidance function. 2081 The system may provide for one or more preplanned and/or optimal cruise steps. 2082 Preplanned cruise steps may be a climb/descent at a specified waypoint or an 2083 optimal step where the system determines the optimal location and/or altitude to 2084 change cruise altitude. Similarly, the system may provide for a drift up cruise 2085 capability ("cruise/climb mode" in ARINC 660B) which allows the system to perform 2086 a drift up maneuver within a specified altitude block to better achieve optimal 2087 operation as fuel is burned off and aircraft weight decreases. When present, these 2088 preplanned maneuvers should be reflected in the cruise predictions.
- 2089The cruise speed is based on the selected cruise performance mode. When an2090active RTA exists in the flight plan, the cruise speed profile should reflect the speeds2091that will be flown in an attempt to achieve the RTA. Similar to preplanned cruise2092steps, the system may provide for one or more preplanned cruise speed or2093performance mode changes (e.g., constant Mach segments). When present, these2094preplanned cruise speed changes should be reflected in the cruise predictions.2095The system should provide an indication when a destination exists in the flight plan
- 2095The system should provide an indication when a destination exists in the flight plan2096and predictions determine the cruise altitude is unachievable due to aircraft2097performance limitations and/or insufficient route distance.

2098 4.3.3.2.1.4 Descent Phase Path Construction and Predictions

2099For the descent phase, the system should construct a reference descent path that2100vertical guidance can use as a target path. During the descent phase, tactical2101situations may divert the aircraft from the descent reference path, so the system2102should provide vertical predictions that model how vertical guidance will attempt to2103capture and track the reference path (altitude and speed).

2104 4.3.3.2.1.4.1 Descent Phase Path Construction

2105

2106

2107 2108

2109

2110

2111 2112

2113

2114

2115 2116

2117

2118

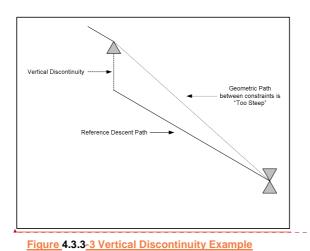
2119

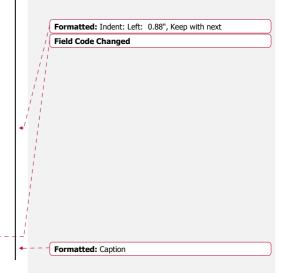
2120

2121

The descent path should be constructed based on idle or near idle thrust and a speed schedule for optimized operations. When altitude constraints are encountered in the vertical flight plan and the idle path does not satisfy one or more constraints, the constraints take precedence over the optimal descent profile and a geometric descent path constructed. The resultant vertical trajectory should be flyable by the aircraft. When this is not possible, appropriate indications should be provided. Waypoint altitude constraints are referenced to baro altitude and apply at the associated waypoint. A series of altitude constraints form a geometric boundary that the descent path must stay within beyond the first constrained waypoint, excluding small excursions for idle path decelerations (see Figure 4.3.3-4 Figure 4.3.3-3). waWaypoint speed constraints are referenced to calibrated airspeed and apply as an upper and/or lowera maximum or minimum speed limit. AT or BELOW and AT waypoint speed constraints apply as an uppera maximum speed limit after the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a lowerminimum speed limit before the associated waypoint but do not apply to the descent Mach and/or extend into the cruise phase. A series of identical A constraints forms a constant speed segment in the descent speed profile. Altitude

4.0 FLIGHT MANAGEMENT FUNCTIONS


associated speed restrictions are referenced to calibrated airspeed and apply below the specified altitude. To honor these constraints, the vertical path must anticipate the altitude/speed constraint prior to reaching the associated waypoint/altitude.


When conflicts exist between different types of constraints or the aircraft performance cannot satisfy all constraints, the descent path construction should give priority to one constraint over another as follows:

- 1. Altitude constraints
- 2. Vertical angle (FPA) constraints
- 3. Speed constraints
- 4. Time constraints (RTA)

COMMENTARY

A conflict between an altitude constraint and an FPA constraint can only exist for an ABOVE altitude constraint. In the case of a BELOW constraint, a level segment should be inserted to satisfy both constraints (see <u>Figure 4.3.3-11 Figure 4.3.3-9</u>). An altitude constraint should never cause construction of the vertical path for the leg to be shallower than the FPA constraint. The above requirement does not preclude insertion of a vertical discontinuity (see Figure 4.3.3-3) as a means to ensure some measure of speed control and/or minimum deceleration capability.

2122

2123

2124 2125

2126

2127 2128

2129 2130

2131

2132

2133

2134

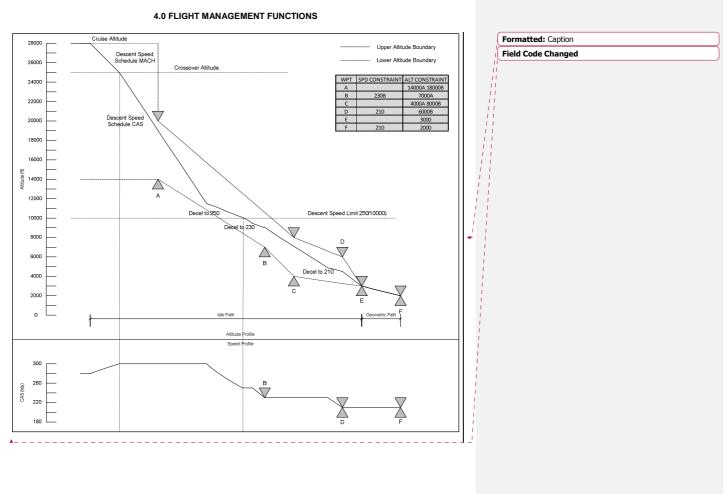
2135

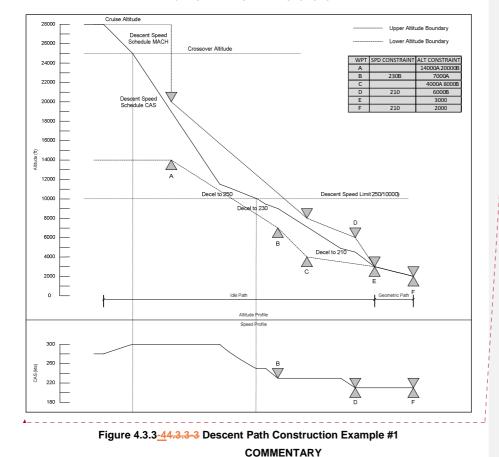
2136 2137

2138

2139

2140


2141


2142

4.0 FLIGHT MANAGEMENT FUNCTIONS

2146

5 <u>Figure 4.3.3-4</u>Figure 4.3.3-3 depicts an example of a descent path construction.

In this example, the descent path fits within the constraint boundaries. There may be procedures or conditions where the

descent path follows a boundary. In some cases, factors such as

day. When a continuous, flyable descent path which satisfies all

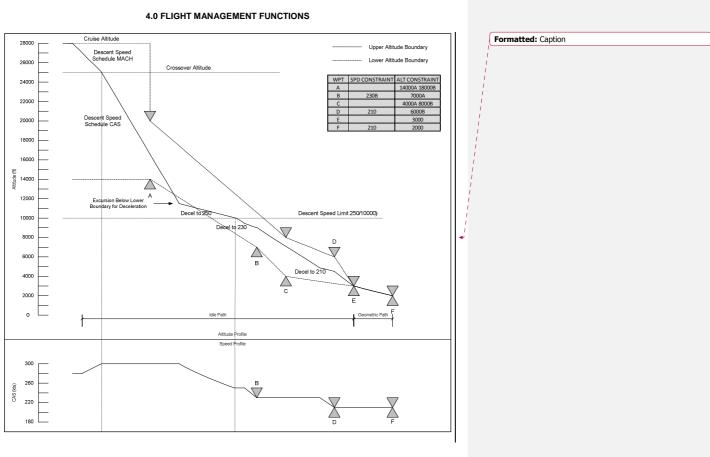
appropriate indications to the crew. It is assumed that procedure

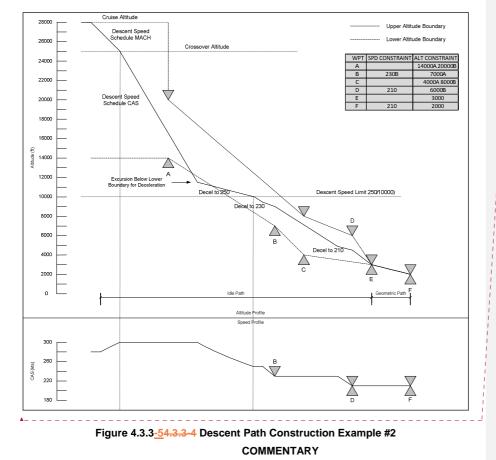
constraints cannot be constructed, the system should provide

aircraft characteristics and meteorological conditions may dictate if a

designers will take aircraft performance and meteorological variation

into account in the design of arrival procedures. It is highly desirable


to impose as few constraints and/or ATC interventions as is possible


during an arrival so the aircraft can perform a Continuous Descent

Operation (CDO) for fuel/time efficient descent operation.

descent path is flyable (per the rules) for a given aircraft on a given

Field Code Changed

In this example, a shallow idle deceleration segment is constructed to

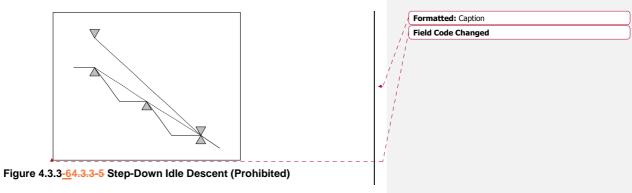
facilitate a short, efficient deceleration to the descent speed limit. Per RTCA DO-283, to facilitate decelerations within curvilinear (idle)

paths, small excursions below the lower altitude boundary are

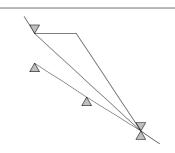
above the upper altitude boundary for stay-high descent path

strategies (Figure 4.3.3-7 Figure 4.3.3-6) are prohibited.

allowed and expected when an idle path is constructed to satisfy a

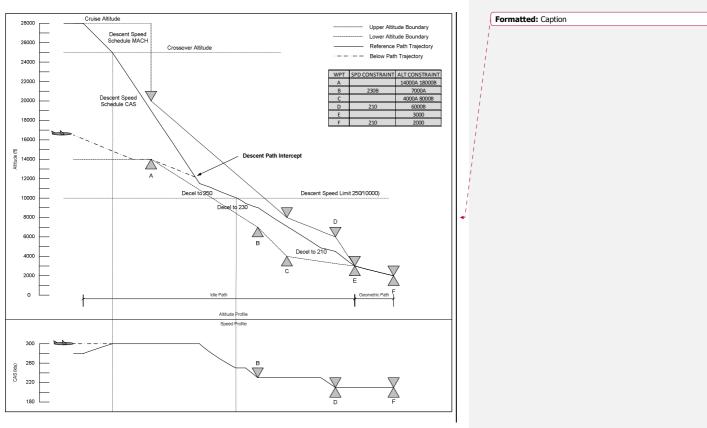

series of AT or BELOW, AT or ABOVE, and WINDOW constraints. Excursions below the lower altitude boundary for step-down or dive-

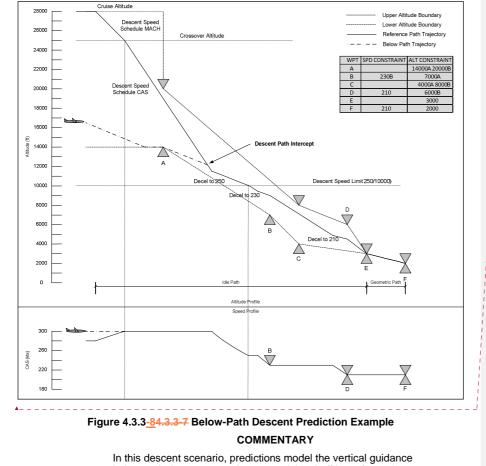
and-drive descent path strategies (Figure 4.3.3-6 Figure 4.3.3-5) or


4.0 FLIGHT MANAGEMENT FUNCTIONS

Field Code Changed

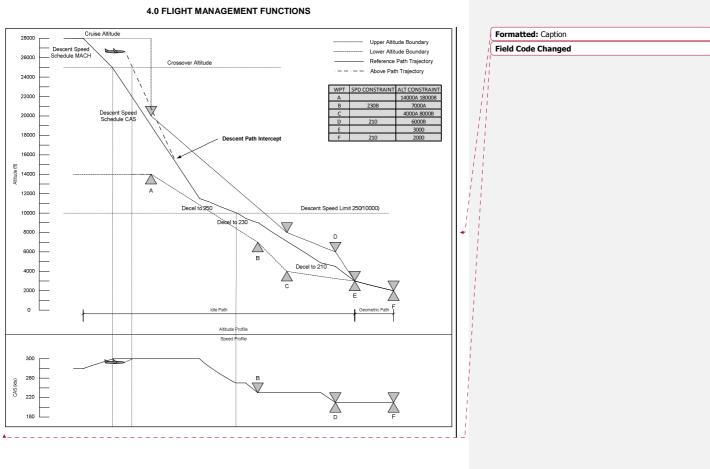
4.0 FLIGHT MANAGEMENT FUNCTIONS


Formatted: Caption Field Code Changed

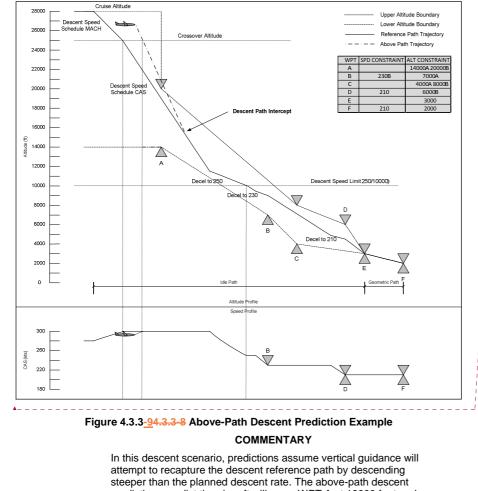

2178 2179

2181	·
2182	Figure 4.3.3 <u>-7</u> 4.3.3-6 Stay-High Idle Descent (Prohibited)
2183 2184 2185 2186 2187 2188	The descent path is typically constructed using a series of straight line segments which comply with the altitude boundary rules as described above. When the descent path is flown using the Vertical Guidance function, systems may cross above or below the altitude constraint value due to a vertical fly-by transition. RTCA DO-283 defines the acceptable altitude deviation for a vertical fly-by transition.
2189 2190 2191	When the crew initiates a vertical direct-to to a vertically constrained fix in descent, the system should construct a geometric descent path from the aircraft position to the vertically constrained fix.
2192	COMMENTARY
2193 2194 2195 2196	The above requirement is not intended to take precedence over normal geometric path construction rules. In other words, the system is not required to build an unflyable descent path nor one that violates a vertical angle constraint.
2197	4.3.3.2.1.4.2 Descent Phase Predictions
2198 2199 2200 2201	During the descent phase, situations may arise which divert the aircraft from the desired reference path/speed profile. These include: not being cleared to descend at the predicted top of descent, being instructed to descend prior to the top of descent, unforecasted meteorological conditions and flight plan edits. The system should

2202	provide vertical predictions (altitude, speed, time, and fuel) that model how vertical
2203	guidance will attempt to capture and track the descent reference path. These
2204	predictions should be available for display and datalink in order to support
2205	situational awareness and advisories to the crew. When descent predictions
2206	determine that a constraint will be violated, appropriate indications should be given
2207	to the crew.



4.0 FLIGHT MANAGEMENT FUNCTIONS



4.0 FLIGHT MANAGEMENT FUNCTIONS

In this descent scenario, predictions model the vertical guidance below-path descent control strategy. A level-off is performed at 14000 feet to honor the ABOVE altitude constraint at WPT A. Upon sequence of WPT A, a partial power descent resumes until intercept of the descent reference path. Field Code Changed

2217

4.0 FLIGHT MANAGEMENT FUNCTIONS

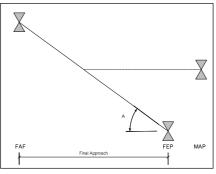
Field Code Changed

Figure 4.3.3 <u>-9</u> 4.3.3-8 Above-Path Descent Prediction Example
COMMENTARY
In this descent scenario, predictions assume vertical guidance will attempt to recapture the descent reference path by descending steeper than the planned descent rate. The above-path descent predictions predict the aircraft will cross WPT A at 19000 feet and violate the 18000 BELOW constraint.
4.3.3.2.1.5 Approach Phase Path Construction and Predictions
Similar to descent phase, the system should construct an approach path for vertical guidance as a reference or target path. As with takeoff, the approa may be constructed using a simple model or more complex first principle n using idle thrust, aeroconfiguration setting, and other vertical flight plan pa

2218

2231

2232

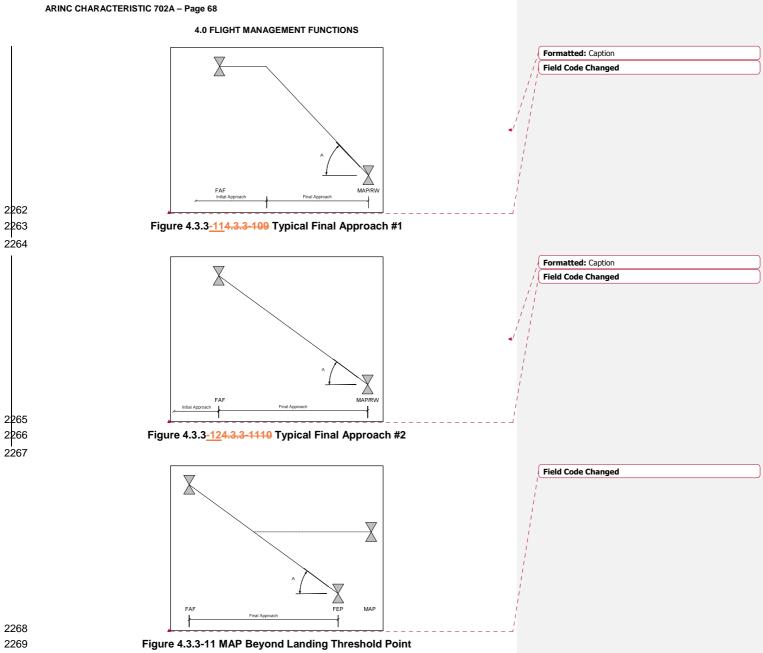

an approach path for use by takeoff, the approach path may be constructed using a simple model or more complex first principle models using idle thrust, aeroconfiguration setting, and other vertical flight plan parameters. The approach model should support the overall accuracy requirements and system level advisories.

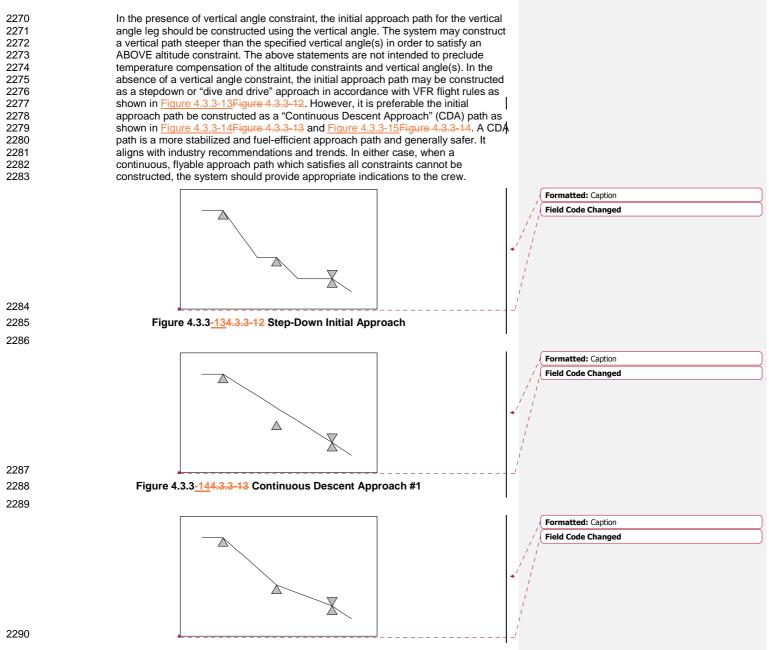
4.0 FLIGHT MANAGEMENT FUNCTIONS

During approach phase, tactical situations may divert the aircraft from the reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).

The vertical approach path consists of two portions: an initial approach path followed by a final approach path. In the initial approach path, the aircraft decelerates from a flaps-up target speed toward a configured landing speed. The initial approach path terminates upon reaching the start of the final approach path. The final approach path extends from the final approach capture point (intercept of final approach vertical angle) to the destination and is typically constructed at a constant landing configuration speed and vertical angle.

The final approach path should be constructed based on the vertical angle coded on the destination runway, Missed Approach Decision Point (MAP), or Final End Point (FEP). In the case of a MAP beyond the Landing Threshold Point (LTP), the system may compute the FEP and associated angle or may obtain the FEP and angle from the navigation database. A final approach path which ends at a FEP coded in the navigation database is illustrated in Figure 4.3.3-10Figure 4.3.3-9Figure 4.3.3-11 below. Refer to ARINC 424 for additional details on non-precision approach codings. For the final approach, the system should not construct a vertical path shallower than the specified vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). A few typical final approach path geometries are illustrated in Figure 4.3.3-10Figure 4.3.3-


2258	
2259	
2260	
2261	


Figure 4.3.3<u>-10</u>4.3.3-911 MAP Beyond Landing Threshold Point A final approach path which ends at a FEP coded in the navigation database is illustrated in Figure 4.3.3-11 below.

Field Code Changed

Field Code Changed

2291	Figure 4.3.3 <u>-15</u> 4.3.3-14 Continuous Descent Approach #2
2292	
2293	4.3.3.2.1.6 Missed Approach Phase Prediction
2294 2295 2296 2297 2298 2299 2300	The system may provide a missed approach prediction aligned with the lateral missed approach path. If a vertical trajectory is predicted it should be based on go around thrust limits and flap placard speeds and is predicted much like the climb profile. Typically, the prediction starts at the missed approach point or when the crew initiates the missed approach and terminates at an altitude constraint defined in the missed approach procedure. Any remaining descent path altitude and speed constraints are ignored.
2301	COMMENTARY
2302 2303 2304 2305 2306 2307	Typically, the missed approach speed is limited by flap configuration. In the case whereWhen the aircraft is in a clean configuration, the speed target should not be released to the airport altitude speed restriction. It is recommended that the speed target should be limited to a minimum cleanflaps-up maneuver speed or low altitude best hold speed.
2308	4.3.3.2.2 Vertical Guidance
2309 2310 2311	The Vertical Guidance function defines vertical guidance targets and, when in descent, reference parameters to be used by the autopilot and autothrottle to fly the vertical flight plan.
2312 2313 2314 2315 2316 2317	When vertical guidance is engaged, depending on the aircraftautopilot architectureinterface, the vertical guidance function should request or select a control mode for the elevator and throttle and generate altitude, airspeed, thrust, vertical speed, pitch targets, and/or load factors in accordance with the requested and selected control mode(s). An alternative design may provide vertical segment(s) and/or capture trajectory as part of vertical parameters.
2318 2319 2320	Depending on the autopilot interface, these targets and parameters are used by control laws in either the FMS or the autopilot to generate pitch and thrust commands.
2321 2322 2323	In addition, Vertical Guidance is responsible for automatically updating the phase of flight and providing vertical situational awareness in the form of vertical deviation and advisory messages.
2324 2325 2326 2327 2328	When the autopilot interface is a target interface, the system should provide the requested elevator control mode to the autopilot and provide targets for the both the requested and selected (i.e. engaged) elevator control mode. With this interface, vertical guidance requests and targets are analogous to the crew mode and target selections on the AFCS Control Panel.
2329 2330 2331 2332 2333 2334	When the autopilot interface is a pitch command, the system should compute a pitch command in accordance with the selected internal control mode. With this interface, vertical guidance always computes a pitch command whether the internal control mode is speed on elevator, vertical speed, altitude hold, or (descent) path on elevator. When the autopilot interface is a pitch command, the system should also perform the mode transition and path capture of the vertical guidance altitude target.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2335 2336	The system should provide a requested autothrottle control mode along with an EPR/N1 command (if appropriate).
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348	The vertical guidance function should provide for auto switching of the flight phase during a flight. This flight phase should be used as the basis for altitude, speed, and thrust target selection and should be made available to the AFCS. At a minimum, the system should provide logic for the automatic transition between flight phases of preflight, climb, cruise, and descent. The preflight flight phase should allow for access and entry of all route and performance initialization data. After liftoff, the flight phase should switch to climb and the climb phase should remain active until the aircraft acquires the initial cruise altitude, at which point the phase should switch to cruise. The flight phase should then switch from cruise to descent when the aircraft reaches the top of descent and the descent phase should remain active for the remainder of the flight.
2349	COMMENTARY
2350 2351 2352 2353 2354 2355 2356 2357 2358	The logic discussed above is general and applies to a minimum set of flight phases. In general, systems will provide additional flight phases to facilitate specific functionality defined for a particular aspect of the aircraft's operation. Some of the additional phases which should be considered are Takeoff, Approach, Go-Around, and Done. The specific logic for the transition between phases is implementation dependent since the conditions are generally application specific and are a function of the flight control system modes, aircraft dynamics and performance characteristics and aircraft operations.
2359	4.3.3.2.2.1 Climb Phase Operation
2360 2361 2362 2363 2364 2365 2366 2367	The system should provide for guidance to the selected performance mode speed schedule applied to the climb trajectory and should provide the appropriate speed target and thrust command (or target) required to achieve the associated trajectory. In addition, an altitude command (or target) for the next target altitude (level off) in the vertical trajectory should be provided. The target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude. The profiles are constrained by the altitude selected by the pilot on the AFCS Control Panel, cruise altitude, and waypoint altitude constraints.
2368	4.3.3.2.2.2 Cruise Phase Operation
2369 2370 2371 2372 2373 2374	The system should provide for guidance to the selected performance mode speed/schedule applied to the cruise phase of the flight and should provide the appropriate speed target and altitude command (or target). The target altitude should be the cruise altitude or step altitude. Entry of a higher or lower cruise altitude results in a step climb or step descent respectively, with guidance commands consistent with the selected operation.

2377 4.3.3.2.2.3 Descent Phase Operation

2375 2376

2378	The system should provide for guidance to the selected performance mode speed
2379	schedule applied to the descent trajectory and should provide, through the use of
2380	both a path and speed (airmass) mode of control, the appropriate speed target,

The system may also provide vertical guidance for a drift-up cruise climb mode when ATC has provided a block altitude clearance.

4.0 FLIGHT MANAGEMENT FUNCTIONS

- 2381thrust command (or target), pitch command, or vertical speed command (or target)2382required to achieve the associated trajectory. In addition, an altitude command (or2383target) for the next target altitude in the vertical trajectory should be provided. The2384target altitude should be a function of the flight plan altitude constraints and the crew2385selected (clearance) altitude.
- 2386When tracking the descent path, a pitch command (or target) or vertical speed2387command (or target) should be computed to allow capture and track of the reference2388descent path. Overspeed protection in the form of vertical mode reversion logic2389should be provided to enable guidance to switch from path control to speed control if2390conditions are such that both path and speed cannot be maintained. Annunciation2391(e.g., additional drag required) may also be provided prior to mode reversion for2392predicted overspeed or speed/altitude constraint violations.
- 2393When the crew causes a transition to descent flight phase prior to reaching the2394planned Top of Descent point, the system should default to its below-path descent2395control strategy. Systems typically command a shallow rate of descent until the2396reference descent path is intersected, at which time the originally planned descent2397profile is resumed.
- 2398The system should switch the speed target to the approach speed at a point that is2399either, constructed in the trajectory and displayed to the crew, or as a result of the2400crew selection of an approach configuration. Once targeted, the approach speed2401should be limited to the speed related to the current configuration of the aircraft,2402switching to the landing speed when landing configuration is selected.
- 2403Vertical deviation information based on the difference between the reference2404descent/approach path and the actual aircraft altitude should be provided2405throughout the descent/approach phase of flight. Vertical advisories which inform2406the crew of upcoming target speed, target altitude, and/or mode changes should2407also be provided (See Section 4.3.4.7).

2408 4.3.3.2.2.4 Selected Altitude Compliance

2409 2410 2411	Since altitude clearances are difficult to pre-plan using flight plan altitude constraints, a crew selected altitude, usually provided by the flight controls panel, about the used on a total altitude limitar by the flight management function. The
2411	should be used as a tactical altitude limiter by the flight management function. The
2412	aircraft, under vertical guidance control, should not be allowed to ascend through
2413	the selected altitude during a climb, or descend through the selected altitude during
	a descent. During approach operations, this general rule may be suspended to allow
2415	the crew to pre-select the altitude clearance to arm a missed approach. The
2416	selected altitude may also be used to arm an automatic transition to descent or to
2417	enable step climbs and descents during cruise phase operations.

2418 4.3.3.2.2.5 Altimeter Barometric Correction for Terminal Area Operations

- 2419Generally, altimeter barometric settings are utilized during terminal area operations2420to account for the local pressure deviation in the air data system, making the2421barometric altitude a more accurate ground reference
- 2422Moreover, the local altitude reference may be either Altimeter sub-scale setting to2423obtain elevation when on the ground (QNH) or atmospheric pressure at runway2424(QFE) based (sea level equals zero for QNH, runway elevation equals zero for2425QFE). Vertical guidance should accept an indication of which reference is being2426used and apply the appropriate adjustments.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2427 4.3.3.2.2.6 Altitude Constraints

2437

2438

2428 The Vertical Guidance function should prevent the aircraft, when in takeoff or climb 2429 and under vertical guidance control, from ascending through the upper bound of a 2430 climb AT, AT or BELOW, or WINDOW altitude constraint. Likewise, it should prevent the aircraft, when in descent or approach and under vertical guidance control, from 2431 descending through the lower bound of a descent AT, AT or ABOVE, or WINDOW 2432 2433 altitude constraint. Aside from altitude captures, it should be a basic philosophy that 2434 the Vertical Guidance function should never descend in takeoff or climb flight phase in order to satisfy an altitude constraint; likewise, it should never ascend in descent 2435 2436 or approach in order to satisfy an altitude constraint.

Refer to 4.3.2.5.2 for the definition of climb and descent altitude constraints.

COMMENTARY

2439 2440 2441 2442 2443 2443 2444 2445 2446 2447 2448 2449 2450 2450	In takeoff or climb, upon engagement or insertion of a flight plan with an altitude constraint below the aircraft, the Vertical Guidance function may find the aircraft is in violation to (i.e. above) a subsequent BELOW climb altitude constraint. The Vertical Guidance behavior in this situation differs between systems. Some systems will prevent engagement of Vertical Guidance into an altitude constraint violation while others allow engagement into a violation. Some systems prevent engagement into a violation and also disengage when a violation occurs while the Vertical Guidance function is engaged. On those systems where Vertical Guidance can engage or be engaged in a violation condition, some will provide an indication and level-off to minimize the violation of the altitude constraint
2450	whereas others will provide an indication and maintain a climbing
2452	attitude. An analogous situation exists in descent for ABOVE altitude
2453	constraints.

- 2454When under vertical guidance control and in violation to an ABOVE constraint, it is2455highly recommended that the Vertical Guidance function level-off to minimize the2456violation of the altitude constraint as the constraint may exist for obstacle clearance.
- 2457When below-path and under vertical guidance control and flying a lateral leg with a2458procedural vertical angle, it is highly recommended that the Vertical Guidance2459function level-off as the vertical angle may exist for obstacle clearance.
- 2460Refer to 4.3.3.2.1 for more details regarding use of altitude constraints in the
descent path construction and trajectory predictions.

2462 4.3.3.2.2.7 Speed Restrictions

2463The system should honor altitude-based speed limits such as airport speed limits2464(e.g., 250/10000) and ICAO limits for procedure legs. For airport speed limits and2465other limits which apply to a region or block of airspace, the aircraft airspeed should2466remain AT or BELOW the speed limit while the aircraft is below the specified2467altitude. For ICAO limits, the aircraft should remain AT or BELOW the speed limit2468while the aircraft is both flying the procedure leg and below the specified altitude.

2469In the case of descent AT and AT or BELOW restrictions, sufficient deceleration2470distance should be provided in order to cross the speed restriction at or below the2471restriction speed. Once the descent speed restriction has been sequenced, it should2472be latched such that the descent target speed does not exceed the restriction speed.

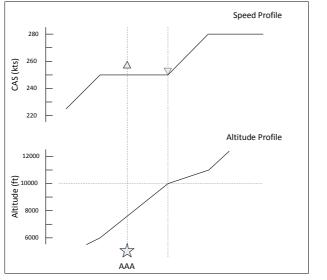
2473	unless the crew deletes the latched speed restriction or the aircraft transitions back
2474 2475	to climb flight phase. Refer to 4.3.2.5.3 for the definition of climb and descent waypoint speed constraints
2475 2476	and their applicability in various flight phases.
2477 2478 2479 2480 2481 2482 2482 2483	In general, the system should compute the target speed at any given point in the flight plan as the speed schedule limited to the lowest AT/BELOW of applicable speed restrictions. This target speed should always be limited to the speed envelope (e.g., VMO, MMO, stall, buffet, and placard limits) of the aircraft for the given or assumed aerodynamic configuration. The Vertical Guidance function of the system should accelerate or decelerate as necessary to capture and track the limited target speed.
2484	COMMENTARY
2485 2486 2487 2488 2499 2490 2491 2492 2493 2493 2494 2495 2496 2497 2498 2499 2499	Historically, all speed constraints in the navigation database and entered by the crew were treated as AT or BELOW speed constraints by the FMS. Indeed, most of the optimizations performed by the FMS were accomplished using speed schedules optimized for some criteria (e.g., fuel, time, cost, maximum angle/rate); the philosophy of the FMS was to reach the optimum speed with speed restrictions preventing it from doing so. RTCA DO-283 requires support for an AT and AT or ABOVE speed constraint capability, and the ARINC 424 source now includes a speed descriptor field with each waypoint speed constraint. While RTCA DO-283 defines a minimal set of requirements, it does not provide guidance in terms of what takes precedence when an ABOVE speed constraint conflicts with the speed schedule and other speed constraints and limits. To ensure a measure of interoperability as this capability is incorporated into flight management systems, the following requirements and guidance are offered.
2501 2502	When in conflict, the system should always give priority to altitude-based speed limits over waypoint-based speed constraints.
2503	COMMENTARY
2504 2505 2506 2507 2508 2509 2509 2510	Altitude-based limits are AT or BELOW speed limits which may be lower than a preceding AT or ABOVE climb waypoint speed constraints and/or subsequent AT or ABOVE descent waypoint speed constraint. In such cases, the altitude-based limit(s) should take priority. Airport speed limits are in place to ensure safety with slower moving VFR traffic while ICAO limits ensure aircraft remain within the designated airspace.
2511 2512	When in conflict, the system should give priority to BELOW speed constraints over ABOVE speed constraints.
2513	COMMENTARY
2514 2515 2516 2517 2518	In descent, a deceleration point should occur prior to an ABOVE speed constraint if necessary in order to ensure a safe, continuous deceleration to the landing speed. Moreover, altitude-based limits are BELOW speed constraints that are associated with airspace limitations and thus should take precedence.

Formatted: Caption

4.0 FLIGHT MANAGEMENT FUNCTIONS

The figures below illustrate various conflicts and the speed profiles that result given the rules in this section.

For the descent scenario illustrated in Figure 4.3.3-19Figure 4.3.3-18, an alternative is to insert a speed discontinuity into the theoretical descent path (at AAA) and provide appropriate indications to the crew. This is deemed less preferable as it may lead to unrealistic deceleration assumptions which are only apparent once the ABOVE speed constraint is sequenced. Moreover, in the absence of special considerations, insertion of a speed discontinuity creates an inherent ETA error and may cause poor guidance behavior as the reference path speed profile is often used as a reference for advisories and mode reversion logic.



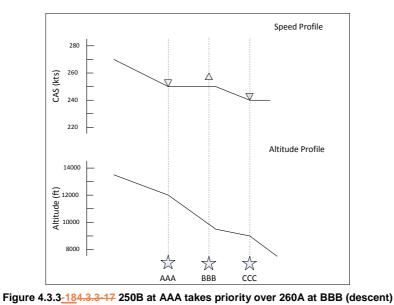
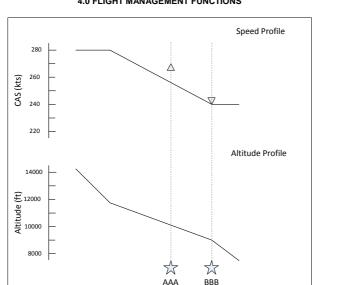


Figure 4.3.3-164.3.3-15 250/10000 takes priority over 260A at AAA (climb)



Field Code Changed

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

2539
2540 2541
2542
2543
2544 2545
2545 2546
2547
2548
2549
2550
2551
2552
2553
2554 2555
2556
2557

2562

2538

Figure 4.3.3-194.3.3-18 Decel to 240B AT BBB takes priority over 270A at AAA (descent)

In general, in the absence of edits and tactical speed interventions, the system should produce a speed profile that is monotonic during a single phase of flight. For takeoff and climb, the speed target should continuously increase until reaching the climb speed schedule. For descent and approach, the speed target should continuously decrease from the descent speed schedule until reaching the landing speed. As such, the system should compute a climb speed schedule which is the maximum of the mode-based climb speed and the highest ABOVE climb speed constraint; the system should compute a descent speed schedule which is the maximum of the mode-based descent speed and the highest ABOVE descent speed constraint. This limitation should be applied to both the speed schedule CAS and MACH (when applicable).

COMMENTARY

2552 2553 2554 2555 2556 2556 2557 2558	Without the MACH limitation, a higher ABOVE speed constraint will produce a lower crossover altitude at which point the ABOVE speed constraint will cease to apply. For this reason, it is suggested that the MACH equivalent of the ABOVE speed constraint evaluated at 25000 feet be used as the lower limit MACH value. This ensures that ABOVE speeds are maintained until at least 25000 feet for most aircraft.
2559	It is assumed that ABOVE speed constraints would not be applied
2560	when in performance modes designed to maximize climb rate or
2561	angle.

The system should not apply ABOVE speed constraints to hold speed schedules.

2563 2564		Refer to 4.3.3.2.1 for more details regarding use of speed restrictions in the descent path construction and trajectory predictions.	
2565	4.3.3.2.3	Estimated Time of Arrival (ETA)	
2566 2567 2568 2569		The system should be capable of providing an ETA for every flight plan fix in the primary flight plan. For modifications to the active flight plan, each flight plan fix ETA should be available within 30 seconds (15 seconds typical) of the completion of entries required to perform the calculations.	
2570 2571		The accuracy of the ETA should be within \pm 1% of the time of flight remaining to the fix, or \pm 10 seconds, whichever is greater, for the entered conditions.	
2572		COMMENTARY	
2573 2574 2575 2576 2577		It is understood that additional data is required (e.g., forecast wind and temperature) to improve the operational accuracy of the predicted ETA. Refer to DO-283 for further details.Such entries can be made manually by the flight crew or uplinked via AOC or ATS datalink.	
2578	4.3.3.2.4	Required Time of Arrival (RTA)	
2579 2580 2581 2582 2583 2584 2585 2586 2586		The system should provide a control mode such that the aircraft will be controlled to arrive at any specified waypoint in the primary flight plan at a specified arrival time (RTA). The system should support a resolution of 1 second for entry and display of the RTA time. Accuracy of this function should be ± 30 seconds at enroute fixes and and ± 10 seconds at descent fixes. If the RTA is predicted to be unachievable, an indication of this condition should be provided to the crew. The condition should be continually reassessed until such time as the RTA is achievable. All RTA calculations should respect the speed envelope as well as all flight plan constraints. The RTA control band should be designed to limit throttle activity to a minimum.	
2588 2589 2590		The RTA function should accommodate ATS data link consistent with industry standards (e.g., RTCA DO-258, RTCA DO-350) including constraint types AT, AT or BEFORE, and AT or AFTER.	
2591 2592 2593		Systems may provide predictions of the earliest and latest arrival times for the candidate RTA waypoint and/or active RTA waypoint. Consideration of fuel reserves in the prediction of RTA feasibility may be provided.	
2594			
2595 2596 2597 2598	5.2.1.3.1	While in preflight, the system may compute a recommended takeoff time which allows an RTA to be achieved using the crew entered cost index or planned speed schedules. While in preflight, the system may also compute the earliest and latest takeoff times which allow an RTA to be achieved.	
2599			
2600	4.3.3.2.5	Time of Arrival Control (TOAC)	
2601		COMMENTARY	
2602 2603 2604 2605 2606		As detailed in RTCA DO-236 and RTCA DO-283, the TOAC function is a performance-based operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs. The accuracy requirement is dependent upon current and accurate performance data inputs and uncertainty	

2607 2608 2609 2610 2611 2612 2613	models. TOAC is intended to support/enable future advanced air traffic management (ATM) operations such as time-based trajectory operations (4DTBO) by providing a performance-based time management capability. The requirement for a performance-based time function that enhances predictability, similar in concept to performance requirements of RNP, is a new model upon which to enable future air traffic sequencing and flow management.
2614 2615 2616 2617 2618	The equipment should provide a Time of Arrival Control function which supports a specified arrival time (RTA) at a fix within the range of achievable ETAs. The range of achievable ETAs at the specified fix is computed by the system based upon entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models.
2619 2620	The TOAC function should be operational in both enroute and descent phases of flight.
2621	COMMENTARY
2622 2623 2624 2625 2626 2627	Additionally, it is expected that procedure designs will implement speed and altitude constraints (when required) that are compatible with a time-based system such as TOAC by not overly constraining the path. For example, a speed-constrained descent and a time- constrained descent may not be compatible except under specific conditions.
2628 2629 2630 2631	The system should be capable of providing the range of achievable ETAs for at least one fix in the primary flight plan for display in the flight deck and communication to the traffic management facility. For fixes after an RTA constrained fix, the range of achievable ETAs should be based on the ETA at the RTA fix.
2632 2633 2634 2635	When the RTA is selected from within the range of achievable ETAs computed by the system, the total time error (TTE), in the presence of the uncertainty model described in RTCA DO-283, should be less than or equal to the required accuracy in 95 percent of the attempts.
2636 2637	The equipment should control to the accuracy requirement while also considering the adverse flight deck effects of large speed and thrust fluctuations.
2638	COMMENTARY
2639 2640 2641 2642	It is expected that the essential information such as current and accurate wind and temperature forecasts are provided and used by the system such that the performance requirements for the TOAC function can be met.
2643	RTCA DO-283 specifies the functional requirements of a TOAC function.
2644	4.3.3.3 Three-Dimensional RNAV Approach
2645	[Deleted by Supplement 5]
2646	4.3.4 Performance Calculations Function
2647 2648 2649	The performance function should use information from the flight plan and the performance data base (See Section 9.4) to generate performance related data for display on the MCDU.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2650	4.3.4.1 Performance Modes
2651 2652 2653 2654 2655	One performance mode that should be common to all flight phases is the economy speed mode which should calculate the associated speeds and speed schedules which minimize the total cost of operating the airplane on a given flight. This mode should use a Cost Index, which is the ratio of time-related costs (crew salaries, maintenance, etc.) to fuel cost.
2656	This is expressed as:
2657 2658 2659	Cost Index (CI) = Fuel Cost
2660 2661 2662 2663	Typical Cost Index entries vary from zero to 999, with the minimum trip fuel cost occurring with the Cost Index set to zero. Cost Index values above zero result in increased trip speeds and varying aircraft vertical trajectories. At the proper Cost Index, the increased fuel cost will be offset by the reduced time cost.
2664	4.3.4.1.1 Climb Mode
2665	Speed modes supported may include:
2666	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation
2667	 Pilot-entered CAS/Mach – Manual selection (or pre-selection)
2668	 Maximum angle climb – Maximum climb rate with respect to distance
2669	 Maximum rate of climb – Maximum climb rate with respect to time
2670 2671	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
2672	•4.3.4.1.2 Cruise Mode
2673	Speed modes supported may include:
2674 2675	 Economy CAS or Mach (based on Cost Index) – Lowest cost of operation
2676	 Pilot-entered CAS or Mach – Manual selection (or pre-selection)
2677	Maximum endurance – Maximum time endurance
2678	Long Range Cruise – Maximum range
2679 2680	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
2681	•4.3.4.1.3 Descent Mode
2682	Speed modes supported may include:
2683	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation
2684	 Pilot-entered CAS/Mach – Manual selection (or pre-selection)
2685	 Maximum descent rate – Maximum descent rate with respect to time
2686	Required Time of Arrival (RTA) – Variable speed to meet a time
2687	constraint

4.0 FLIGHT MANAGEMENT FUNCTIONS

2688 •4.3.4.2 Maximum and Optimum Altitudes Calculation

2689 The performance function should compute both optimum and maximum altitude for 2690 the aircraft/engine type, weight, atmospheric conditions, bleed air settings, and the 2691 other vertical flight planning parameters. The optimum altitude algorithm should 2692 compute the most cost effective operational altitude and the maximum altitude 2693 algorithm should compute the highest attainable altitude (up to maximum certified 2694 altitude) while satisfying maneuver margin and minimum climb rate(s) criterion. 2695 Optimum altitude should be limited by maximum altitude. Consideration should be given in the algorithm design to eliminate the sensitivity and therefore possible 2696 2697 erratic behavior that can occur because of the flatness of the performance characteristics. Maximum altitude for engine out should also be computed. 2698

2699 4.3.4.3 Trip Altitude Calculations

2700 The performance function should compute a recommended cruise altitude for a 2701 specified route. This altitude may be different from the optimum altitude in that for 2702 short trips the optimum altitude may not be achievable because of the trip distance. 2703 This algorithm searches for the altitude that satisfies the climb and descent while preserving a minimum cruise time specified by the crew or airline policy. Some 2704 2705 designs may elect to integrate this computation as part of the optimum altitude 2706 algorithm. All the vertical flight planning parameters should be considered in this 2707 algorithm.

2708 4.3.4.4 Alternate Destinations Calculation

2709 The performance function should perform alternate destination calculations. The 2710 computations should be based on the selected flight plan routing to the alternate 2711 destination, typically either a direct route from current position to the alternate destination or a route that proceeds to the current destination and assumes 2712 2713 execution of a missed approach at the destination followed by a direct to the 2714 alternate destination. Distances, fuel, and ETA, and optionally best trip cruise 2715 altitude should be computed for each alternate destination and made available for 2716 display. Available holding time at present position, given the current fuel state 2717 versus the fuel required to fly to the alternate destination, may also be computed. 2718 Besides the alternate destination prediction, this function should provide for the 2719 retrieval of the airports nearest the aircraft at crew request.

2720 4.3.4.5 Step Climb/Descent

2721The performance function should include a prediction of the optimum point(s) at2722which a step climb/descent maneuver may be initiated to provide for more cost-2723effective operation. This algorithm should consider all the vertical flight planning2724parameters as well as entered wind data. The time and distance to the optimum2725step point to the specified step altitude should be made available for display. Also,2726the percent savings/penalty for the step climb or descent versus the current flight2727plan may be computed and displayed.

2728 4.3.4.6 Drift-Up Cruise Climb

2729The performance function may compute an optimum or drift-up cruise climb2730guidance which tracks the optimum altitude. This algorithm should take into account2731fuel burn (weight decrease) and the predicted wind altitude profile.

2732	4.3.4.7	Vertical Advisory Calculations
2733 2734 2735 2736 2737		The performance function should provide advisories of distance and time (ETA or ETE) to the next waypoint altitude and/or speed target change. This information is based on the stored trajectory prediction and the current state of the aircraft. It should also provide advisories of distance and time to vertical points which do not correspond to waypoints. These points include:
2738		Top of Climb (T/C)
2739		Top of Descent (T/D)
2740		Start of Climb (S/C)
2741		Start of Descent (S/D)
2742		Level-Off Start
2743		Level-Off End
2744		Bottom of Descent (B/D)
2745		End of Descent (E/D)
2746		Descent Path Intercept
2747		Deceleration or Target Speed Change Point
2748 2749		At a minimum, the performance function should compute distances to the top of climb (T/C) and top of descent (T/D) points for display on the MCDU.
2750 2751 2752		These vertical points should be displayed on the Navigation Display (ND) and Vertical Situation Display (VSD); the advisory distances and times displayed on the MCDU should be consistent with the location on the ND and VSD.
2753	4.3.4.8	Thrust Limit Data Calculations
2754 2755 2756 2757 2758 2759 2760 2761		The thrust limits for takeoff, climb, cruise, go around, and continuous modes of operation should be computed (if applicable for the installation) for the current atmospheric conditions and type of engine/aircraft and bleed settings. Moreover, derates for takeoff and climb thrust should be available for selection as well as selected temperature derates for takeoff thrust. The crew can manually select the thrust limit mode that is output as the current thrust limit or an auto mode can be selected that makes the choice based on logic between the flight control computer and the FMC.
2762		COMMENTARY
2763 2764 2765 2766		In some designs, the thrust limit function is performed by a Thrust Control Computer (TCC). For these designs, the thrust limit computation in the FMC is only required for the purpose of trajectory predictions and support of other performance calculations.
2767	4.3.4.9	Takeoff Reference Data
2768 2769 2770 2771 2772 2773		The performance function should provide for the entry of V1, VR, and V2 speeds. Computation of V-speeds for selected flap setting and runway, weight, CG, and atmospheric conditions may be implemented for the purpose of selection and/or reasonableness checks. The entered or selected V-speeds should be output for display on the flight instruments. Flap/slat retraction speeds may optionally be computed and displayed for reference.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2774 4.3.4.10 Approach Reference Data 2775 Landing configuration selection should be provided for each configuration 2776 appropriate for the operation of the specific aircraft. The crew should be allowed to select the desired approach configuration and the state of that selection should be 2777 2778 made available for output to other systems. Selection of an approach configuration 2779 should also result in the computation of a landing speed based on a manually 2780 entered wind correction for the destination runway. In addition, approach 2781 configuration speeds should be computed and displayed for reference. 2782 4.3.4.11 Reserve Fuel Calculation 2783 When the system supports a default reserve fuel, the default reserve fuel should be 2784 computed based on the estimated fuel burn for the given flight plan, the entered or 2785 measured total fuel quantity, and additional entered parameters such as assumed 2786 fuel flow percent error. Manual entry of a reserve fuel quantity should be provided and should override the default value (if any). The system should provide an 2787 2788 indication to the crew when the predicted fuel at destination is below the reserve 2789 fuel 2790 4.3.4.12 Engine-Out Performance Calculation 2791 Systems should provide engine-out performance predictions for the case of the loss 2792 of at least one engine. These predictions may include: 2793 Climb at engine-out climb speed 2794 Cruise at engine-out cruise speed 2795 Driftdown to engine-out maximum altitude at driftdown speed 2796 Use of maximum continuous thrust 2797 Two-engine-out predictions when applicable on three and four engine 2798 aircraft 2799 •4.3.4.13 **Other Predictions** 2800 A number of other predictions and computed performance parameters can be 2801 provided by flight management systems. The following are a few of these optional 2802 functions: 2803 4.3.4.13.1 **Maximum Range Computation** 2804 Capability to compute the maximum range of the aircraft based on the 2805 entered/measured fuel quantity and the specified reserves should be provided. Both 2806 range to reserves and range to empty may be displayed as appropriate. 2807 4.3.4.13.2 **Maximum Endurance Computation** 2808 The maximum endurance time of the aircraft can be computed based on the entered/measured fuel quantity and the specified reserves. Both endurance time to 2809 2810 reserves and time to empty can be provided. 2811 4.3.4.13.3 **Descent Energy Circles** 2812 For a selected fix point and associated altitude constraint, the distance required to descend from current altitude to the constraint altitude can be computed for both 2813 2814 clean and full drag aircraft configurations. This data can be available for display on 2815 both the MCDU and as range circles centered on the specified fix on the navigation 2816 display.

2817	4.3.4.	13.4 Equal-Time Point (ETP)
2818 2819 2820 2821 2822 2823 2824 2825		The system may support an Equal-Time Point computation. Given two reference airports (or waypoints), the system should compute a location which represents a point along the flight plan which is equal in terms of time to each of the reference airports. The system should default the reference airports to the departure and destination airports. At a minimum, the system should allow optional entry of the reference airports and an average wind vector for the reference airport. The system should make the time and distance to the ETP available for display on the MCDU. The ETP location should also be displayed on the navigation display.
2826	4.3.5	Printer Functions
2827 2828		Capability may be provided to print various data such as data link messages, flight plans, and maintenance information.
2829	4.3.6	AOC Function
2830 2831 2832		The system should provide for a data link interface with Airline Operations Communication. This interface should allow for uplink and crew controlled insertion of parameters that are enterable through the MCDU. This should include:
2833		User preferred flight plans defined by the airline dispatch office
2834		Wind and Temperature entries at multiple altitudes (Section 4.3.2.5.1)
2835		 Waypoints where automatic position reports are required
2836		Performance initialization data
2837		 Navigation data base amendments
2838 2839		Likewise, this interface should provide for the downlink of entered and computed data, including flight plan requests and waypoint reports.
2840		Refer to Section 8.0 and ATTACHMENT 7 for interface details.
2841	4.3.7	ATS Datalink
2842 2843 2844 2845		Air Navigation Service Providers (ANSPs) are implementing, or have plans to implement, Air Traffic Services Datalink functions using existing and future data link systems whose requirements are defined according to the RTCA DO-264/ED-78 safety and performance requirements process. These include:
2846 2847 2848		 FANS 1/A+ Interoperability and Accommodation (RTCA DO-258 FANS Interoperability, RTCA DO-305 Accommodation in Domestic Airspace, and RTCA DO-306 Oceanic Safety and Performance Requirements)
2849 2850		 Link 2000+ (subset of Baseline 1, RTCA DO-280/290/EUROCONTROL spec-0116)
2851		Baseline 2 Rev A or B (RTCA DO-350 through RTCA DO-353/ED-229)
2852		COMMENTARY
2853		Rev A is planned for Europe and Rev B is planned for the US.
2854 2855 2856 2857 2858		The FMS system should support these datalink systems. FANS 1/A was originally utilized primarily in trans-oceanic ATC environments (mandated in the North Atlantic) but is being expanded into US and European domestic airspace. Link 2000+ is the datalink system in Europe. Baseline 2 is applicable to domestic airspace in North America and will eventually replace Link 2000+ in domestic

2859	European airspace. Some aircraft avionics implementations have elected to support
2860	multiple ATS datalink systems (oceanic and domestic).
2861 2862	All these ATS datalink systems provide the capability to establish a direct message exchange between the pilots and controllers, using datalink messages instead of
2863	voice and may provide other functions such as downlink of position reports and
2864	aircraft state and intent information.
2865 2866	The datalink communication architecture on the aircraft has evolved with variation in the allocation of the datalink sub-functions to physical units.
2867	
2007	ATS End System
	Field Code Changed
	FMS Data Processing Peer/Peer Protocol Protocol Air/Ground
	Processing Crew Connection ATS Tx Msg RX/TX Routing TX Data
2868	
	ATS End System
	FMS Data Message Processing Peer/Peer Protocol Protocol Air/Ground
	Processing Crew Connection ATS Tx Msg Routing Tx Data RX/TX
2869	
2870	Figure 4.3.7-14.3.7-1 Functional Breakdown of ATS Datalink Airborne Architecture
2871	
2872 2873	Some system integrators have chosen to allocate the ATS end system into the FMS, some have chosen to allocate the ATS end system to a different unit and
2874	establish a significant data interface with the FMS to support the various datalink
2875 2876	functions. Some implementations have a minimal interface with the FMS and depend on the crew to manually support the data needs of the datalink function. The
2877	following sections describe all the potential FMS requirements for the datalink
2878 2879	functions without regard to the functional allocation of the specific airborne architecture.
2880	It is imperative for stakeholders to understand the specific airborne architecture and
2881	which requirements are applicable in their particular architecture.
2882	4.3.7.1 Future Air Navigation System 1/A (FANS 1/A)
2883 2884	The ATS applications used in FANS 1/A are Air Traffic Services Facilities Notification (AFN), Automatic Dependent Surveillance-contract (ADS-C), Controller
2885	Pilot Data Link Communication (CPDLC) as defined in RTCA DO-258/DO 290 and
2886	ARINC 622. These applications enable the following ATS services:
2887	Data Link Initiation (DLIC)
2888 2889	 ATC Communications Management (ACM) Clearance Request and Delivery (CRD)
2890	ATC Microphone Check (AMC)
2891	Pre-Departure Clearance (PDC)
2892	Information Exchange and Reporting (IER)

2893	Position Reporting (PR)
2894	In Trail Procedure (ITP)
2895	4.3.7.1.1 Air Traffic Services Facilities Notification (AFN)
2896 2897 2898 2899 2900 2901	The AFN logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use, along with the current position as required by the ground system. In response, the ground provides an application name and version number for each application that the ground supports. AFN enables and precedes the use of CPDLC, <u>ADS-C</u> , ADS-C and associated services.
2902	COMMENTARY
2903 2904 2905 2906 2907 2908 2909	While AFN typically precedes ADS-C, it is not mandatory. As stated in ICAO Doc 10037: Global Operational Datalink (GOLD) Manual, it may be operationally desirable for an ATSU to set up an ADS-C connection without a preceding logon. When this is done, correlation with the flight plan can be achieved by requesting the optional flight identification group and checking this against the aircraft registration in the flight plan.
2910 2911 2912 2913 2914 2915	To support auto transfer from one center to the next, the contact function provides a method for the ATS ground system to request that the aircraft system initiate the logon function with the next ATS ground system. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The AFN logon messages and sequence are detailed in RTCA DO-258 and ARINC 622.
2916 2917	For architecture with dual datalink systems (dual stack), the AFN function should support the auto transfer from one datalink system to another datalink system.
2918	4.3.7.1.2 Controller/ Pilot Data Link Communication (CPDLC)
2919 2920	The CPDLC specific messages supported should be those defined by ICAO Doc 4444: PANS-ATM and RTCA DO-258/ED-100 to enable the following services:
2921 2922 2923 2924 2925	 ATC Communications Management (ACM) Clearance Request and Delivery (CRD) ATC Microphone Check (AMC) Pre-Departure Clearance (PDC) Information Exchange and Reporting (IER)
2926	Position Reporting (PR)
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936	These messages include some which are loadable and others which are display only. The pilot has the capability to respond to messages, request clearances and report information. An uplink "free text" capability is also provided to exchange information not conforming to defined formats and to append information explaining error reasons. A downlink "free text" capability is provided to append information explaining error reasons. The FMS exchanges these messages with the communication management function which provides for the capability to receive and send these messages over the data link network. The FMS should provide the capability to interface with the network protocol and integrity checking as defined by ARINC 622. These data link messages will be identified with an Imbedded Message

2937 2938 2939	Identifier (IMI) of ATx and Message Format Identifier (MFI) of AA/BA to distinguish them from AOC messages and take priority over any other pending data link messages.
2940 2941 2942 2943 2944 2945 2946	Interpretation of the message is based on the CPDLC application defined by RTCA DO-258/290 message element number. Upon receipt of an ATC uplink, the system should annunciate an alerting level message in the primary field of view and set an output discrete that will be used to control an aural warning. The system should also provide for a crew interface that details these messages for crew review along with the appropriate prompts for crew responses such as accept, reject, standby, or response data that may be required.
2947 2948	As a minimum, the FMC functions should provide the capability to load (autoload) the following (loadable) message types:
2949	 Cross position BEFORE, AT, or AFTER time
2950	Route Clearances
2951 2952	For all load functions, the changes should be displayed for review by the flight crew. The changes should be initiated and activated by the flight crew.
2953	4.3.7.1.3 Automatic Dependent Surveillance - Contract (ADS-C)
2954	This function should provide for uplink messages to establish the following:
2955	Periodic Contract
2956	On Demand Contract
2957	Event Contract
2958	Cancel Contract
2959	Cancel All Contracts
2960 2961 2962	It should also provide Acknowledgment, Negative Acknowledgment, Noncompliance Notification, and data downlink messages as defined in RTCA DO-258.
2963 2964 2965	This function should support at least 5 connections (four typically used for ATC and another for AOC). Each connection is associated with the ATC center address and may have any contract type.
2966 2967 2968 2969 2970	The ADS-C contracts should be established automatically by the contract protocol defined in RTCA DO-258 without the need for crew intervention. EachA Periodic eContract can specifiery the data groups as well as the report interval and otheran Event Contract can specify report downlink triggers that are desired. EachPeriodic and On Demand eContract requests can specify the data groups to be transmitted:
2971	Basic ADS-C
2972	Flight ID
2973	Airframe ID
2974	Air vector
2975	Ground vector
2976	Aircraft Intent
2977	Projected profile
2978	MET data

2979	All time stamps associated with data groups should be based on the UTC received	
2979	from the GNSS. UTC based on aircraft clocks should only be used in case of GNSS	
2981	outage or failure.	
2982	4.3.7.2 Link 2000+	
2983	The ATN applications used in Baseline 1 Link 2000+ are subsets of context	
2984	management (CM), and Controller Pilot Data Link Communication (CPDLC), as	
2985 2986	defined in RTCA DO-280/290, EUROCONTROL spec-0116. These applications support the following ATS Services:	
2987	Data Link Initiation (DLIC)	
2987	ATC Communications Management (ACM)	
2988	Are communications management (ACM) Air Traffic Clearance (ACL)	
2909	ATC Microphone Check (AMC)	
2991	4.3.7.2.1 Context Management (CM)	
2992 2993	The Baseline 1 Link 2000+ CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and	
2994	version number for each application that the aircraft wishes to use that can be	
2995	ground initiated, along with the Origin and Destination airports as required by the	
2996 2997	ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.	
2998	To support auto transfer from one center to the next, the Link 2000+ CM contact	
2999	function provides a method for the ATS ground system to request the aircraft	
3000	system to initiate the logon function with the ATS ground system indicated in the CM	
3001 3002	contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The	
3002	aircraft initiates a logon and provides the information indicating whether or not the	
3004	requested contact was successful. The Context Management logon messages and	
3005	sequence are detailed in the Baseline 1 ATN Interoperability RTCA DO-280.	
3006 3007	For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.	
3008	4.3.7.2.2 Controller Pilot Data Link Communication (CPDLC)	
3009	The Link 2000+ CPDLC is a subset of the ATN Baseline 1 CPDLC as defined in	
3010 3011	RTCA DO-280/290/ EUROCONTROL spec-0116. The ATN Baseline 1 Link 2000+	
3011	controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in RTCA DO-280/	
3013	290/EUROCONTROL spec-0116. This function provides messages for the	
3014	following:	
3015	ATC Communication Management (ACM)	
3016	Air Traffic Clearance (ACL)	
3017	ATC Microphone Check (AMC)	
3018	The ATN Baseline 1 Link 2000+ CPDLC message elements encompass level	
3019 3020	assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for	
3020	information. The pilot has the capability to respond to messages, request clearances	
3022	and report information. An uplink "free text" capability is also provided to exchange	

4.0 FLIGHT MANAGEMENT FUNCTIONS

3023 3024 3025	information not conforming to defined formats and to append information explaining error reasons. A downlink "free text" capability is provided to append information explaining error reasons.
3026 3027 3028 3029 3030 3031	The Baseline 1 transfer of data authority function provides the capability for the current data authority (CDA) to designate another air traffic service unit (ATSU) as the next data authority (NDA). A CPDLC connection can be established by the NDA at a time before becoming the CDA. This capability is intended to prevent a loss of communication that would occur if the NDA were prevented from actually setting up a connection with an aircraft system element until it became the CDA.
3032	4.3.7.3 Baseline 2 (B2)
3033 3034 3035 3036	The ATS applications used in Baseline 2 are Context Management (CM), Automatic Dependent Surveillance-Contract (ADS-C) and Controller Pilot Data Link Communication (CPDLC) as defined in RTCA DO-350 through DO-353 and ED-229. These applications support the following ATM functions:
3037	Data Link Initiation (DLIC)
3038	ATC Communications Management (ACM)
3039	Clearance Request and Delivery (CRD)
3040	ATC Microphone Check (AMC)
3041	Departure Clearance (DCL)
3042	Data Link Taxi (D-TAXI)
3043	In Trail Procedure (ITP)
3044	Advanced Interval Management (A-IM)
3045	Oceanic Clearance Delivery (OCL)
3046	Information Exchange and Reporting (IER)
3047	Position Reporting (PR)
3048	4-Dimensional Trajectory Data Link (4DTRAD)
3049	Dynamic Required Navigation Performance (DRNP)
3050	4.3.7.3.1 Context Management (CM)
3051 3052 3053 3054 3055 3056	The CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.
3057 3058 3059 3060 3061 3062 3063 3064	To support auto transfer from one center to the next, CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in RTCA DO-350 and ED-229.
3065	For architecture with dual datalink systems (dual stack), the CM function should

3065For architecture with dual datalink systems (dual stack), the CM function should
support the auto transfer from one datalink system to another datalink system.

3067	4.3.7.3.2 Controller Pilot Data Link Communication (CPDLC)
3068 3069 3070	The ATN Baseline 2 controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in RTCA DO-350 and ED-229. This function provides messages for the following:
3071	General information exchange
3072	Clearance delivery, request, and response
3073	Departure Clearance
3074	Taxi Instructions
3075	Separation Assurance
3076	Route modification
3077	Advanced Interval Management
3078	4D Ttrajectory bBased Ooperation
3079	Dynamic RNP
3080 3081 3082 3083 3084	The aircraft system should allow the flight crew to view the message with no more than a single action and allow the flight crew to access the list/queue of unread messages with no more than a single action. The aircraft system should displayprovide an indication of the receipt of a messages on a displaymessage in the primary field of view
3085 3086 3087 3088	The aircraft data link system should provide the flight crew with the capability to load designated CPDLC uplink messages into the FMS to avoid hazards associated with human entry errors and/or increased workload. The following clearance messages are proneexamples of messages prone to these hazards:
3089 3090 3091	 A clearance that will require the creation, in the resulting flight plan, of more than one waypoint unless the route is described by a procedure name that can be loaded from the navigation database,
3092 3093 3094	 A clearance that will require the creation, in the resulting flight plan, of one waypoint specified by place-bearing-distance or latitude/longitude with a resolution smaller than whole degrees.
3095 3096 3097 3098	The aircraft data link system will provide the flight crew with assistance to create CPDLC downlink messages to avoid any safety implications (i.e., human entry errors and/or significant increased workload). The following downlink messages are prone to these hazards:
3099	 request messages which contain more than one waypoint
3100 3101	 report messages of the present aircraft position or containing one (or more) waypoint(s) from the FMS active flight plan.
3102	4.3.7.3.3 Automatic Dependent Surveillance (ADS-C)
3103 3104 3105	The ADS-C application provides automatic reports from an aircraft system to an ATSU as detailed in RTCA DO-350. The ATSU is capable of requesting the aircraft system to provide the ADS-C reports to the ATSU system in three ways:
3106	On demand
3107	On a periodic basis
3108	When triggered by an event

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127		Only one contract of a given type is permitted at one time per ATSU. When the ATSU sends a contract request to an aircraft system for a periodic or event contract, and either of these two contracts already exists with that aircraft, then the new contract will override the previous contract for that type. Acceptance of an event or periodic contract request implicitly cancels an existing respective event or periodic contract. Since the demand contract is satisfied by sending a single report, any number of demand contracts may be sequentially established with a given aircraft. The ATSU is capable to cancel either a single contract or all contracts in operation that it has established with an aircraft. The ATSU specifies either which contract(s) to cancel by identifying the contract type(s), or specifying to cancel all contracts. The aircraft system acknowledges the cancellation and ceases sending the ADS-C reports for the cancelled contract requests. The ADS-C report content and the conditions under which the report is sent vary depending on the type of contract requests with at least five ground systems simultaneously. In addition, when in emergency mode, the aircraft system provides an emergency/urgency indication as part of each downlink ADS-C messages including the ADS-C report.
3128 3129		EachPeriodic and On-Demand eContract requests can specify the data groups to be transmitted:
3130		Basic ADS-C
3131		Air vector
3132		Ground vector
3133		projected profile
3134		MET data
3135		RTA status data
3136		Extended projected profile
3137		Planned final approach speed
3138		RNP status
3139		COMMENTARY
3140 3141 3142		5.2.2 The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the predicted reference path altitude.
3143		
3144	<u>5.2.3</u> 4.3.8	Airport Surface Guidance
3145		[Deleted by Supplement 5]
3146	4.3.9 Terra	in and Obstacle Data
3147		[Deleted by Supplement 5]
3148	4.3.10 Elect	ronic Map Interfaces
3149	<u>5.2.44.3.10.1</u>	Navigation Display Interface
3150 3151		The system should support an interface with a Navigation Display (ND) in order to provide lateral situational awareness (e.g., aircraft position, lateral trajectory, nearby

4.0 FLIGHT MANAGEMENT FUNCTIONS

3152 3153 3154 3155	navaids, etc). RTCA DO-257 defines requirements for the ND Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661.
3156 3157 3158	In addition to the map background data and the aircraft position, the system should supply a number of other dynamic data items that contribute to lateral situational awareness. These may include:
3159 3160	 Current Wind (either cross wind and headwind components or magnitude and bearing)
3161	Time and distance to go to the next waypoint
3162	Current Ground speed
3163	Vertical deviation when guiding to the descent path
3164	Trend vector showing current rate and direction of turn
3165 3166	The system should support independent ND displays such that each pilot may select different ND map ranges, modes, or options.
3167	4.3.10.2 Vertical Situation Display Interface
3168 3169 3170 3171 3172 3173	The system may support an interface with a Vertical Situation Display (VSD) to provide vertical situational awareness (e.g., vertical aircraft position, AFCS Control Panel Altitude, altitude constraints, descent reference path, vertical trajectory predictions, terrain). RTCA DO-257 defines requirements for the VSD. Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The CDS interface is in ARINC 661.
3174 3175 3176	In addition to the map background data, vertical aircraft position, and AFCS Control Panel Altitude, the system should supply a number of other dynamic data items that contribute to vertical situational awareness. These may include:
3177	Current Vertical speed
3178	Vertical deviation when guiding to the descent path
3179	Trend vector showing current flight path angle
3180 3181	The system should support independent VSD displays such that each pilot may select different VSD map ranges, modes, or options.
3182	4.3.11 CMU Interface
3183 3184 3185 3186 3187	The system should provide for an interface with a CMU for the purpose of supporting all data link functionality described in this characteristic. The standard interface between the CMU and the flight management function, detailing the interface data and formats, may be found in Section 8.0 of this characteristic. Message formats for AOC communications are defined in ATTACHMENT 7.
3188	4.3.12 Predictive Receiver Autonomous Integrity Monitoring (RAIM)
3189	Optional capability may be provided for the FMS to transmit the selected destination

3189Optional capability may be provided for the FMS to transmit the selected destination3190latitude, longitude, and ETA to the GNSS when a flight plan has been activated and3191predicted. The purpose of this capability is for the prediction of the availability of3192GNSS satellite coverage for the approach phase of the flight. The GNSS should3193respond to whether adequate satellite coverage is anticipated. If not, the system

4.0 FLIGHT MANAGEMENT FUNCTIONS

3194 3195	should immediately alert the crew. Interface requirements for this capability are defined in ARINC Characteristic 743A, Appendix C.	
3196	4.3.13 Precision-Like Approach Guidance	
3197 3198 3199 3200	With the advent of advanced navigation sensors and airborne systems, two methods have been developed that allow non-precision approaches to be flown like an ILS, MLS, or GLS precision approach: LP/Localizer Performance with Vertical Guidance (LPV) LPV Approaches and FMS Landing System (FLS)	
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210	LP/LPV is similar Approaches are analogous to GLS approaches. Both LP/LPV and GLS are satellite-based operations using an augmented GNSS solution. In a GLS approach, a ground station transmits both (a) corrections to a GNSS signal, and (b) a Final Approach Segment (FAS) Data Block which defines the localizer and glideslope beams. When tuned to the GLS channel number, a receiver onboard the aircraft receives those signals and computes precision approach-like ILS look-alike deviations for use by the autoflight and display systems. In an LP/LPV approach, a receiver onboard the aircraft receives corrections to the GNSS signal from a satellite-based system (SBAS) rather than a ground-based system (GBAS); it typically receives the FAS Data Block from the onboard Flight Management System.	
3211 3212 3213	For any non-precision approach, some Flight Management Systems support an FLS guidance mode where the onboard FMS navigation solution may be used to provide the autoflight and display systems with ILS lookprecision approach-alike deviations.	
3214	4.3.13.1 LP/LPV Approach Guidance	
3215 3216 3217 3218 3219	On some installations, the system supports LP/LPV approach capability when used in conjunction with an ARINC 743B GNSS Landing System Sensor Unit (GLSSU) (RTCA DO-229 Delta-4 SBAS receiver) or an ARINC 755 Multi-Mode Receiver (MMR) supporting the GLS function. The GLSSU (or MMR) provides the lateral and vertical deviations (ILS look-alike) and guidance during the final approach segment.	
3220 3221 3222 3223 3224 3225 3226	On those installations, upon crew selection of the desired LP/LPV approach, the system should extract the Final Approach Segment (FAS) data block from its navigation database and transmit it to the GLSSU/MMR. The protocol to exchange the FAS data block is described in ARINC 743B Appendix D and ARINC755 Appendix A. The Final Approach Segment (FAS) data block includes a 32-bit Cyclic Redundancy Check (CRC) value ensuring the integrity of the data from the time of the original packet generation.	
3227 3228 3229	Upon crew activation of a new approach where the previously selected Final Approach Segment is no longer applicable, the system should invalidate the previously sent Final Approach Segment Data Message (FASDM).	
3230	4.3.13.2 FMS Landing System (FLS)	
3231 3232 3233	The system may support a virtual ILS guidance capability which can be used to fly a non-precision final approach segment. This capability is referred to as FMS Landing System (FLS).	
3234 3235 3236 3237 3238 3239	When an FLS capability is provided and the crew has selected a non-precision approach, the system should provide a means for the crew to select or de-select FLS guidance for the final approach. When FLS is selected and lateral guidance is not already being provided by a ground-based localizer (if allowed), the system should compute a virtual localizer path. When FLS is selected, the system should compute a virtual glideslope path. For the virtual glideslope path, the anchor point	
3239	compute a virtual glideslope path. For the virtual glideslope path, the anchor point	

3240 3241 3242 3243 3244 3245 3246		should be located such that the aircraft can maintain a constant vertical angle to the landing threshold point (LTP), even in cases where the MAP is not located at the runway or there is a curved lateral path to the runway. When FLS guidance is selected, the system should interface to the autoflight and/or display systems to allow the virtual localizer and/or glideslope to be flown. When the system cannot support FLS guidance for the selected non-precision approach, the system should prohibit selection of FLS guidance and/or provide an indication to the crew.
3247		COMMENTARY
3248 3249		FLS guidance must comply with the Temperature Compensation Requirements in Section 4.3.2.5.4.
3250	4.3.14 Integr	ity Monitoring and Alerting
3251	<u>5.2.5</u> 4.3.14.1	Sensor Status
3252 3253		Sensor warning inputs will be implemented as specified in ARINC Specification 429, Section 2.1, in that validity status is contained within the digital word format.
3254 3255		In all cases of sensor input failure, suitable sensor failure warning and degraded status annunciation should be provided.
3256	4.3.14.2 Syst	em Status Alert
3257 3258 3259 3260 3261 3262 3263 3263		Any change of status that results in reduced system operational capability or availability should be annunciated to the pilot on, or adjacent to, primary flight instruments. Additional data (e.g., A429 label, parity error, rate failure, etc) for use in diagnosing the status change should be logged to the BITE and/or data collection systemuse in diagnosing the reason for the change will be of value if it can be displayed on the MCDU or output to an onboard printer of data collection system (e.g., through the data loader interface). Means should be provided to cancel the alertannunciation.
3265		COMMENTARY
3266 3267 3268 3269 3270 3271		The system status alert is designed only to attract the attention of the pilot to the fact that something has happened either within the system or to one of the sensors that has degraded or will degrade the operational viability of the system. It will be necessary for the pilot to look for further signs to determine the actual problem and whether or not he can correct it.
3272 3273 3274		System integrity monitoring and failure warning discrete outputs are described in Section 5.3 of this Characteristic. All other such alerts and warnings are included in the transmitted digital word as specified in ARINC Specification 429, Section 2.1.
3275	4.3.14.3 Self-	Test
3276 3277 3278 3279		The FMC should be designed to perform automatic self-tests of its internal operation, and reasonableness tests on input data during normal operation. The FMC will generate digital output bus signals which will include malfunction codes to indicate the FMC's assessment of its health, and the status of its interfaces.
3280	4.3.14.4 Failu	ure Response
3281 3282 3283		The system should monitor its own health and processing for integrity. When an error is detected, the system should record the failure in a nonvolatile BITE log and attempt to recover from or correct the error if possible. If an attempted fault recovery

4.0 FLIGHT MANAGEMENT FUNCTIONS

3284 3285		is unsuccessful, the system should prevent further processing in the affected partition.
3286		COMMENTARY
3287 3288 3289		The airlines desire a high degree of fault tolerance in the FMS. System recovery logic for intermittent faults should be designed to minimize visible flight deck effects and loss of system availability.
3290	4.4	Training Simulator Support Functions
3291 3292		FMS requirements for simulator support functions are defined in the latest version of ARINC Report 610.

3293

3294	5.0 STANDARD INTERFACES		
3295	6.05.1_FMC Digital Data Input Ports		
3296 3297 3298 3299 3300		This section describes the digital interfaces to the FMC. It is unlikely that all of these inputs will be employed in a given installation. Those not used in a particular aircraft type need not be implemented in the FMC. However, hardware, software, and computer cycle time capacity should be available to allow all of them to be activated when needed.	
3301		COMMENTARY	
3302 3303 3304		Data signaling for inputs and outputs to the FMC should be in the ARINC 429 low-speed rates, except where otherwise specified. The data signals are defined in Attachment 4 of this document.	
3305 3306 3307		Providing for FMC interchangeability across different aircraft types in a user's fleet may generate the need for the computer to offer more input capacity than needed on any one of those types.	
3308	5.1.1	VOR Input Ports	
3309 3310		Two ARINC 429 input ports are provided to receive data from dual ARINC 711 VOR receivers.	
3311	5.1.2	DME Input Ports	
3312 3313		Two ARINC 429 input ports are provided to receive data from dual ARINC 709 DME interrogators.	
3314	5.1.3	ILS/MMR Input Port	
3315 3316		One ARINC 429 input port will receive data from an ARINC 710 ILS receiver or an ARINC 755 Multi-Mode Landing System Receiver (MMR).	
3317		COMMENTARY	
3318 3319		These ports are used to support LP/LPV approaches when interfacing to an ARINC 755 MMR	
3320	5.1.4	Air Data Input Ports	
3321 3322		Two ARINC 429 input ports will receive data from dual ARINC 706 Air Data Systems or ARINC 738 Air Data Inertial Reference Unit (ADIRU).	
3323	5.1.5	IRS/AHRS Input Ports	
3324 3325		Three ARINC 429 input ports will receive data from ARINC 704 IRS, ARINC 705 AHRS or ARINC 738 ADIRU systems. These are ARINC 429 high-speed inputs.	
3326	5.1.6	GNSS Input Ports	
3327 3328 3329 3330		Two ARINC 429 input ports should receive data from an ARINC 743A GNSS Sensor. These may be ARINC 429 high-speed or low-speed inputs. The ARINC 743A GNSS Sensor is capable of providing ARINC 429 data in high-speed or low- speed format.	
3331		COMMENTARY	
3332 3333		These ports are used to support LP/LPV approaches when interfacing to an ARINC 743B GLSSU or an ARINC 755 MMR	

3334	5.1.7	Flight Control System Input Ports
3335 3336		One ARINC 429 input port will receive data from an ARINC 701 Flight Control System glare shield controller.
3337	5.1.8	MCDU Input Ports
3338 3339 3340		Two ARINC 429 input ports are provided to receive data from one or two MCDUs. One of these ports is designated the "on-side" port and the other is designated the "off-side" port (see Attachment 2 of this document).
3341	5.1.9	Data Loader Input Ports (ARINC 615)
3342 3343 3344 3345		One ARINC 429 input port is dedicated to receiving data to update bulk storage integral to the FMC. This port is intended for an interface with a loading device of the type described in ARINC Report 615. The characteristics of the digital data transmission on this bus are defined to the extent necessary in that document.
3346	5.1.10	Data Link Input Ports
3347 3348		The FMC should provide two ARINC 429 high-speed input ports to receive data from up to two ARINC 758 CMUs.
3349 3350 3351		The FMC should provide two ARINC 429 low-speed input ports to receive data from up to two ARINC 724B ACARS Management Units or to support existing ACARS functionality integrated into the ARINC 758 CMU.
3352		COMMENTARY
3353 3354		Dual ACARS low-speed inputs can be accommodated by using a software selectable speed input for at least one of the CMU inputs.
3355	5.1.11	Intersystem Data Input Port
3356 3357		One ARINC 429 input port provides the intersystem comparison data received from a second FMC.
3358		COMMENTARY
3359 3360		As an alternative to ARINC 429, a faster intersystem data bus may be necessary. Refer also to Sections 5.2.1 and 5.4.
3361	5.1.12	Propulsion/Configuration Data Input Ports
3362 3363		Six ARINC 429 input ports are provided for engine and fuel flow and quantity parameters and data received from the Thrust Control Computer (TCC).
3364		COMMENTARY
3365 3366 3367 3368		It is intended that four of these ports should be assigned for receiving individual engine and fuel flow data from up to four engines or fuel systems. The remaining two ports would normally receive other data such as thrust limit, fuel quantity, and TCC data.
3369	5.1.13	Electronic Flight Instrument System Input Ports
3370 3371 3372 3373		Two ARINC 429 input ports are provided for data from an Electronic Flight Instrument system. This interface may provide interface capability to the Cursor Control Device (CCD). This capability may be provided by a separate input as defined in Section 5.1.19.

3374	5.1.14 Print	er	
3375 3376		One ARINC 429 input port is provided for data from an ARINC 740 or ARINC 744 airborne printer.	
3377	5.1.15 Digita	al Clock Input	
3378 3379 3380		One ARINC 429 input port is provided for data from a digital clock. The clock input may be provided from a GNSS source, in which case the GNSS input is utilized per Section 5.1.6. In this case a dedicated clock input port is not required.	
3381	5.1.16 Main	tenance Input	
3382 3383		One ARINC 429 low-speed input port is provided for interface to an ARINC 604 or 624 maintenance system.	
3384	5.1.17 WBS	Input	
3385 3386		One ARINC 429 input port is reserved for input of data from an ARINC 737 On- Board Weight and Balance System (WBS).	
3387	5.1.18 Simu	lator Input	
3388 3389 3390		A serial digital input is required to support ARINC 610 simulator functions. As a manufacturer option, this input may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.	
3391	5.1.19 Point	ing Device	
3392 3393		Two high-speed ARINC 429 input ports are reserved for input from dual cockpit pointing devices.	
3394		COMMENTARY	
3394 3395 3396 3397		COMMENTARY These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.	
3395 3396	5.1.20 ASAS	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.	
3395 3396 3397	5.1.20 ASAS	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.	
3395 3396 3397 3398 3399		These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5 Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft	
3395 3396 3397 3398 3399 3400		These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. 5 Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system.	
3395 3396 3397 3398 3399 3400 3401 3402	5.1.21 Rese	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. S Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. rved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software	
3395 3396 3397 3398 3399 3400 3401 3402 3403	5.1.21 Rese	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. S Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. rved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs.	
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405	5.1.21 Rese 5.2 FMC D	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. S Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. rved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. igital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs	
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406	5.1.21 Rese 5.2 FMC D	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. S Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. rved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. igital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data.	
3395 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409	5.1.21 Rese 5.2 FMC D	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface. S Input One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system. rved Ports for Growth Inputs Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs. igital Data Outputs Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data. Intersystem Output The FMC should provide an output bus which can be used for intersystem communication from one FMC to another. Section 5.4 of this document provides	

3414 3415		data bus may be used. Any alternative data bus should meet the same EMI requirements of ARINC 429.
3416	5.2.2	General Data Output
3417 3418 3419 3420 3421		Two ARINC 429 outputs provide data to flight instruments, to radio receivers or frequency management unit for tuning, to the Thrust Control Computer System, Flight Control Computer System, and other users. They may also provide initialization data to the IRS. Optionally, they may include the FAS data block to an ARINC 743B GLSSU or ARINC 755 MMR.
3422		COMMENTARY
3423 3424		The amount of data to be carried may require the use of ARINC 429 high-speed buses.
3425	5.2.3	Primary Display Data Output
3426 3427		Two ARINC 429 high-speed outputs are dedicated to supplying data for the Electronic Flight Instrument systems.
3428		COMMENTARY
3429 3430 3431		The specialized design of the FMC/EFI interface makes these outputs unsuitable for supplying other displays such as digital electromechanical instruments. The general data outputs should be used for these purposes. See Section 7.0 of this document.
3432	5.2.4	MCDU Output Ports
3433 3434		Two ARINC 429 outputs provide the means for the FMC to supply data to the MCDUs for the system.
3435	5.2.5	Data Loader Output
3436		One ARINC 429 output is provided for interface to an ARINC 615 data loader.
3437	5.2.6	Data Link Output Ports
3438 3439		One ARINC 429 high-speed output is provided for connection to an ARINC 758 CMU.
3440 3441 3442		One ARINC 429 low-speed output is provided for connection to an ARINC 724B ACARS Management Unit, or to support existing ACARS functionality integrated into the ARINC 758 CMU.
3443	5.2.7	Autothrottle (Reserved)
3444 3445		One ARINC 429 output is reserved to supply data to an Electronic Engine Control (EEC) computer.
3446	5.2.8	Printer
3447 3448		One ARINC 429 high-speed output is reserved for the output of data to an ARINC 740 or ARINC 744 printer.
3449	5.2.9	Onboard Maintenance
3450 3451		One ARINC 429 output is reserved for the output of data to an ARINC 604 or 624 onboard maintenance system.
3452	5.2.10	Programmable Data Output
3453		One ARINC 429 high-speed output is provided to support flight test data collection.

5.0 STANDARD INTERFACES

3454	5.2.11 Simulator
3455 3456 3457	A serial digital output is required to support ARINC 610 simulator functions. As a manufacturer option, this output may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.
3458	5.2.12 Aircraft State and Intent Path Output (Trajectory Bus)
3459 3460 3461 3462 3463 3464 3465 3466	The FMC should include an ARINC 429 high-speed bus to provide Position Velocity Time (PVT) and intent data from the FMC. This data may be used for surveillance applications such as ADS-B, Terrain Awareness and Warning System (TAWS), Terrain/Obstacle avoidance, and other situational awareness systems. The interface definition is comprised of present aircraft state data that is broadcast at a half second (2 Hz) update rate. The FMS should comply with the requirements of RTCA DO-229C that specifies that the data defining the position shall be output prior to 200 milliseconds after the time of applicability.
3467 3468 3469	Additionally, trajectory intent data for the active flight plan, modified flight plan, or other specified flight plan, assumed to be flown in FM managed mode, is transmitted as a block data transfer. This data may be used for all types of ATM applications.
3470 3471 3472 3473 3474 3475	As an option, the Aircraft State and Trajectory output may be provided by an ARINC 664 Ethernet interface. The intention is that the same data items are provided; only the transfer mechanism(s) is different. The Ethernet Aircraft State is specified in Section 5.2.12.1.2 and the Ethernet Trajectory output is specified in Section 5.2.12.2.2. There are no pin assignments in this Characteristic for an ARINC 664 Ethernet bus. These interfaces may be aircraft specific.
3476 3477	The list of ARINC 429 data words used for the broadcast data is included in ARINC Specification 429: Digital Information Transfer System (DITS).
3478	5.2.12.1 Aircraft State Data
3479 3480 3481 3482 3483 3484 3484 3485	The aircraft state data from the FMS should include the parameters in Table 5-1 or <u>Table 5-2</u> <u>Table 5-2</u> . Trajectory intent status data should be included as an FMC output based on determination if the aircraft is following its FMC specified flight plan. Separate discrete bits (label 270 bits 27, 28, 29) are provided to the user to aid in the interpretation of trajectory data. These discrete bits indicate whether the airplane is being flown to the vertical, lateral, and speed/time targets for the trajectory provided with the appropriate automation engaged, as necessary.

3485provided with the appropriate automation engaged, as necessary.3486This list of data represents information that is expected to be made available on the
34873488Trajectory intent data bus from the FMC to support multiple functions. It is not
intended to specify what should be transmitted from the airplane.

3489 5.2.12.1.1 ARINC 429 Aircraft State

3490

Table 5-1 ARINC 429 Intent Aircraft State Labels

Label	Parameter	Update Rate
102	FMS Selected Altitude	0.5 sec
103	FMS Selected Airspeed	0.5 sec
106	FMS Selected Mach	0.5 sec
114	FMS Desired Track	0.5 sec
116	Cross Track Distance	0.5 sec
117	Vertical Deviation	0.5 sec

5.0 STANDARD INTERFACES

Label	Parameter	Update Rate
135	Current Vertical Path Perf Limit (Vert RNP)	0.5 sec
136	Current Vertical Path Perf (Vert ANP ⁽¹⁾)	0.5 sec
150	UTC	0.5 sec
167	Estimated Position Uncertainty (or ANP)	0.5 sec
171	Current RNP	0.5 sec
176	Distance to Destination	0.5 sec
233-237	Flight ID	0.5 sec
310	Present Position Latitude	0.5 sec
311	Present Position Longitude	0.5 sec
312	Ground Speed	0.5 sec
313	Track Angle True	0.5 sec
314	True Heading	0.5 sec
315	Wind Speed	0.5 sec
316	Wind Direction	0.5 sec
204	Baro-Corrected Altitude (pass through from ADC)	0.5 sec
203	Pressure Altitude (pass through from ADC)	0.5 sec
206	Calibrated Airspeed (pass through from ADC)	0.5 sec
205	Mach (pass through from ADC)	0.5 sec
210	True Airspeed (pass through from ADC)	0.5 sec
213	Static Air Temperature (pass through from ADC)	0.5 sec
320	Magnetic Heading (pass through from IRS)	0.5 sec
325	Roll Data (pass through from IRS)	0.5 sec
335	Track Angle Rate (pass through from IRS)	0.5 sec
365	Inertial Vertical Velocity (pass through from IRS)	0.5 sec
366	N/S Velocity	0.5 sec
367	E/W Velocity	0.5 sec
270	Intent Status	0.5 sec
	bit 29-speed/time controlled	
	bit 28-lateral controlled	
	bit 27-vertical controlled	
	bit 26-no active flight plan intent data	
	bit 25-desired track mag/true ref (1 = true)	
	bit 24-indicates when bus is guidance	
	master	

COMMENTARY

Table 5-1 provides FMS data parameters for surveillance and fully recognizes that other data parameters necessary for surveillance may be provided by other systems (e.g., GPS, inertial system, air data system, Flight Controls system).

The integrity data is Estimated Position Uncertainty and Current Vertical Path Performance. It is expected that surveillance systems using this data to transmit an integrity parameter outside the airplane would use these data items (or the appropriate integrity parameters when using data from another source, such as GPS) to compute the

Ground Speed

5.0 STANDARD INTERFACES

3501 3502	requisite integrity parameter as specified by the RTCA MOPS for that particular surveillance application.							
3503	5.2.12.1.2 Ethernet Aircraft State							
3504 3505	The format of the aircraft state consists of a single block coded in big endian mode. This block should nominally be sent at 2 Hz rate.							
3506	Table	5-2 Etherr	net Intent	Aircraft	State Format			
	Ethernet Aircraft State							
	Data Type Size (bits) Units Comments							
	Start of Block		8		Start of application block. Code hx53			
	Block Size	Integer	8	Bytes	Size in bytes of aircraft state data block			
	Pad	Integer	16	-	hx0000			
	FMS Selected Altitude	Float	32	ft	Label 102, Note 1			

Data	Туре	Size (bits)	Units	Comments
Start of Block		8		Start of application block. Code hx53
Block Size	Integer	8	Bytes	Size in bytes of aircraft state data block
Pad	Integer	16	-	hx0000
FMS Selected Altitude	Float	32	ft	Label 102, Note 1
FMS Selected Airspeed	Float	32	kt	Label 103, Note 1
FMS Selected Mach	Float	32	-	Label 106, Note 1
FMS Desired Track	Float	32	deg	Label 114, Note 1
Cross Track Distance	Float	32	NM	Label 116, Note 1
Vertical Deviation	Float	32	ft	Label 117, Note 1
Vertical RNP	Float	32	ft	Label 135, Note 1
Vertical ANP	Float	32	ft	Label 136, Notes 1
UTC	Float	32	sec	Label 150, Note 1
Estimated Position Uncertainty (or ANP)	Float	32	NM	Label 167, Note 1
Current RNP	Float	32	NM	Label 171, Note 1
Distance to Destination	Float	32	NM	Label 176, Note 1
Flight ID	String	m * 32	-	Label 233 – Label 237, Note 2
Present Position Latitude	Float	32	deg	Label 310, Note 1
Present Position Longitude	Float	32	deg	Label 311, Note 1

Float

32

kt

Label 312, Note 1

5.0 STANDARD INTERFACES

Ethernet Aircraft State				
Data	Туре	Size (bits)	Units	Comments
Track Angle True	Float	32	deg	Label 313, Note 1
True Heading	Float	32	deg	Label 314, Note 1
Wind Speed	Float	32	kt	Label 315, Note 1
Wind Direction	Float	32	deg	Label 316, Note 1
ADC Baro-Corrected Altitude	Float	32	ft	Label 204, Note 1
ADC Pressure Altitude	Float	32	ft	Label 203, Note 1
ADC Calibrated Airspeed	Float	32	kts	Label 206, Note 1
ADC Mach	Float	32	-	Label 205, Note 1
ADC True Airspeed	Float	32	kts	Label 210, Note 1
ADC Static Air Temperature	Float	32	degC	Label 213, Note 1
IRS Magnetic Heading	Float	32	deg	Label 320, Note 1
IRS Roll Angle	Float	32	deg	Label 325, Note 1
IRS Track Angle Rate	Float	32	deg/sec	Label 335, Note 1
IRS Vertical Velocity	Float	32	ft/min	Label 365, Note 1
N/S Velocity	Float	32	kt	Label 366, Note 1
E/W Velocity	Float	32	kt	Label 367, Note 1
Intent Status	Integer	32	-	Label 270
End of Block		8		End of application block. Code hx45
Pad		24		hx000000

3507 3508

3509

Notes:

1. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.

 Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bits unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).

5.0 STANDARD INTERFACES

			0.0 0 1		NOL0		
3514	4.5.2.12.2	Trajectory Intent Data					
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526		output of the fl secondary, an such as real-ti strategic traffic consist of a stu with the point forms the basi predicted fligh even though a	ddition to the aircraft state data defined above, the FMC should provide an but of the flight path trajectory for each flight plan (i.e., active, modified, ondary, and ATC flight plans). This may be used to support predictive functions in as real-time traffic conflict probes, airspace traffic situational awareness, tegic traffic coordination, and terrain/obstacle avoidance. The data should sist of a string of points that describe the predicted trajectory of the aircraft along the point type and data associated with the flight path transition. This data as the basis for a using function to be able to unambiguously reconstruct the dicted flight trajectory. This block transmission is for the entire flight trajectory in though a using function may only be interested in a part of the active ectory. For the active flight plan, this data should be updated on the following ints:				
3527		• Wh	enever an ac	tive flight plan	change occurs.		
3528				aypoint is pas			
3529 3530			en a defined last transmis		apsed (on the order of one min	nute) since	
3531				• CO	MMENTARY		
3532 3533 3534 3535		Other events might require data to be updated. For example, it may be desirable to update the data when there has been a significant change to the predicted trajectory caused by tactical operations or unforecast environmental conditions.					
3536 3537			the modified, secondary and data link flight plans, this data should be updated a minimum) when the plan is created, deleted or modified.				
3538	5.2.12.2.1	ARINC 429 Tr	ajectory Inte	nt File Trans	fer Format		
3539 3540 3541 3542 3543		The ARINC 429 Trajectory Intent File Transfer Format is an encapsulation of the Ethernet Trajectory Intent File Transfer Format (5.2.12.2.2). The Ethernet file, including the header and footer, is encapsulated in a series of ARINC 429 words as outlined in the table below. Table 5-3 ARINC 429 Trajectory Intent File Transfer Format					
	Word Type Bits			Bit 29	Format Bits 28-9	Label Bits 8-1	
	30		-				
	Start Of Transmis 1 1	sion		0	Bits 28-25 (Note 2) Bits 24-17 word count Bits 16-9 LDU sequence	232 for Active Intent (Note 3)	
	Full Data Word	Version		Bits 29-13 Pa Bits 12-9 Ver	d 0 sion/Compatibility (Note 4)	232	
	0 1 (frame start) Full Data Word Trajectory File 0 0			ectory File Content	232		

 0 0
 Image: Constraint of the start of th

5.0 STANDARD INTERFACES

3545	Notes:
3546 3547 3548	 Because of multiple users (sink) of this file, no RTS, CTS, ACK, or NAK protocol is provided. Receivers must be capable of handling the block file transfer when the transmitter sends it.
3549 3550	1.2. Start of transmission word, Bits 28-25 describe provisions for alternate content.
3551	2.3. The following labels are used for different flight plan types:
3552	

Label	Flight Plan Type		
232	Active		
242	Modified		
252	Secondary		
262	Data Link		

3553

3554

_____Version/Compatibility codes are as follows:

Bits 12-9	Version
0000	ARINC 702A-2 (2005)
0001	ARINC 702A-3 (2006)1
0010	ARINC 702A-4 (2014) ¹
0011	ARINC 702A-5 (2018)
	Reserved
1111	Reserved

Note

<u>3.4.</u>

 The definition of A429 Aircraft State and A429 Trajectory Intent Data Intent Path Output (Trajectory Bus) (Section 5.2.12) is identical in ARINC 702A-3 and ARINC 702A-4.

3557 3558 3559

3555

5.0 STANDARD INTERFACES

3560

Characteristic co	des are as fol	ows:

I	Characteristic codes are as follows:				
Bits 29-9	Characteristics	Description			
29	Start of climb	The point where the trajectory will begin a climb segment following a level (intermediate or cruise) segment.			
28	Top of climb	Where the trajectory arrives at the cruise flight level. There will be one top-of-climb point for each cruise flight level (step climbs).			
27	Top of descent	The point where the trajectory begins a descent from the cruise flight level.			
26	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.			
25	Level-off	The point in climb where an intermediate level-off occurs (i.e., not including top-of climb) or in descent where a level segment begins.			
24	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.			
23	Transition altitude/level	Where the trajectory reaches the transition altitude (in climb) or transition level (in descent).			
22	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.			
21	Reserved				
20	Reserved				
19	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics necessary to describe the vertical trajectory.			
18	Aircraft	Indicates that the point corresponds to the projection of the			
17	projection Non-flyable	airplane's present position onto the current flight plan leg. Indicates that the trajectory from the previous point to this one is unflyable.			
16	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.			
15	Runway	Indicates that the point corresponds to a runway.			
14	Start of descent	The point where the trajectory begins a descent from intermediate level segments.			
13	RTA point	The first point with a Required Time of Arrival (RTA) constraint.			
12	Speed is Mach	Point speed is Calibrated Air Speed (CAS) if zero. Mach if one.			
11	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.			
10	Current or next leg	Indicates that the segment belongs at least partially to the active or the next leg.			
9	Reserved				

5.0 STANDARD INTERFACES

3563 5.2.12.2.2 Ethernet Trajectory Intent File Transfer Format 3564 The format of the trajectory data uses blocks containing a header, body, and footer. 3565 All elements shall be coded in big endian mode. 3566

Table 5-4 Ethernet Trajectory Intent File Transfer Format

HEADER				
	Data	Туре	Size (bits)	Comments
Start_of_block			8	Start of application block. Code hx53
Flight Plan typ		Integer	8	(Note 1)
, ,_	uence_number	Integer	8	From 1 to 255 (0 reserved for special use) (Note 9)
Header_size		Integer	8	Size in byte of the header including pad
Trajectory_file	_size	Integer	32	Size in byte of the file (does not include header nor footer)
Block_number		Integer	8	Number of application block starting with "0"
Number_of_bl	ocks	Integer	8	Total number of application blocks for the transmitted file
Pad			16	hx0000
Block_size		Integer	32	Size in byte of application block including header and footer
Transition_altit	tude	Signed Integer	32	Initial climb transition altitude in feet (Note 6)
Climb_baro_se	etting	Float Signed	32	Climb baro setting in hPa. (Note 6)
Transition_FL	Transition_FL		32	Descent transition FL in feet (converted by FL x 100) (Note 6)
Descent_baro	_setting	Float	32	Descent baro setting in hPa (Note 6)
	Month	Integer	8	Initial Trajectory TimeTimestamp which effectively represents the time at which this trajectory was first
Trajectory	Day	Integer	8	available for output on the Intent Bus. The Timestamp may be used to tell if successive transmissions of the
Timestamp	Year	Integer	16	trajectory are the same. <u>Timestamp which effectively</u> represents the time at which this trajectory was first available for output on the Intent Bus. The Timestamp
	Time (seconds)	Integer	32	may be used to tell if successive transmissions of the trajectory are the same.
Climb Speed S	Schedule CAS	Float	32	Climb Speed Schedule CAS in knots (Note 6)
Climb Speed S	Schedule MACH	Float	32	Climb Speed Schedule MACH (Note 6)
Cruise Speed Schedule CAS		Float	32	Cruise Speed Schedule CAS in knots (Note 6)
Cruise Speed Schedule MACH		Float	32	Cruise Speed Schedule MACH (Note 6)
Descent Speed Schedule CAS		Float	32	Descent Speed Schedule CAS in knots (Note 6)
Descent Spee	d Schedule MACH	Float	32	Descent Speed Schedule MACH (Note 6)

5.0 STANDARD INTERFACES

BODY			
Data	Туре	Size (bits)	Comments
Geometry	Integer	3	Always included. (Note 2)
Data Type	Integer	5	Always included. (Note 3)
Characteristics	Integer	24	Always included. (Note 4)
Path RNP	Float	32	Always included. (Note 6) RNP in NM.
Point Latitude	Float	32	Always included. (Note 6) Latitude in degrees.
Point Longitude	Float	32	Always included. (Note 6) Longitude in degrees.
Turn Radius	Float	32	Only included if geometry is arc to point. (Note 6) Radius in NM.
Turn Center Latitude	Float	32	Only included if geometry is arc to point. (Note 6) Latitude in degrees.
Turn Center Longitude	Float	32	Only included if geometry is arc to point. (Note 6) Longitude in degrees
Point Altitude	Signed Integer	32	Always included. See bit 1 and 2 of characteristics (Note 4, Note 5) for altitude reference. (Note 6) Altitude in feet.
Point ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC)
Point Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Mach if value between 0-10 CAS in kt if value greater than 10
Point Wind Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Wind Speed in kt. Wind is the wind used in trajectory computation
Point Wind Direction	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Wind Direction in degrees. Wind is the wind used in trajectory computation
Point Name	String	m * 32	Only included as specified in Data Type Table. (Note 3, Note 6, Note 7)
Ref Latitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Latitude in degrees.
Ref Longitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Longitude in degrees.
Altitude Constraint, Lower Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.

5.0 STANDARD INTERFACES

Attitude Constraint, Upper Bound Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 6) Earliest ETA Integer 32 Only included as specified in Data Type Table. (Note 3, Note 6) Latest ETA Integer 32 Only included as specified in Data Type Table. (Note 3, Note 6) Latest ETA Integer 32 Only included as specified in Data Type Table. (Note 3, Note 6) Data Type Extension Integer 32 Only included as specified in Data Type Table. (Note 3, Note 6) Point Distance to Destination Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Point Fuel Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Point Fuel Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 8? Point Fuel Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Point Path Altitude Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Speed Constraint Type Integer 32 Ono			1	
Earliest ETA Integer 32 Only included as specified in Data Type Table. Latest ETA Integer 32 Only included as specified in Data Type Table. Latest ETA Integer 32 Only included as specified in Data Type Table. Data Type Extension Integer 32 Only included as specified in Data Type Table. Point Distance to Destination Float 32 Only included as specified in Data Type Table. Point Distance to Destination Float 32 Only included as specified in Data Type Table. Point Fuel Float 32 Only included as specified in Data Type Table. Point Distance to Destination Float 32 Only included as specified in Data Type Table. Point Temperature Float 32 Only included as specified in Data Type Table. Point Path Altitude Signed Only included as specified in Data Type Table. Point Path Speed Float 32 Only included as specified in Data Type Table. Speed Constraint Type Integer 1 AT or BELOW 2 Speed Constraint Value Integer 24 Only included as specified in Data Type Table. Only included as specified in Data Type Table.<	Altitude Constraint, Upper Bound		32	
Latest ETAInteger32Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).Data Type ExtensionInteger32Only included as specified in Data Type Table. (Note 3, Note 8)Point Distance to DestinationFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Distance in NMPoint FuelFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Fuel in IbsPoint TemperatureFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in "CPoint Path AltitudeSigned IntegerOnly included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in "CPoint Path SpeedFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in "CPoint Path SpeedFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Altitude as specified in Data Type Table. (Note 3, Note 8) Note 6? Altitude as specified in Data Type Table. (Note 3, Note 8) Note 6? Altitude as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach it value between 0-10 CAS in kit if value greater than 10Speed Constraint TypeInteger81 = AT or BELOW 2 = AT 3 = AT or ABOVESpeed Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Note 8) Speed in ktRTA Constraint TypeInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint Value </td <td>Earliest ETA</td> <td>Integer</td> <td>32</td> <td>Only included as specified in Data Type Table. (Note 3, Note 6)</td>	Earliest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6)
Data Type Extension Integer 32 (Note 3, Note 8) A Point Distance to Destination Float 32 (Note 3, Note 8) Note 6? Distance in NM Point Fuel Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Distance in NM Point Fuel Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Fuel in Ibs Point Temperature Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in *C Point Path Altitude Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Attitude in feet. Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Attitude in feet. Speed Constraint Type Integer 8 2 AT Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA Constraint Type Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) <	Latest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6)
Point Distance to Destination Float 32 (Note 3, Note 8) Note 6? Distance in NM Point Fuel Float 32 (Note 3, Note 8) Note 6? Fuel in Ibs Point Temperature Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in *C Point Path Altitude Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in *C Point Path Altitude Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Speed Constraint Type Integer 8 0 = NONE 1 = AT or BELOW 2 = AT 3 = AT or ABOVE Only included as specified in Data Type Table. (Note 3, Note 8) Speed Constraint Value Integer 24 RTA Constraint Type Integer 8 0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, N	Data Type Extension	Integer	32	(Note 3, Note 8)
Point FuelFloat32(Note 3, Note 8) Note 6? Fuel in IbsPoint TemperatureFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in "CPoint Path AltitudeSigned Integer32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in "CPoint Path AltitudeSigned Integer32Only included as specified in Data Type Table. (Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6? Altitude in feet.Point Path SpeedFloat32Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value between 0-10 CAS in kt if value greater than 10Speed Constraint TypeInteger80 = NONE 1 = AT or BELOW 2 = AT 3 = AT or ABOVESpeed Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value greater than 10RTA Constraint TypeInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC).FOOTERDataTypeSize (bits)CommentsEnd of block8End of application block. Code hx45	Point Distance to Destination	Float	32	(Note 3, Note 8) Note 6?
Point Temperature Float 32 (Note 3, Note 8) Note 6? Temperature in *C Point Path Altitude Signed Integer 32 Only included as specified in Data Type Table. (Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6? Altitude in feet. Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value between 0-10 CAS in kt if value greater than 10 Speed Constraint Type Integer 8 1 = AT or BELOW 2 = AT 3 = AT or ABOVE Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value greater than 10 Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA Constraint Type Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) FOOTER Data Type Size (bits) Comments Bata Type Size (bits) End of application block. Code hx45	Point Fuel	Float	32	(Note 3, Note 8) Note 6?
Point Path Altitude Signed Integer 32 (Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6? Altitude in feet. Point Path Speed Float 32 Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value between 0-10 CAS in kt if value greater than 10 0 Speed Constraint Type Integer 8 1 = AT or BELOW 2 = AT 3 = AT or ABOVE Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt RTA Constraint Type Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt RTA Constraint Type Integer 8 0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC). FOOTER Data Type Size (bits) Comments End of block 8 End of application block. Code hx45	Point Temperature	Float	32	(Note 3, Note 8) Note 6? Temperature in °C
Point Path SpeedFloat32(Note 3, Note 8) Note 6. Mach if value between 0-10 CAS in kt if value greater than 10Speed Constraint TypeInteger80 = NONE 1 = AT or BELOW 2 = AT 3 = AT or ABOVESpeed Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint TypeInteger240 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or ABOVERTA Constraint TypeInteger80 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTERRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC).FOOTERDataTypeSize (bits)DataTypeSize (bits)CommentsEnd of block8End of application block. Code hx45	Point Path Altitude		32	(Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6?
Speed Constraint TypeInteger81 = AT or BELOW 2 = AT 3 = AT or ABOVESpeed Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) Speed in ktRTA Constraint TypeInteger24On NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTERRTA Constraint ValueInteger80 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTERRTA Constraint ValueInteger24Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC).FOOTERSize (bits)CommentsDataTypeSize (bits)CommentsEnd of block8End of application block. Code hx45	Point Path Speed	Float	32	(Note 3, Note 8) Note 6. Mach if value between 0-10
Speed Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt RTA Constraint Type Integer 8 0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER RTA Constraint Value Integer 24 0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC). FOOTER Size (bits) Comments End of block 8 End of application block. Code hx45	Speed Constraint Type	Integer	8	1 = AT or BELOW 2 = AT
RTA Constraint Type Integer 8 1 = AT or BEFORE 2 = AT 3 = AT or AFTER RTA Constraint Value Integer 24 Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC). FOOTER	Speed Constraint Value	Integer	24	Only included as specified in Data Type Table. (Note 3, Note 8)
RTA Constraint Value Integer 24 (Note 3, Note 8) RTA in seconds (UTC). FOOTER Data Type Size (bits) Comments End of block 8 End of application block. Code hx45	RTA Constraint Type	Integer	8	1 = AT or BEFORE 2 = AT
Data Type Size (bits) Comments End of block 8 End of application block. Code hx45	RTA Constraint Value	Integer	24	(Note 3, Note 8)
Data I ype (bits) Comments End of block 8 End of application block. Code hx45 Image: Comments	FOOTER			
	Data	Туре		Comments
Pad 24 hx000000	End of block		8	End of application block. Code hx45
	Pad		24	hx000000

3567 3568 Notes:

1. The following coding is used for different flight plan types:

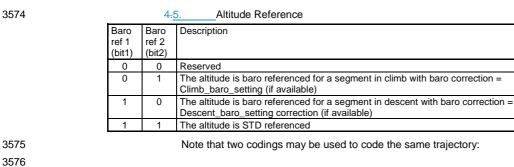
5.0 STANDARD INTERFACES

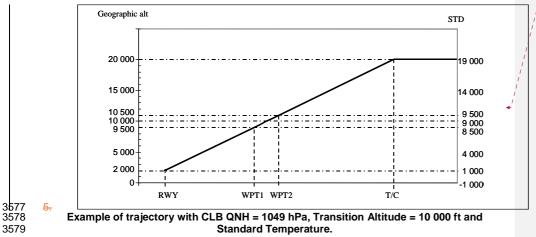
Integer Value	Flight Plan Type
0	Reserved
1	Partial Portion of Active
2	Active
3	Secondary
4	Data Link
5	Modified/Temporary
6 - 255	Spare
1.2	2. Geometry codes are as followed:
Integer Value	Geometry
0	Not Used
1	Start Point 3D
2	Line to point 3D
3	Arc to point 3D
4 - 7	Spare

3569

3570

4 - 7	2.3.	Data Tun	e codes are as	followe		
Data Type Integer Value	Data Includes ETA	Data Includes point speed, wind speed, wind direction	Data Includes point name, ref latitude, ref longitude	Data Includes Iower altitude constraint, upper altitude constraint	Data Includes earliest ETA, latest ETA	Data Includes extension field
0						
1	YES					
2	YES	YES				
3			YES			
4	YES		YES			
5	YES	YES	YES			
6			YES	YES		
7	YES		YES	YES		
8	YES	YES	YES	YES		
9	YES	YES	YES		YES	
10	YES	YES	YES	YES	YES	
11-15				SPARE		
16						YES
17	YES					YES
18	YES	YES				YES
19			YES			YES
20	YES		YES			YES
21	YES	YES	YES			YES
22			YES	YES		YES
23	YES		YES	YES		YES
24	YES	YES	YES	YES		YES
25	YES	YES	YES		YES	YES
26	YES	YES	YES	YES	YES	YES
27-31				SPARE		


5.0 STANDARD INTERFACES


3572

	<u>3.4.</u> Chara	acteristic codes are as follows:
Bits 1-24	Characteristics	Description
1	Start of climb	The point where the trajectory will begin a climb segment following a level (intermediate or cruise) segment.
2	Top of climb	Where the trajectory arrives at the cruise flight level. There will be one top-of-climb point for each cruise flight level (step climbs).
3	Top of descent	The point where the trajectory begins a descent from the cruise flight level.
4	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.
5	Start of descent	A point where the trajectory will begin a descent segment following a level (intermediate or cruise) segment.
6	Runway	Indicates that the point corresponds to a runway.
7	Level-Off Start	A point in climb or descent where a (intermediate) level segment begins
8	Level-Off End	A point in descent where a (intermediate) level segment ends
9	Aircraft projection	Indicates that the point corresponds to the projection of the airplane's present position onto the current flight plan leg.
10	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.
11	Non-flyable	Indicates that the trajectory from the previous point to this one is unflyable.
12	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.
13	Current or next leg	Indicates that the segment belongs at least partially to the active or the next leg.
14	Reserved	
15	Reserved	
16	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics listed that are necessary to describe the vertical trajectory.
17	Baro ref 1	Note 5
18	Baro ref 2	Note 5
19	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.
20	Transition altitude or Transition level	The point where the trajectory reaches the transition altitude (in climb) or transition level (in descent).
21	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.
22	Reserved	
23	Reserved	
24	Reserved	

3573

5.0 STANDARD INTERFACES

Formatted: Caption

5.0 STANDARD INTERFACES

Note: Geographic altitude is true height above the earth (tape measure), with Mean Sea Level as the "0" reference. Geographic altitude is independent of atmospheric pressure or temperature.

		1		Codi	ng with "STD	" only		oding with "S aro" referenc	
	Geo Altitude	Std Altitude (1013 hPa)	ATC Altitude	Altitudes coded in "format"	Baro_ref1	Baro_ref2	Altitudes coded in "format"	Baro_ref1	Baro_ref2
T/C	20 000	19 000	FL 190	19 000	1	1	19 000	1	1
WPT2	10 500	9 500	FL 095	9 500	1	1	9 500	1	1
Trans ALT	10 000	9 000	10 000 ft	9 000	1	1	10 000	0	1
WPT1	9 500	8 500	9 500 ft	8 500	1	1	9 500	0	1
RWY	2 000	1 000	2 000 ft	1 000	1	1	2 000	0	1
	0	-1 000	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 6. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.
- 6-7. Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bits unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).
- 8. Data Type Extension codes are as follows:

Bits 1-32	Parameter Provided (Y = 1, N = 0)
1	Point FuelDistance to Destination
2	Point Fuel
23	Point Temperature
34	Point Path Altitude
45	Point Path Speed
65	Speed Constraint (Type & Value)
76	RTA Constraint (Type & Value)
87-32	Spare
8	Spare
9	Spare
10	Spare
11	Spare

5.0 STANDARD INTERFACES

Bits 1-32	Parameter Provided (Y = 1, N = 0)
12	Spare
13	Spare
14	Spare
15	Spare
16	Spare
17	Spare
18	Spare
19	Spare
20	Spare
21	Spare
22	Spare
23	Spare
24	Spare
25	Spare
26	Spare
27	Spare
28	Spare
29	Spare
30	Spare
31	Spare
32	Spare

3594 9. For the transmission of a single trajectory, this number will remain 3595 unchanged for all application blocks (i.e. this number is attached to 3596 the trajectory file transmitted). This number is incremented when 3597 transmitting a new trajectory (i.e. upon refresh whether the trajectory 3598 has changed or not) and will return to 1 after 255. This will allow the received to ensure that the blocks received correspond to the same 3599 trajectory. It should be noted that, for a single channel, this number 3600 3601 could be identical but the Flight Plan Type different, depending on the 3602 implementation. The code 0 (zero) is reserved for special use. 3603 7.5.2.13 **Reserved Ports for Growth** 3604

Four ARINC 429 output ports should be reserved for growth. These ports should be programmable for high-speed or low-speed operation.

3606 5.3 Discrete Inputs and Outputs

3605

3607

3608

3609

Digital discrete inputs may be provided by discrete program pins or by coded digital configuration inputs, such as a configuration data base or Airplane Personality Module (APM). Discrete program pins are defined in Attachment 2-3.

3610 5.4 FMC/FMC Intersystem Communications

- 3611FMC-to-FMC intersystem communications are not defined in this document. The3612formats and data content should be optimized by the system implementer to support3613system synchronization, including, but not limited to, the following:
- 3614Navigation Cross Check used to monitor independent navigation calculation and3615improve the integrity of the navigation solution.
- 3616Data Entry Transfer used to ensure that data entries and selections are reflected3617in all FMCs.

5.0 STANDARD INTERFACES

3618 3619		Radio Tuning Coordination – used to ensure that each FMC tunes a different set of radio sensors (if possible) to ensure navigation independence.
3620 3621		Status Information – used to synchronize mode of operation such as phase of flight, active flight plan leg, navigation status and other events.
3622 3623		Sensor Data – used to transfer data from some inputs, cross check discretes, confirm sensor faults, etc.
3624 3625		Crossloading of data bases and software - intersystem communications can be utilized to facilitate data loading in a dual FMS installation.
3626	5.5	Ethernet Interface (ARINC 646)
3627 3628 3629 3630		Two ARINC 646 Ethernet interfaces are provided for dual interface capability to peripheral devices such as ARINC 615A data loader, ARINC 744A printer, and ARINC 758 CMU. This should not be confused with ARINC 664 Ethernet operating in a switched network topology (typical).

6.0 CONTROL DISPLAY UNIT INTERFACE

3632 6.0 CONTROL DISPLAY UNIT INTERFACE 3633 7.0 <u>6.1</u> General 3634 The Control Display Unit (CDU) design should be a Multi-Purpose Control and Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A. 3636 COMMENTARY 3637 It is expected that the MCDU installed in this configuration will provide a shared control and display resource used by both the FMC and the data link management unit. This is especially true where ATC data link communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off menu style selection. 3646 C.S Standby Navigation 3647 In order to initialize the MCDU flight plan for standby navigation, the FMC should provide the MCDU units an ordered list defining the current active flight plan legs. Any leg whose type is not compatible with the MCDU flight plan, as described in ARINC 739, should be replaced with a flight plan discontinuity. This initiatization should occur as required to ensure the MCDU has current data at the time of transition to standby navigation. 3652 6.3 Self-Test 3653 The ARINC 739 MCDU may have several annunciator light located on the unit font panel. The purpose of these annunciators is to alert the plot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following: 3665			
And Experiment The Control Display Unit (CDU) design should be a Multi-Purpose Control and Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A. Accomment COMMENTARY Accomment Comment Arian and Control and display resource used by both the FMC data link communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A. Accomment Communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A. Accomment MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off menu style selection. Accomment In order to initialize the MCDU flight plan for standby navigation, the FMC should provide the MCDU with an ordered list defining the current active flight plan legs. Any leg whose type is not compatible with the MCDU light plan, as described in ARINC 739, should be replaced with a flight plan discontinuity. This initialization should occur as required to ensure the MCDU has current data at the time of transition to standby navigation. 6.3 Self-Test Action MCDU Annunciators The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required axisual indication that the display and any status annunciator sare operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces. 6.4 MCDU Annunciators MSG (Message) – illuminates when FMC	3632	6.0 0	CONTROL DISPLAY UNIT INTERFACE
3635 Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A. 3636 COMMENTARY 3637 It is expected that the MCDU installed in this configuration will 3638 provide a shared control and display resource used by both the FMC 3639 and the data link management unit. This is especially true where ATC 3640 data link communications are used. Depending on the chosen 3641 architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A 3642 MCDU one key access to the Communications Management Unit 3643 (CMU) may be required as opposed to the standard log-on/log-off 3644 menu style selection. 3645 6.2 3646 In order to initialize the MCDU flight plan for standby navigation, the FMC should 3650 should occur as required to ensure the MCDU has current active flight plan legs. 3648 Any leg whose type is not compatible with the MCDU flight plan, as described in 3651 ARINC 739, should be replaced with a flight plan discontinuity. This initialization 3656 should occur as required to ensure the MCDU has current data at the time of 3651 transition to standby navigation. 3652 6.3 Self-Test 3653 The MCD	3633	7.0 <u>6</u>	.1_General
3637 It is expected that the MCDU installed in this configuration will 3638 provide a shared control and display resource used by both the FMC 3639 and the data link management unit. This is especially true where ATC 3640 data link communications are used. Depending on the chosen 3641 architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A 3642 MCDU one key access to the Communications Management Unit 3643 (CMU) may be required as opposed to the standard log-on/log-off 3644 menu style selection. 3645 6.2 Standby Navigation 3646 In order to initialize the MCDU flight plan for standby navigation, the FMC should 3647 provide the MCDU with an ordered list defining the current active flight plan legs. 3648 Any leg whose type is not compatible with the MCDU flight plan, as described in 3650 should be replaced with a flight plan discontinuity. This initialization 3651 should be varia a required to ensure the MCDU has current data at the time of 3652 6.3 Self-Test 3653 The MCDU may include a pilot confidence test, initiated by a control on the MCDU, 3654 which will provide a visual indication that the display and any status annunciators			
3638 provide a shared control and display resource used by both the FMC 3639 and the data link management unit. This is especially true where ATC 3640 data link communications are used. Depending on the chosen 3641 architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A 3642 MCDU one key access to the Communications Management Unit 3643 (CMU) may be required as opposed to the standard log-on/log-off 3644 menu style selection. 3645 6.2 Standby Navigation 3646 In order to initialize the MCDU dight plan for standby navigation, the FMC should 3647 provide the MCDU with an ordered list defining the current active flight plan legs. 3648 Any leg whose type is not compatible with the MCDU flight plan, as described in 3650 should occur as required to ensure the MCDU has current data at the time of 3651 transition to standby navigation. 3652 6.3 Self-Test 3653 The MCDU may include a pilot confidence test, initiated by a control on the MCDU, 3654 which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces. 3656 <td>3636</td> <td></td> <td>COMMENTARY</td>	3636		COMMENTARY
3646 In order to initialize the MCDU flight plan for standby navigation, the FMC should 3647 Any leg whose type is not compatible with the MCDU flight plan, as described in 3648 Any leg whose type is not compatible with the MCDU flight plan, as described in 3649 ARINC 739, should be replaced with a flight plan discontinuity. This initialization 3650 should occur as required to ensure the MCDU has current data at the time of 3651 C.3 Self-Test 3653 The MCDU may include a pilot confidence test, initiated by a control on the MCDU, 3654 which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces. 3657 6.4 MCDU Annunciators 3658 The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following: 3663 • MSG (Message) – illuminates when FMC generated messages are displayed in the MCDU scratchpad 3665 • DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode 3666 </td <td>3638 3639 3640 3641 3642 3643</td> <td></td> <td>provide a shared control and display resource used by both the FMC and the data link management unit. This is especially true where ATC data link communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off</td>	3638 3639 3640 3641 3642 3643		provide a shared control and display resource used by both the FMC and the data link management unit. This is especially true where ATC data link communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off
3647 provide the MCDU with an ordered list defining the current active flight plan legs. 3648 Any leg whose type is not compatible with the MCDU flight plan, as described in 3649 ARINC 739, should be replaced with a flight plan discontinuity. This initialization 3650 should occur as required to ensure the MCDU has current data at the time of 3651 transition to standby navigation. 3652 6.3 Self-Test 3653 The MCDU may include a pilot confidence test, initiated by a control on the MCDU, 3654 which will provide a visual indication that the display and any status annunciators 3655 are operating correctly. This test should in no way affect the on-line performance, 3656 navigation and guidance computations, or the FMC interfaces. 3657 6.4 MCDU Annunciators 3658 The ARINC 739 MCDU may have several annunciator lights located on the unit front 3660 required action. Specific annunciator definitions and associated logic is installation 3661 dependent and is not defined in this document; however, typical annunciator usage 3662 MSG (Message) – illuminates when FMC generated messages are 3663 MSG (Message) – illuminates when the current display is not related to 3666 DSPY (Display) – illuminates when a paral	3645	6.2	Standby Navigation
3653The MCDU may include a pilot confidence test, initiated by a control on the MCDU, which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces.3657 6.4 MCDU Annunciators 3658The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following:3663• MSG (Message) – illuminates when FMC generated messages are displayed in the MCDU scratchpad3665• DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode3667• FAIL – illuminates in case of selected FMC failure3668• OFST (Offset) – illuminates when a parallel offset is in use3669• IND (Independent) – illuminates in case of independent dual system operation3671• MENU – illuminates when the FMC is the active subsystem and a non-	3647 3648 3649 3650		provide the MCDU with an ordered list defining the current active flight plan legs. Any leg whose type is not compatible with the MCDU flight plan, as described in ARINC 739, should be replaced with a flight plan discontinuity. This initialization should occur as required to ensure the MCDU has current data at the time of
 which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces. 6.4 MCDU Annunciators The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following: MSG (Message) – illuminates when FMC generated messages are displayed in the MCDU scratchpad DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode FAIL – illuminates in case of selected FMC failure OFST (Offset) – illuminates when a parallel offset is in use IND (Independent) – illuminates in case of independent dual system operation MENU – illuminates when the FMC is the active subsystem and a non- 	3652	6.3	Self-Test
3658The ARINC 739 MCDU may have several annunciator lights located on the unit front3659panel. The purpose of these annunciators is to alert the pilot's attention for possible3660required action. Specific annunciator definitions and associated logic is installation3661dependent and is not defined in this document; however, typical annunciator usage3662may include the following:3663• MSG (Message) – illuminates when FMC generated messages are3664displayed in the MCDU scratchpad3665• DSPY (Display) – illuminates when the current display is not related to3666• FAIL – illuminates in case of selected FMC failure3668• OFST (Offset) – illuminates when a parallel offset is in use3669• IND (Independent) – illuminates in case of independent dual system operation3671• MENU – illuminates when the FMC is the active subsystem and a non-	3654 3655		which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance,
3659 panel. The purpose of these annunciators is to alert the pilot's attention for possible 3660 required action. Specific annunciator definitions and associated logic is installation 3661 dependent and is not defined in this document; however, typical annunciator usage 3662 may include the following: 3663 • MSG (Message) – illuminates when FMC generated messages are 3664 displayed in the MCDU scratchpad 3665 • DSPY (Display) – illuminates when the current display is not related to 3666 • FAIL – illuminates in case of selected FMC failure 3668 • OFST (Offset) – illuminates when a parallel offset is in use 3669 • IND (Independent) – illuminates in case of independent dual system operation 3671 • MENU – illuminates when the FMC is the active subsystem and a non-	3657	6.4	MCDU Annunciators
3664 displayed in the MCDU scratchpad 3665 DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode 3666 FAIL – illuminates in case of selected FMC failure 3668 OFST (Offset) – illuminates when a parallel offset is in use 3669 IND (Independent) – illuminates in case of independent dual system operation 3671 MENU – illuminates when the FMC is the active subsystem and a non-	3659 3660 3661		panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage
3666 the active flight plan leg or the currently operational performance mode 3667 FAIL – illuminates in case of selected FMC failure 3668 OFST (Offset) – illuminates when a parallel offset is in use 3669 IND (Independent) – illuminates in case of independent dual system operation 3671 MENU – illuminates when the FMC is the active subsystem and a non-			
 3668 OFST (Offset) – illuminates when a parallel offset is in use 3669 IND (Independent) – illuminates in case of independent dual system operation 3671 MENU – illuminates when the FMC is the active subsystem and a non- 			the active flight plan leg or the currently operational performance mode
 3669 Solution (Independent) – illuminates in case of independent dual system operation 3671 MENU – illuminates when the FMC is the active subsystem and a non- 			
3670 operation 3671 MENU – illuminates when the FMC is the active subsystem and a non-			
	3671		 MENU – illuminates when the FMC is the active subsystem and a non-

6.0 CONTROL DISPLAY UNIT INTERFACE

3673	•6.5	MCDU Alerting
3674 3675 3676 3677 3678 3679 3680		The MCDU may display a number of messages on the bottom line of the display known as the scratchpad. These messages may be of several types, indicating different priorities or originating conditions. Specific message definitions, classes, and display logic are dependent on overall flight deck display/annunciation design and operational philosophy, and are not specified in this document. The following paragraphs provide a description of typical message classes and logic design considerations.
3681 3682 3683 3684 3685		High priority messages, referred to as Alerting or Type I messages, are typically displayed in response to a significant status change or operational condition of the system. Lower priority messages may be referred to as Advisory, Type II, or Entry Error messages, and usually indicate a condition of lesser importance, or prompt the pilot to enter required data or correct a previous entry through the MCDU.
3686		Considerations for design of MCDU alerting include the following:
3687 3688		 Priority of scratch pad messages over other classes of messages and MCDU scratchpad alpha-numeric data entries
3689 3690		 Relationship of scratchpad messages to EFIS messages or other dedicated annunciators in the pilot's forward field of view
3691 3692		 Message clearing logic. Messages may be cleared by keyboard action, or automatically by a change in system status
3693		 Inhibition of MCDU messages during critical flight phases
3694		Stack operation of multiple messages
3695	•6.6	MCDU Color and Font Usage
3696 3697 3698 3699 3700		The MCDU may utilize variation in display color and character font size to convey additional information to the flight crew. Designers should consider priority of the displayed information and consistency with color usage on other display devices in defining MCDU color usage standards. Character font size may be used to indicate data attributes such as computed versus pilot-entered data.
3701		

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3703 7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE 3704 8.07.1 Introduction 3705 The navigation data base stored in the ARINC 702A Advanced Flight Management 3706 Computer may, together with computed guidance data, be used to support the 3707 operation of a map display on an electronic horizontal situation indicator or other 3708 electronic display in the cockpit. This section of this Characteristic describes 3709 interface standards which will enable any manufacturer's FMC to be used with any manufacturer's electronic display. The term Electronic Flight Instrument (EFI) will be 3710 3711 used to describe such displays generically. 3712 7.2 FMC Outputs to EFI 3713 Two high-speed ARINC 429 data output ports are provided on the FMC for instrumentation supply. All of the map background and position updating (dynamic) 3714 3715 data for two EFIS will be supplied from both of these ports. In an installation 3716 comprising one FMC and two EFIS, the FMC's #1 Instrumentation Output should be 3717 connected to the captain's EFI, and its #2 Instrumentation output to the first officer's EFI. A possible interconnection scheme in an installation comprising two FMCs and 3718 3719 two EFIS is to connect the #1 output of FMC #1 and the #2 output of FMC #2 to the 3720 captain's EFI and the #1 output of the FMC #2 to the #2 output of FMC #1 to the first officer's EFI. 3721 3722 COMMENTARY 3723 The foregoing data output arrangements permit one FMC to supply 3724 independently organized data to each of two EFIS. While the word formats of the individual data elements crossing the interface are not 3725 3726 map scale dependent, the total number of data words needed to 3727 construct the map does vary with the map scale selected. The FMC 3728 can thus accommodate the generation of maps on both sides of the cockpit even when the captain and the first officer have selected 3729 different scales. 3730 3731 FMC Inputs from EFI 7.3 3732 The FMC provides two low-speed ARINC 429 data input ports through which map mode, scale and symbol option selections are transferred from the EFIS to the FMC. 3733 3734 7.4 **EFI Design Features** 3735 The following EFI design features impact the design of the FMC/EFI interface. 3736 7.4.1 Map 3737 The EFI will generate a dynamic map positioned relative to the aircraft. The map 3738 may be oriented with respect to aircraft track or heading. 7.4.2 Plan 3739 3740 The EFI may also generate a north-oriented static map positioned relative to 3741 reference points selected at the FMC Multi-Purpose Control Display Unit (MCDU). 3742 This may be used by the flight crew to verify the correct insertion of flight plan waypoints and other data. 3743

3744	7.4.3	HSI Mode
3745 3746 3747 3748 3749		The FMC/EFI interface may provide outputs of desired track (course), track angle error, drift angle, and lateral and vertical deviations to support the generation of a HSI (rose mode) type of display. If provided, the lateral and vertical deviation outputs should support the use of variable sensitivities (full scale deflection) in accordance with the requirements of the latest version of RTCA DO-283.
3750	7.4.4	Map Scales
3751 3752 3753 3754		EFI map scales for map and plan modes will be a compatible subset of the ARINC 708A Weather Radar, which has selectable ranges, from 5 to 640 nautical miles of look-ahead. Additional low range capability may be required for incorporation of surface map display capability.
3755	7.4.5	Map Projection
3756 3757 3758 3759 3760 3761		The EFI will transform earth coordinate data received from the FMC into flat plane coordinates for the map display. The accuracy of this transformation will be such that the EFI can be used as a primary instrument for guiding the aircraft along geodesic and circular transition flight paths, and provide accurate registration of planar weather radar data on the map display. The map projection method chosen is expected to permit worldwide EFI usage without latitude restrictions.
3762 3763 3764 3765 3766		The EFI will also ensure that vector lines and conics which cross display editing boundaries are correctly terminated to ensure a continuous and accurate presentation on the display. The EFI will translate the map background to account for aircraft motion between map background data block transmissions based on aircraft position and angular data received from the FMC and other systems.
3767	7.4.6	Option Selection
3768 3769 3770 3771		The EFI will provide for symbology option selections, including weather radar data overlay on the map. These will allow the flight crew to declutter the map by selectively removing different categories of data, e.g., Navaids, Airfields, Geographic Reference Points, Waypoint Definition Data, etc.
3772	7.4.7	Symbol Repertoire
3773 3774 3775		Each category of data shipped from the FMC for display on the EFI will call for a distinctive symbol on the display. A list of potential data categories includes, but is not necessarily limited to, the following:
3776		Active flight plan path
3777		Secondary flight plan path
3778		Modified flight plan path
3779		Altitude Intercepts
3780 3781		RTA symbologyWaypoints
3781		 Waypoints Waypoint data (altitude, speed, time)
3783		 Origin and destination airports
3784		FIR boundaries
3785		 Special reference points (e.g., T/C, T/D, S/C, energy circles)
3786		Runway Data

3787		Marker Beacons
3788		Tuned Navaids
3789		 Navaids, including (co-Located VOR and TACAN (VORTAC), VOR,
3790		DME/ TACAN (high altitude and low altitude)
3791		• VOR radials
3792		Airports
3793		Geographic reference points
3794		Non-directional beacons
3795		Navigation data (e.g., sensor positions)
3796		Terrain/obstacle data (MSA, MEA, MORA)
3797		Special use airspace
3798 3799 3800 3801		The data available for display in a particular installation will depend on the navigation data base content of the FMC. The above data categories fall into the following general symbology types, each of which requires different data parameters for definition via the FMC/EFI interface.
3802		Vectors (geodesic lines)
3803		Conics (circular arc lines)
3804		Upright symbols
3805		Rotated symbols
3806		Dynamic symbols
3807		Alpha/numeric data readouts
3808	•7.4.8	EFI Data Conditioning
3809 3810		The EFI will perform any input data filtering needed to produce a smoothly changing map display, and will condition data used to update readouts on the display.
3811	7.4.9	Pointing Device
3812		[Deleted by Supplement 5]
3813	7.4.10) Surface Map Mode
3814		[Deleted by Supplement 5]
3815	7.5	FMC Design Features
3816		The following FMC design features impact the design of the FMC/EFI interface.
3817	7.5.1	Flight Plans
3818 3819 3820 3821 3822 3823 3823		As part of its guidance function, the FMC will have flight plans assembled in its guidance buffers by pilot data entry or data link and selection through the MCDU. Such flight plans will define paths in the sky in two, three and ultimately four dimensions. Accurate representation of aircraft position with respect to the flight plan path is essential when the EFI is used as the primary instrument by which the flight crew controls the aircraft laterally and vertically with respect to a three-dimensional path, and along that path to meet assigned times at waypoints.
3825 3826		Flight plan paths can be presented on the EFI as sequences of lines and conics representing geodesic paths between waypoints and curved transitions between

		7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE
3827 3828 3829 3830 3831 3832 3833		path legs. Circular path legs consisting of DME arcs, RF legs, holding patterns, and procedure turns can also be displayed. The FMC generates the necessary data to define four-dimensional flight plans in its guidance buffers. The guidance algorithms in the FMC calculate the position, speed and time differences between the aircraft state vector and the flight plan, and hence generate the guidance commands to the automatic flight control system (including the auto-throttle) to accomplish the flight plan.
3834 3835		The guidance data can be used to define the vector lines and conics needed to represent the flight plan path and other guidance symbology on the EFI.
3836	7.5.2	Map Display Edit Areas
3837 3838 3839 3840 3841 3842		The FMC should, to the extent of the limitations imposed by the size of the data block (see Section 7.6.2), supply map background data for an area large enough to preclude the appearance of blank screen between transmissions. The EFI will limit the data displayed to that needed for the viewing window. This limit operation will include vector clipping to ensure the correct display of vector data and associated text.
3843	7.5.3	Pointing Device
3844		[Deleted by Supplement 5]
3845	7.6	Interface Design
3846		The design of the FMC/EFI interface is described in the following paragraphs.
3847	7.6.1	General
3848 3849 3850 3851 3852		Map background data and position updating and other dynamic data should be interleaved on the FMC instrumentation output buses. The FMC should specify the data type to be displayed and the associated positioning and rotation data. The EFI will control symbology color, size, brightness, blinking and related parameters, and transform map position data received from the FMC into screen coordinates.
3853 3854 3855 3856 3857 3858		The FMC should extract the information necessary for the map background from its navigation data base and flight plan buffers. Position data transmitted to the EFI should be in latitude and longitude coordinates. The types of data transmitted should respond to mode symbology options and display range selected by the flight crew on the EFI control panel. The order of the data on the bus should be in general accordance with the priority in which it is to be displayed.
3859 3860 3861 3862		The FMC/EFI dynamic data interface should be designed to permit updating of the map background data positions between background data block transmissions without the need for a hand-shaking relationship between the FMC and the EFI symbol generator. FMC/EFI dynamic data is defined in Attachment 4.
3863 3864 3865 3866		The FMC/EFI interface design and map background and dynamic data bus implementation should be such that the EFI can provide a valid map display if map background data transmissions are lost or invalid for periods of up to 10 seconds duration.
3867 3868 3869		The display mechanization should accommodate a worldwide map projection. This may result in the need to provide additional and/or special software to project map data in the vicinity of the earth's poles.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3870 7.6.2 Map Data Updating

3882

3883

3885

3886

3887 3888

3889

3890

3871	The FMC should supply map data to the EFI in alternating 64-word blocks of
3872	background and dynamic data until a complete map background data block has
3873	been transmitted (see Attachment 6, Figure 2). The maximum size of the
3874	background data block should be programmable up to a maximum of 1023 words.
3875	After completion of the map background data transmission, the dynamic data should
3876	continue to be updated at a rate of 20 times per second (nominal) until a new map
3877	background data block is to be transmitted. Map background data should be
3878	updated and transmitted once every three seconds (nominal), except that when a
3879	mode, scale or option change is made on the EFI, the FMC should update and
3880	transmit new map background data within one second (maximum).
3881	COMMENTARY

Dynamic data update at a rate greater than 16 times per second is needed to avoid undesirable visual effects on the display.

3884 7.6.3 Background Data Prioritizing

To ensure that writing time or other internal data processing limitations in the EFI do not result in most wanted map background data not appearing on the display, the FMC should prioritize the information as follows. The EFI should truncate the data, if necessary, in the reverse order of this prioritization. 1. Flight plan data Active flight plan 1.a.

3891 Secondary flight plan a.<u>b.</u> 3892 b.c.Flight plan changes 3893 c.d.Waypoints 3894 d.e. Waypoint data 3895 e.f. Offsets 3896 f.g. Altitude intercepts 3897 g.h. Flight plan events h.i. RTA symbology 3898 3899 i.2. Selected reference points 3900 Runway Data (may be edited out in some flight phases but should 2.3. 3901 not disappear because of truncation of the data stream) 3902 Origin and destination airports <u>3.4</u> 3903 Tuned navaids 4.<u>5</u>. 3904 _Navigation data (may be dynamic rather than background) <u>5.6.</u> 3905 Non-flight plan navaids 6.7.

3906 7.8. General reference points (position ordered)

3907 8.7.6.4 Background Data Editing

An example of the background data editing process is shown in Attachment 6, 3908 3909 Figure 1. The FMC should, as a minimum, transmit data for the displayed area plus 3910 the area which could appear on the display as a result of aircraft translation and 3911 rotation between map background data updates.

3912 3913 3914 3915 3916		Because the density of data needed for terminal operations could saturate the display at the higher map scales and the volume of data within the edit area overload the EFI symbol generator buffers, the FMC should determine the amount of data it supplies to the EFI from an analysis of the map scale and mode selection information it receives from the EFI.
3917 3918 3919		Typically, the high map scales are used in cruise and the low map scales are used for terminal area operations. Therefore, only high altitude chart data need be transferred across the interface for the larger map scales.
3920	7.6.5	Mode Change Response
3921 3922 3923		The FMC should respond to a mode, scale or symbology option selection change received from the EFI such that the desired data transmission occurs within one second maximum.
3924		COMMENTARY
3925 3926		Airlines desire the overall (FMC and EFI) response time of a practical system to be less than two seconds.
3927	7.6.6	Map Translation and Rotation Data
3928 3929		The FMC should provide the following data to the EFI to support map projection and rotation functions:
3930		Map Projection
3931		Map background data
3932		Map reference latitude (plan mode only)
3933		Map reference longitude (plan mode only)
3934		Map mode/scale
3935		Map Position Data
3936		Aircraft present latitude
3937		Aircraft present longitude
3938		Map Rotation
3939		Map Position Data
3940		Track (true)
3941		Track (magnetic)
3942	•7.6.7	Resolution
3943 3944 3945		The resolution of data used to position symbology on the display should be such that a change of binary state of the least significant bit of a position data word produces no visible step movement on the display.
3946	7.6.8	Interface Data Errors
3947 3948		The mechanization of the FMC/EFI interface should minimize the visual effects on the map display of occasional data errors.
3949	7.6.9	FMC-to-EFI Data Transfer Protocol
3950 3951		Because the FMC/EFI interface is dedicated to the transfer of data between the FMC and the EFI symbol generator(s), not all of the formatting and protocol

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3952standards of ARINC Specification 429 will be applied. The following sections3953indicate where these departures from ARINC 429 have been made. Although not3954mentioned hereafter, the electrical and timing standards set forth in ARINC 429 for3955high-speed operation (100 kbps) and the standard broadcast protocol do apply.

3956 7.6.9.1 Data Block Format

The first word of each 64-word data block should be a Start of Transmission word containing octal code 301 in its label field (bits 1 through 8) if the block contains map background data and octal code 303 in this field if the block contains dynamic data. Bits 9 through 13 of each map background data block Start of Transmission word should contain a binary number indicating the position of the block in the sequence of such blocks into which the transmission should contain in bits 20 through 29 a binary count of the total number of usable background data words to be contained in the transmission. (This count should not include Start of Transmission, End of Transmission, or fill-in words.) This field should contain binary zeros in all subsequent background data block Start of Transmission. All background data block Start of Transmission words should contain binary zeros in bits 14 through 19, while bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The Start of Transmission word of each dynamic data block should contain binary zeros in bits 9 through 29 and the control word code defined in Section 7.6.9.2 in bits 30 and 31. Bit 32 should be set to render word parity odd.

The last word of each 64-word map background data block should be an End of Transmission word containing octal code 302 in its label field. Bits 9 through 29 of this word should contain binary zeros. Bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The 62 usable data words of each map background data block should contain the positional, character, and control information used by the EFI to construct the map background. The label codes and word formats defined in Attachment 6 to this document should be used. Bits 30 and 31 should be encoded to indicate word type per Section 7.6.9.2 and bit 32 should be set to render word parity odd. If the final block of the transmission contains less than 62 useful words, it should be padded to this length with fill-in words (binary zeros in bit positions 1 through 32) and terminated with the End of Transmission word at position 64.

Dynamic data blocks should be interleaved with map background data blocks as described in Section 7.6.2. Dynamic data blocks should contain data words labeled and formatted per ARINC Specification 429.

COMMENTARY

The interleaving on the same bus of blocks of data labeled per ARINC 429 standards and blocks of data labeled per other standards requires the EFI to be capable of changing from one set of standards to the other at appropriate instants during the data transmissions. The EFI is expected to make use of the two Start of Transmission words and the background data block End of Transmission word in deciding when to make these changes.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3998 7.6.9.2 Data Type Word Formats

3999	The general word format defined in ARINC Specification 429 should be employed.
4000	Words transmitted by the FMC for which standards are defined in ARINC 429
4001	should employ those standards and their ARINC 429 labels. Formats of symbol
4002	word groups, vector word groups, map reference word groups, and dynamic symbol
4003	words should differ from ARINC 429 standards in that the label field should be used
4004	to encode data type and the sign/status matrix to designate multiple word records
4005	within a data type group as follows:

BI	Т	
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol
'	1	rotation and vector conics)
1	0	Last word of data type group

4006Attachment 6 to this document sets forth the formats of these FMC-specific4007ARINC 429 words.

4008 7.6.10 EFI-to-FMC Data Transfer

4009The data sent from the EFI to the FMC will consist of the map mode, scale and
symbol option selections made by the flight crew at the EFI control panel. These
selections will be encoded into one or more discrete words, as defined in ARINC
40124012Specification 429, Part 2 and in ARINC Characteristic 725: Electronic Flight
Instruments (EFI).

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4015 8.0 COMMUNICATIONS MANAGEMENT UNIT INTERFACE

4016 9.0<u>8.1</u> General

- 4017The Communications Management Unit (CMU) interface is defined in ARINC4018Characteristic 758: Communications Management Unit (CMU). Specific details are4019implementation dependent.
- 4020

9.0 DATA BASE STORAGE CONSIDERATIONS

4021	9.0 DATA BASE STORAGE CONSIDERATIONS				
4022	10.0<u>9</u>.1		Introduction		
4023 4024 4025 4026 4027 4028 4029 4030			The FMC will contain a number of data bases and configuration tables which provide the data and definitions required to support the functions defined in Section 4.0. The data bases are stored in non-volatile memory and may be periodically updated or modified via the data loader. The individual data bases should be separately loadable. Designers should provide significant growth capacity when sizing data base memory storage. Mechanisms should be provided to ensure the integrity of the stored data and that the data cannot be modified by the crew or system.		
4031	9.2	Naviga	ation Data Base		
4032 4033 4034 4035 4036 4037			The navigation data base is stored in non-volatile memory in two parts: a body of active permanent data which is effective until a specified expiration date and a set of data revisions or active data for the next period of effectivity. The effectivity dates for both sets of data are displayed for reference on the system's configuration definition page. Data base updates are to be accomplished at appropriate intervals by loading the next cycle via means of a data base loader.		
4038 4039 4040 4041			The navigation data base contains all current information required for operation in a specified geographic area. The data base should be consistent with the requirements of the latest version of RTCA DO-201A : <i>Standards for Aeronautical Data</i> . It includes may include the following data:		
4042			VOR, ILS, DME, VORTAC, and TACAN navigation aids		
4043			NDBs		
4044			Waypoints		
4045			Airports and runways		
4046			Standard Instrument Departures (SIDs)		
4047			Standard Terminal Arrival Routes (STARs)		
4048			Enroute airways		
4049			Charted holding patterns		
4050			 Approaches (GNSS, ILS, VOR, NDB, LOC, LDA, etc., types) 		
4051			Approach and departure transitions		
4052			Final Approach Segment (FAS) Data Block (for LP/LPV approaches)		
4053			Company route structure		
4054			Terminal gates		
4055			Alternates		
4056			Minimum Safe Altitude (MSA)		
4057			Minimum Enroute IFR Altitude (MEA)		
4058			Minimum Obstruction Clearance Altitude (MOCA) Orid Minimum Off Davids Altitudes (MODAs)		
4059			Grid Minimum Off-Route Altitudes (MORAs) SID (Upper Flight Information Degion (UID) Roundarian		
4060			FIR/Upper Flight Information Region (UIR) Boundaries		
4061			Special Use Airspace		
4062			Effectivity dates		

9.0 DATA BASE STORAGE CONSIDERATIONS

4063 4064		Airline customized dataRNP
4065 4066 4067		The data base is capable of supplying all of the information required for the assembly of a complete flight plan for the selected route via MCDU data entry and selection.
4068	9.3	Airline Modifiable Information (AMI) Data Base
4069 4070 4071		The Airline Modifiable Information data base is capable of defining those items which may be individually selectable by the airline operator. These may include the following:
4072		Performance management options
4073		Airport speed restrictions
4074		AOC data link parameters
4075		Tailorable CDU page formats
4076		Flight test bus definitions
4077 4078		The Airline Modifiable Information may also contain: special operations information, trigger events, special airline specific messages, and/or parameters.
4079	9.4	Performance Data Base
4080 4081 4082 4083 4084 4085		The performance data base will contain the data necessary to allow the FMS to provide the vertical trajectory predictions (Section 4.3.3.2.1), performance calculations (Section 4.3.4), and vertical guidance (Section 4.3.3.2.2) functions. The data will consist of tables, coefficient for polynomials or any other convenient means of representing the data, but will not include any executable code. The data contained in the Performance Data base may include elements of the following:
4086		Aerodynamic Data
4087		Drag polars (clean and high-lift)
4088		 Reynolds number drag correction
4089		 Compressibility drag
4090		 Trim drag (clean and high-lift)
4091		 Windmill drag
4092		 Spoiler/speed brake drag
4093		 Buffet onset mach number/lift coefficients
4094		 Stall speeds (clean and high-lift)
4095		 Bank angle limits
4096		⊕● Propulsion Data
4097 4098		 Data to compute each thrust limit (Takeoff, Max Continuous, Max Cruise)
4099		 Data to compute de-rate and flex take-off rating
4100		o Bleed effects
4101		 Idle thrust setting
4102 4103		 Relationship between thrust, fuel flow, ram drag and thrust setting parameter (EPR or N1)

9.0 DATA BASE STORAGE CONSIDERATIONS

4104		e_Performance Data
4105		Economy climb speed data (all-engine and one engine inoperative)
4106		 Economy cruise speed data (all-engine and one engine inoperative)
4107		 Economy descent speed data (all-engine and one engine
4108		inoperative)
4109		 Drift-down speed data
4110		 Hold speed data
4111		 Maximum endurance speed data
4112		 Long Range Cruise (LRC) speed data
4113		 Maximum angle climb speed data
4114		 Maximum rate of climb speed data
4115		 Flap/slat/gear placard speeds
4116		 Maximum altitude (all engine and one engine inoperative)
4117		 Take-off time, fuel, distance data
4118		 Go-around time, fuel, distance data
4119		 Alternate flight plan time, fuel, distance data
4120		 Optimum altitude/optimum step weight data
4121		 Relationship between fuel weight/C.G.
4122		off/approach data
4123		Data to compute V1, VR, and V2
4124		 Approach speed data
4125		 Climb-out speed data
4126		This is not an all-inclusive list. Some of the data in the list may not be applicable to a
4127		specific airplane/system and some additional data may be necessary in some
4128 4129		applications, particularly as additional capability is added to the system. The format
4129		of the data is not specified in this document, but manufacturers are encouraged to use a standard format that will allow use of the FMS across multiple airplane types.
4131		Data for the Performance data base is developed from data supplied by the airplane
4131		manufacturer, and may include off-line data reduction and modeling before loading
4133		into the FMS. It should be consistent with the data contained in that airplane's
4134		Airplane Flight Manual (AFM) and Flight Crew Operations Manual (FCOM).
4135		The data base should contain sufficient data to allow identification of its part number
4136		and to which airplane model(s) it is applicable. Loading and use of the data in the
4137 4138		FMS should include positive means of verifying that the appropriate data has been
4138		loaded, and that data pertaining to a particular model airplane is not being used on an airplane to which it does not apply.
4140		
4140		A particular data base may contain data for more than one airplane model. In this case, positive means to preclude the wrong data being used should be provided.
4142	9.5	Magnetic Variation Data Base
4143	0.0	-
4143		The magnetic variation data base will support the determination of magnetic variation for any Lat/Long, Navaid, Waypoint, Airport, etc. The format of the data
4145		stored in this data base is a manufacturer option, but should be flexible to
4146		accommodate periodic update of the magnetic variation data reference.

9.0 DATA BASE STORAGE CONSIDERATIONS

COMMENTARY

4147		COMMENTARY
4148 4149 4150 4151 4152 4153		The use of current MagVar throughout the flight deck is desired to minimize confusion. However, for those aircraft configurations which cannot be updated, system designers should give consideration to providing a means to harmonize MagVar tables with other aircraft equipment, such as the inertial reference system, to provide a consistent display of magnetic bearings in the flight deck.
4154	9.6	Terrain and Obstacle Data
4155		[Deleted by Supplement 5]
4156	9.7	Airport Surface Map Data
4157		[Deleted by Supplement 5]
4158	9.8	Configuration Data Base
4159 4160		The configuration data base defines parameters specific to an individual system application or installation.
4161		COMMENTARY
4162 4163		These items are type certification driven. Changes to these items will require re-certification.
4164		These items may include the following:
4165		Tables containing ATS data link parameters
4166		 Transport and network protocols
4167		FMS configuration
4168		Available functional options
4169		Interface variations
4170		 CMU specific configuration variations
4171		 Optional maintenance configurations
4172		Weight variants definitions
4173		
4174		

ARINC CHARACTERISTIC 702A - Page 131 **10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS** 4175 **10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS** 4176 **11.010.1 General Discussion** 4177 Since the FMC may be the primary means of navigation on some aircraft, the 4178 utmost attention should be paid to the need for reliability and maintainability in all 4179 phases of system design, production, and installation. 4180 COMMENTARY 4181 It is also important to remember that all aspects of the testing program (BITE, ramp, and shop testing) contribute to the reliability 4182 4183 and profitable operation of a system by the end users. The ability of 4184 the program to identify faults, and facilitate their repair, will affect 4185 maintainability and overall reliability. Attention to a close relationship between aircraft faults and shop testing will help in reducing the 4186 4187 number of unscheduled removals. 4188 10.2 Fault Detection and Reporting 4189 11.110.2.1 General 4190 The FMC should support at least one of the following Built-In Test Equipment (BITE) 4191 capabilities defined by the AEEC: 4192 ARINC Report 624: Design Guidance for Onboard Maintenance System 4193 ARINC Report 604: Guidance for Design and Use of Built-In Test 4194 Equipment 4195 MCDU maintenance pages should contain a fault log formatted in accordance with 4196 ARINC Report 624 or ARINC 604. This maintenance log should be able to be printed on the cockpit printer via selection on the MCDU. 4197 4198 COMMENTARY 4199 The option used should be compatible with the aircraft in which the 4200 FMC will be installed. 4201 BITE in the FMC should be capable of detecting at least 95% of the faults or failures 4202 which can occur within the FMS, and as many faults as possible associated with 4203 other interfaces. 4204 Where possible, optional functions present in the FMS that are not activated by the 4205 operator should be excluded from all on-board testing. The intent is to eliminate 4206 unnecessary removals. 4207 BITE should closely relate to bench testing. Error modes encountered on the aircraft 4208 should be reproducible in the shop. Error messages recorded by BITE should assist 4209 bench testing 4210 No failure occurring in the BITE subsystem should interfere with the normal 4211 operation of the FMC. 4212 10.2.2 Self-Monitoring 4213 The self-contained fault detection should incorporate nonvolatile memory and logic to identify true hardware faults based on the historical trends. This includes a flight 4214 4215 hour monitor as well as air-ground logic to monitor installed time on the aircraft.

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

	10.0 BOILTFIN TEST AND MAINTENANCE PROVISIONS
4217	10.2.3 Debugging Tools
4218 4219 4220 4221 4222 4223 4224 4225 4226	FMC complexity is such that it may sometimes exhibit operational anomalies for which the root cause(s) are difficult to identify. To provide for quick in-service observation/evaluation of the FMC software anomalies, the FMC should provide password accessible MCDU pages for BITE, view latched fail code(s), memory contents, etc. This feature would be usable by supplier/operator engineers as a debugging tool. Access to these pages should be categorized and leveled for line maintenance or engineering use, as appropriate. This should be a certified configuration so as to allow engineering evaluations in-flight during revenue operations of the system.
4227	10.2.4 Failure Rate Monitor
4228 4229	Reasonable failure rate thresholds for some significant faults should be incorporated such that the FMC would optionally set a flag when these thresholds are exceeded.
4230	COMMENTARY
4231 4232 4233 4234 4235 4236	Some hardware faults that would be reset during a ground check or power interruption may not be repeated immediately. This condition may allow the unit to remain on board the aircraft. A threshold exceedance monitor would detect and set the flag when one of these transient faults exceeds an acceptable rate of occurrence. Some airlines may choose to deactivate such a monitor.
4237	10.2.5 Fault Messaging
4238 4239 4240 4241 4242	The FMC will have a go/no-go light or indicator indicating overall unit performance ability. BITE fault messages (MCDU display, code lights or otherwise) will be as descriptive as possible (English language fault descriptions). When an external or internal fault occurs, the FMC will alert maintenance personnel to the status of the specific system components, either as a displayed list, or on request.
4243 4244 4245	System faults should be classified based on their effect on the system as debilitating or non-debilitating. Fault displays should also indicate the most probable correction of the problem.
4246 4247 4248 4249 4250	A system debilitating failure is any non-recoverable failure which prohibits the FMC from performing any basic required function: navigation, performance computations, flight planning, etc. Cockpit and/or LRU failure annunciation is provided for a system debilitating failure. A system debilitating failure will be logged in BITE memory. If recoverable, crew action may be necessary.
4251 4252 4253 4254 4255	A non-system-debilitating failure is any BITE-detected failure which is auto- recoverable within specified/acceptable operational limitations (of short duration and requiring no crew action for recovery) and which has no adverse impact on the required functions of the FMC. A non-system-debilitating failure will be logged in BITE memory, but need not be cockpit and/or LRU annunciated.
4256	10.3 Ramp Maintenance
4257	11.210.3.1 Return to Service Testing
4258 4259	When an FMC is installed on an air transport aircraft, some form of end to end testing should be available for two primary reasons:

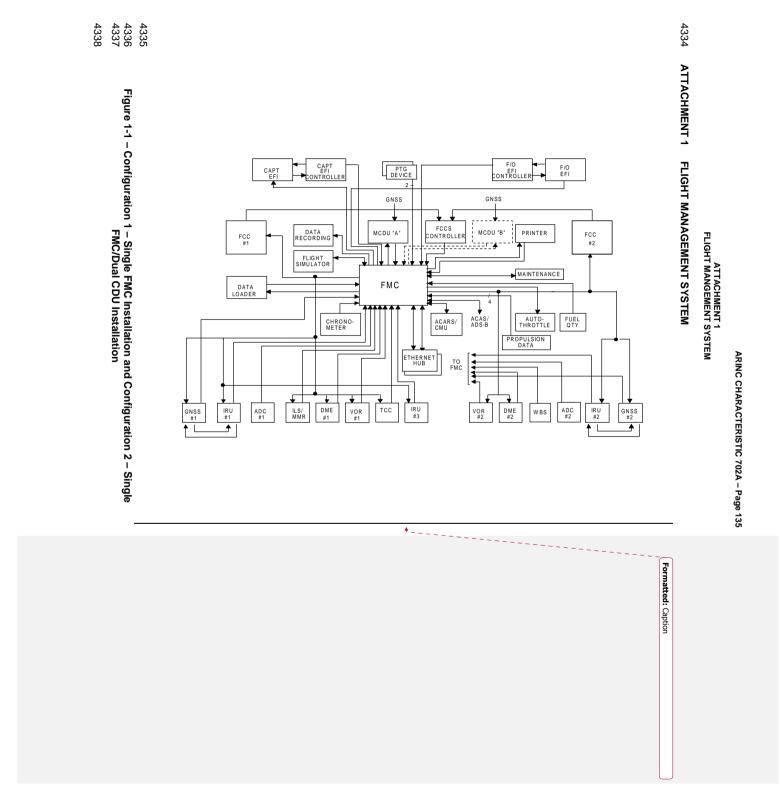
10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4260 4261	 To provide an operational verification of the system function prior to return to service.
4262 4263	 To reduce unnecessary removals of the FMC when the fault was actually in another part of the system.
4264 4265 4266 4267 4268 4269	As an end-to-end test, the procedure should verify integrity of the LRU as well as interfaces with other systems. This maintenance test will provide test values on the digital outputs with the appropriate status matrix code for the test condition as defined in ARINC Specification 429. This test can also exercise internal monitoring and diagnostic routines and provide test formats on the MCDU and on a multifunction display.
4270	COMMENTARY
4271 4272 4273 4274	The airlines prefer test results to indicate the probable cause of failure. Emphasis on end to end system testing will lead to a desirable increase in the MTBUR, especially for removals that were not related to LRU faults.
4275 4276 4277 4278 4279	Means should be provided for initiating this maintenance test either through an externally supplied discrete input or an MCDU prompt. The FMC may also have the capability, via a switch on the front of the FMC, for initiating the maintenance test. If this switch is provided, an indicator should also be mounted on the FMC front panel to show the result of the test.
4280	10.3.2 Programmable Data Bus Interface
4281 4282 4283 4284	The system should provide output data to be recorded for analysis of system performance, including in-service operation. A list of available parameters, scaling, and label assignments should be determined by the manufacturer and made available for selection by the aircraft operator as required.
4285	10.3.3 Data Loading
4286 4287 4288 4289 4290 4291 4292	It is expected that operational software (manufacturer and airline controlled software or tables) and data bases (e.g., navigation data, performance data) will be on-board loadable. The FMC should accept this data from a data loader in accordance with ARINC 615 or ARINC 615A. The standard interface from the data loader to the FMC is high-speed ARINC 429. The return interface to the data loader is low-speed ARINC 429. The FMC should also support high-speed data loading via Ethernet interface defined in ARINC 615A.
4293	COMMENTARY
4294 4295	It is recognized that some minimal level of boot software must be non-loadable to provide the basic loading interface.
4296 4297 4298	The FMC should provide compatibility testing to ensure that loadable software and data are compatible with the FMC hardware configuration. Mechanisms should be provided to ensure the integrity of the loaded data.
4299	10.3.4 Cross Loadable Software
4300 4301	All loadable software and data bases should be selectively cross loadable between two FMCs in a dual installation via the intersystem bus.

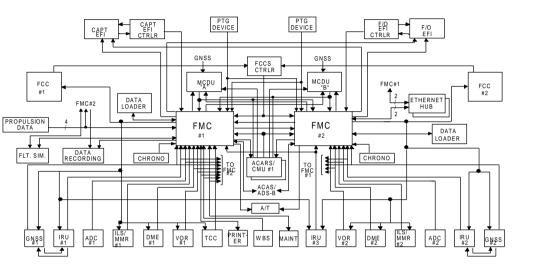
10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

COMMENTARY

4303 4304 4305 4306		The objective of the cross-loading capability is to reduce loading times. Since mixed cases of cross loadable and non-cross loadable software present many problems, operators prefer that all of the software be cross loadable.
4307	10.3.5 Data	Loading Fault Recovery
4308 4309 4310 4311		In all cases, when loading or cross loading software or data, the procedure must provide a method for recovering from faults. The FMC should be able to abort a software or data base loading process without a major disruption of the system (disruption requiring removal of the FMC from the aircraft).
4312	10.4 Provis	sions for Automatic Test Equipment
1313	11 310 / 1	General

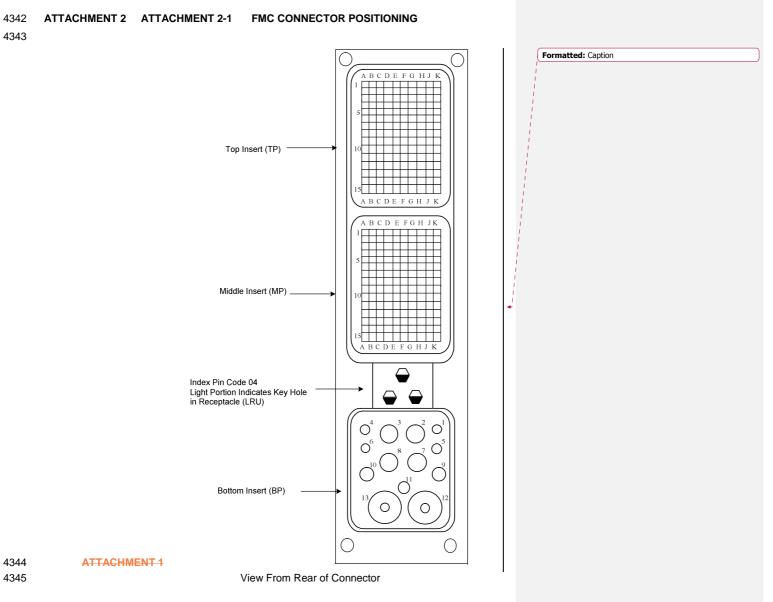

4313 **11.3<u>10.4.1</u> General**

4314	To enable Automatic Test Equipment (ATE) to be used in the bench maintenance,
4315	internal circuit functions not available at the unit service connector and considered
4316	by the equipment manufacturer necessary for automatic test purposes may be
4317	brought to pins on an auxiliary connector of a type selected by the equipment
4318	manufacturer. This connector should be fitted an adequate number of contacts
4319	needed to support the ATE functions. The connector should be provided with a
4320	protective cover suitable to protect these contacts from damage, contamination, etc.
4321	while the unit is installed in the aircraft. The manufacturer should observe ARINC
4322	Specification 600 for unit projections, etc., when choosing the location for this
4323	auxiliary connector.


4324 10.4.2 ATE Testing

4325 4326 4327 4328	The FMC should be ATE testable and should have a test program written using the ATLAS language specified in ARINC Specification 626 : <i>Standard ATLAS Subset for Modular Test.</i> Development of the test program set should consider and apply the quality characteristics set forth in ARINC Specification 625.
4329	COMMENTARY
4330 4331 4332	The airlines desire that the ATLAS test procedure be demonstrated to execute without modification on Automatic Test Systems defined in ARINC Specification 608A: Automatic Test Equipment Standards.

4333



ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

ATTACHMENT 2 FMC CONNECTOR AND INTERWIRING

ATTACHMENT 2-2 STANDARD INTERWIRING

ATTACHMENT 3 ATTACHMENT 2-2 STANDARD INTERWIRING 1 2

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	ŢΑ	TP1A	ARINC 711 VOR #1
ARINC 429 Input	В	TP1B	ARINC 711 VOR #1
Spare	70	TP1C	
	¬ ^	TP1D	ARINC 709 DME #1
ARINC 429 Input			
ARINC 429 Input	Тв	TP1E	ARINC 709 DME #1
Spare		TP1F	
ARINC 429 Input] A	TP1G	ARINC 710 ILS
ARINC 429 Input	В	TP1H	ARINC 710 ILS
Spare		TP1J	
Discrete Input		TP1K	Oleo Strut Switch
ARINC 429 Output	ΓA	TP2A	ARINC 758 CMU
	B	TP2B	ARING 758 CMU
ARINC 429 Output			ARING 756 CIVID
Spare	- ·	TP2C	Torisates D
ARINC 429 Output	٦A	TP2D	Trajectory Bus
ARINC 429 Output	B	TP2E	Trajectory Bus
Spare	-	TP2F	
ARINC 429 Output	А	TP2G	Spare
ARINC 429 Output	ЬB	TP2H	Spare
Spare		TP2J	
Spare		TP2K	
ARINC 429 Input	ΓA	ТРЗА	ARINC 704A IRS
ARINC 429 Input	В	ТРЗВ	or ARINC 705 AHRS #1
Spare	70	TP3C	
	٦ ٨	TP3D	A DINIC 7424/755 CNICC #1
ARINC 429 Input	A		ARINC 743A/755 GNSS #1
ARINC 429 Input	B	TP3E	ARINC 743A/755 GNSS #1
Spare	_	TP3F	
ARINC 429 Input	A	TP3G	ARINC 737 Weight and Balance System
ARINC 429 Input	В	TP3H	ARINC 737 Weight and Balance System
Spare		TP3J	
Discrete Input		ТРЗК	Self Test Switch
Spare		TP4A	
Spare		TP4B	
Spare		TP4C	
ARINC 429 Output	٦A	TP4D	Spare
ARINC 429 Output	B	TP4E	Spare
			Spare
Spare	٦ ٨	TP4F	
ARINC 429 Input	A	TP4G	ARINC 762 TAWS
ARINC 429 Input	B	TP4H	ARINC 762 TAWS
Spare		TP4J	
Discrete Input		ТР4К	Mag/True Input #1
ARINC 429 Input	ΓA	TP5A	EFI Data Source #1
ARINC 429 Input	В	TP5B	EFI Data Source #1
Spare	-	TP5C	
ARINC 429 Input	ΊA	TP5D	ARINC 611 Fuel Quantity Data Source
ARINC 429 Input	B	TP5E	ARING 611 Fuel Quantity Data Source
		TP5E TP5F	ANNING OFF FUEL QUALITIES DATA SOULCE
Spare	٦ .		
ARINC 429 Input	A	TP5G	ARINC 703 TCC
ARINC 429 Input	ЬВ	TP5H	ARINC 703 TCC
Spare		TP5J	

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
Discrete Input		TP5K	MCDU Select Switch 3
•			
Spare		TP6A	
Spare		TP6B	
Spare		TP6C	
ARINC 429 Output	ΓA	TP6D	Spare
ARINC 429 Output	В	TP6E	Spare
Spare	_	TP6F	
ARINC 429 Output	ΓA	TP6G	ARINC 739A Offside MCDU
ARINC 429 Output	В	TP6H	ARINC 739A Offside MCDU
Spare	70	TP6J	ARINO 735A Oliside MODO
Discrete Input		TP6K	Reserved Spare
Discrete input		TT OK	Neserved Opare
ARINC 429 Input] A	TP7A	Propulsion Data
ARINC 429 Input	в	TP7B	Source #3
Spare		TP7C	
ARINC 429 Input	ΓA	TP7D	ARINC 706
ARINC 429 Input	B	TP7E	Air Data System #1
Spare	70	TP7E	
ARINC 429 Input	ΓA	TP7F TP7G	ARINC 701
	B	TP7H	Glare Shield Controller
ARINC 429 Input		TP7H TP7J	Giare Shield Controller
Spare			
Discrete Input		ТР7К	
Spare		TP8A	
Spare		TP8B	
Spare		TP8C	
Spare		TP8D	
Spare		TP8E	
Spare		TP8F	
Spare		TP8G	
		TP8H	
Spare			
Spare		TP8J	
Spare		TP8K	
ARINC 429 Input	ΓA	TP9A	ARINC 739A Onside MCDU
ARINC 429 Input	В	TP9B	ARINC 739A Onside MCDU
Spare		TP9C	
ARINC 429 Input	ΓA	TP9D	ARINC 615 Data Loader 6
ARINC 429 Input	В	TP9E	ARINC 615 Data Loader
Discrete Input	70	TP9F	
ARINC 429 Output	ΓA	TP9G	Data Utilization
ARINC 429 Output	B	TP9G TP9H	Devices
			Devices
Spare		TP9J	
Discrete Input		ТР9К	Man/Autotune Input #1 4
Spare		TP10A	
Spare		TP10B	
Spare		TP10C	
Spare		TP10D	
Spare		TP10E	
		TP10E TP10F	
Spare			
Spare		TP10G	
Spare		TP10H	
Spare		TP10J	
Spare		TP10K	

			1 2	
FUNCTION		FMC PIN	SOURCE/SINKS	NOTES
ARINC 429 Output ARINC 429 Output] A] B	TP11A TP11B	EF/Instruments EF/Instruments	
Spare ARINC 429 Input ARINC 429 Input Spare] A] B	TP11C TP11D TP11E TP11F	ARINC 739A Offside MCD ARINC 739A Offside MCD	-
ARINC 429 Output ARINC 429 Output Spare] A] B	TP11G TP11H TP11J	ARINC 615 Data Loader ARINC 615 Data Loader	6
Discrete Input		TP11K	Man/Autotune Input #2	4
Spare Spare Spare Spare Spare Spare Spare Spare Spare Spare Spare		TP12A TP12B TP12C TP12D TP12E TP12F TP12G TP12H TP12J TP12J TP12K		
ARINC 429 Output ARINC 429 Output Spare] A] B	TP13A TP13B TP13C	Other ARINC 702A FMC Other ARINC 702A FMC	
ARINC 429 Output ARINC 429 Output Spare] A] B	TP13D TP13E TP13F	ARINC 739A Onside MCD ARINC 739A Onside MCD	
ARINC 429 Output ARINC 429 Output Spare	」A 」B	TP13G TP13H TP13J	Test Data Recording Test Data Recording	
Discrete Output		TP13K	Alert Annunicator	
Spare Spare Spare Ethernet Interface #1 Ethernet Interface #1] A] B	TP14A TP14B TP14C TP14D TP14E	615A Data Loader, 758 CI and/or 744A Printer via	MU,
Ethernet Interface #1 Ethernet Interface #1 Ethernet Interface #1 Spare Spare	C D E	TP14F TP14G TP14H TP14J TP14K	Ethernet Hub 615A Data Loader, 758 CI and/or 744A Printer via Ethernet Hub	MU,

UNCTION		FMC PIN	SOURCE/SINKS NOTES
RINC 429 Input	ΓA	TP15A	ARINC 758 CMU #1
ARINC 429 Input	В	TP15B	ARINC 758 CMU #1
Spare		TP15C	
ARINC 429 Input	ΓA	TP15D	ARINC 704A IRS or
ARINC 429 Input	В	TP15E	ARINC 705 AHRS #3
Spare		TP15F	
ARINC 429 Input	ΓA	TP15G	Propulsion Data Source #1
ARINC 429 Input	B	TP15H	Propulsion Data Source #1
Spare	10	TP15J	
Discrete Output		TP15K	
		TH TOR	
ARINC 429 Input	A	MP1A	Propulsion Data
ARINC 429 Input	B	MP1B	Source #4
Spare	_	MP1C	
ARINC 429 Input] A	MP1D	ARINC 711 VOR #2
ARINC 429 Input	ЬB	MP1E	ARINC 711 VOR #2
Spare		MP1F	
ARINC 429 Input	ΓA	MP1G	Other ARINC 702A FMC
ARINC 429 Input	ЬB	MP1H	Other ARINC 702A FMC
Spare		MP1J	
Discrete Input		MP1K	SDI Code Input #1 5
ARINC 429 Output	ΤA	MP2A	Autothrottle System
ARINC 429 Output	в	MP2B	Autothrottle System
Spare	-	MP2C	····· · · · · · · · · · · · · · · · ·
ARINC 429 Output	٦А	MP2D	ARINC 624 Maintenance System
ARINC 429 Output	В	MP2E	ARINC 624 Maintenance System
Spare	10	MP2F	
ARINC 429 Output	ΓA	MP2G	ARINC 740/744A Printer
ARINC 429 Output	B	MP2H	ARINC 740/744A Printer
Spare	10	MP2J	
Discrete Input		MP2K	
ARINC 429 Input	ΓA	MP3A	ARINC 704A IRS or
ARINC 429 Input	В	MP3B	ARINC 704A IKS 01 ARINC 705 AHRS #2
Spare	70	MP3C	
ARINC 429 Input	ΓA	MP3D	ARINC 731 Digital Clock
ARINC 429 Input	B	MP3E	ARING 731 Digital Clock
•		MP3E MP3F	ARTING 731 Digital Clock
Spare	٦ ۸		
ARINC 429 Input	AB	MP3G	ARINC 724B ACARS
ARINC 429 Input	ЪΒ	MP3H	ARINC 724B ACARS
Spare		MP3J	SDI Code Instit #2
Discrete Input		МРЗК	SDI Code Input #2 5
Spare		MP4A	
Spare		MP4B	
Spare	_	MP4C	
ARINC 429 Output	Γ	MP4D	Spare
ARINC 429 Output	В	MP4E	Spare
Spare		MP4F	
ARINC 429 Input	ΓA	MP4G	ASAS Bus
ARINC 429 Input	В	MP4H	ASAS Bus
Spare		MP4J	
Spare		MP4K	

			1 2	
FUNCTION		FMC PIN	SOURCE/SINKS	NOTES
ARINC 429 Input	ΓA	MP5A	Propulsion	
ARINC 429 Input	В	MP5B	Data Source #2	
Spare	-	MP5C		
ARINC 429 Input	A	MP5D	ARINC 706	
ARINC 429 Input	⊿в	MP5E	Air Data System #2	
Spare		MP5F		
ARINC 429 Input	A	MP5G	ARINC 740/744A Printer	
ARINC 429 Input	ЬB	MP5H	ARINC 740/744A Printer	
Spare .		MP5J		
Discrete Input		MP5K	SDI Code Input #3	5
ARINC 429 Input	ŢΑ	MP6A	ARINC 624 Maintenance	System
ARINC 429 Input	В	MP6B	ARINC 624 Maintenance	System
Spare	_	MP6C		
ARINC 429 Input	A	MP6D	ARINC 758 CMU #2	
ARINC 429 Input	ΓB	MP6E	ARINC 758 CMU #2	
Spare	-	MP6F		
ARINC 429 Input	A	MP6G	ARINC 724B ACARS #2	
ARINC 429 Input	ΓB	MP6H	ARINC 724B ACARS #2	
Spare		MP6J		
Discrete Output		MP6K		
ARINC 429 Input	ЛΑ	MP7A	ARINC 743A/755 GNSS	#2
ARINC 429 Input	В	MP7B	ARINC 743A/755 GNSS	#2
Spare	-	MP7C		
ARINC 429 Output	A	MP7D	Data Utilization	
ARINC 429 Output	В	MP7E	Devices	
Spare		MP7F		
ARINC 429 Input] A	MP7G	ARINC 709 DME #2	
ARINC 429 Input	」в	MP7H	ARINC 709 DME #2	
Spare		MP7J		
Discrete Output		MP7K		
ARINC 429 Input	ΓA	MP8A	Spare	
ARINC 429 Input	B	MP8B	Spare	
Spare		MP8C		
ARINC 429 Input	ΓA	MP8D	Spare	
ARINC 429 Input	В	MP8E	Spare	
Spare	_	MP8F		
ARINC 429 Input	A	MP8G	Spare	
ARINC 429 Input	Β	MP8H	Spare	
Spare		MP8J		
Spare		MP8K		
ARINC 429 Output	ΓA	MP9A	ARINC 724B ACARS Da	
ARINC 429 Output	В	MP9B	ARINC 724B ACARS Da	ta Link
Spare		MP9C		
ARINC 429 Input	ΓA	MP9D	EFIS	
ARINC 429 Input	В	MP9E	EFIS	
Discrete Input		MP9F		
ARINC 429 Output] A	MP9G	EFI Instrumentation	
ARINC 429 Output	В	MP9H	EFI Instrumentation	
Spare		MP9J		
Spare		MP9K		

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
Spare		MP10A	
Spare		MP10B	
Spare		MP10C	
Ethernet Interface #2	ΓA	MP10D	615A Data Loader, 758 CMU,
Ethernet Interface #2	В	MP10E	and/or 744A Printer via
			Ethernet Hub
Ethernet Interface #2	٦C	MP10F	615A Data Loader, 758 CMU,
Ethernet Interface #2	D	MP10G	and/or 744A Printer via
Ethernet Interface #2	Ē	MP10H	Ethernet Hub
Spare		MP10J	
Spare		MP10K	
Discrete Input		MP11A	Data Loader Interface 6
Discrete Input		MP11B	Connector
Discrete Input		MP11C	Reserved for Application-
Discrete Input		MP11D	Unique Discrete Inputs
Discrete Input		MP11E	Reserved for Application-
Discrete Input		MP11F	Unique Discrete Inputs
Discrete Input		MP11G	Reserved for Application-
Discrete Input		MP11H	Unique Discrete Inputs
Discrete Input		MP11J	Reserved for Application-
Discrete Input		MP11K	Unique Discrete Inputs
Bibbioto input			
Spare		MP12A	
Spare		MP12B	
Spare		MP12C	
Spare		MP12D	
Spare		MP12E	
Spare		MP12F	
Spare		MP12G	
Spare		MP12H	
Spare		MP12J	
Spare		MP12K	
Discrete Input		MP13A	Reserved for Application-
Discrete Input		MP13B	Unique Discrete Inputs
Discrete Input		MP13C	Reserved for Application-
Discrete Input		MP13D	Unique Discrete Inputs
Discrete Input		MP13E	Reserved for Application-
Discrete Input		MP13F	Unique Discrete Inputs
Discrete Input		MP13G	Reserved for Application-
Discrete Input		MP13H	Unique Discrete Inputs
Discrete Input		MP13J	Reserved for Application-
Discrete Input		MP13K	Unique Discrete Inputs
Snore		MP14A	
Spare		MP14A MP14B	
Spare			
Spare		MP14C	
Spare		MP14D	
Spare		MP14E	
Spare		MP14F	
Spare		MP14G	
Spare		MP14H	
Spare		MP14J	
Spare		MP14K	

ATTACHMENT 2-2 STANDARD INTERWIRING

		1 2
FUNCTION	FMC PIN	SOURCE/SINKS NOTES
Discrete Input	MP15A	Reserved for Application-
Discrete Input	MP15B	Unique Discrete Inputs
Discrete Input	MP15C	Reserved for Application-
Discrete Input	MP15D	Unique Discrete Inputs
Discrete Input	MP15E	Reserved for Application-
Discrete Input	MP15F	Unique Discrete Inputs
Discrete Input	MP15G	Reserved for Application-
Discrete Input	MP15H	Unique Discrete Inputs
Reserved	MP15J	
Reserved	MP15K	
115 Vac Primary Power (Hot) BP1		115 Vac 5 A C/B
Spare	BP2	
Spare	BP3	
Spare	BP4	
Spare	BP5	
Spare	BP6	
115 Vac Primary Power (Cold)	BP7	AC Ground
Chassis Ground	BP8	DC Ground
Spare	BP9	
Spare	BP10	
Spare	BP11	
Spare	BP12	
Spare	BP13	

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

4348 ATTACHMENT 4 ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD 4349 INTERWIRING

4350 ATTACHMENT 21. Standard Interwiring

- 4351The standard interwiring shown in this Attachment is for a single FMC installation comprised4352of one FMC and one CDU. For the sake of completeness, however, wiring is also shown to4353enable the FMC to operate with a second CDU and one for a cross-talk bus between this4354FMC and another one.
- 4355Because of the variety of interwiring characteristics of aircraft installations utilizing the 702A4356FMC, this attachment does not standardize detailed interwiring in the traditional sense.4357Connector pin assignments are standardized with respect to input/output signal types only.4358While nominal signal functions are provided, manufacturers are encouraged to utilize4359programmable I/O design approaches which allow for variations in aircraft interfaces and4360installations.
- 4361 4.2. Shield Grounds

4362

Digital data bus shield grounds should be grounded to aircraft structure at both ends.

- 4363 2.3. Off-Side CDU Enable Discrete
- 4364This discrete tells the FMC which CDU has control of data entry in dual CDU installations in4365which either may perform this function. When an open circuit is sensed by the FMC, its prime4366CDU has control. When the wire is connected to ground by means of a cockpit-located4367switch, or equivalent, the other CDU has control.
- 4368 3.4. FMC Master/Slave and Manual Autotune Discrete
- 4369The Master/Slave discrete may be used in dual FMC installations to tell the FMCs which unit4370should be considered as master for dual system synchronism and redundancy management4371purposes as described in Section 3.5. The manual/autotune discretes provide information to4372the FMCs on VOR/DME turning status. When in autotune mode, these radios accept tuning4373commands from the FMC.
- 4374 4.5. Source/Destination Identifier (SDI) Encoding

4375 Pins MP1K, MP3K, and MP5K are assigned for encoding the location of the FMC in the 4376 aircraft (i.e., system number) per Section 2.1.4 of ARINC Specification 429. If the SDI 4377 function is used, the following encoding scheme should be employed, the pins designated 4378 being either left open circuit or connected, on the aircraft-mounted half of the connector, to 4379 pin MP5K. The wiring of these pins should cause bit numbers 9 and 10 of each digital word 4380 transmitted by the FMC to take on the binary states defined in ARINC Specification 429. When the SDI function is not used, both pins MP1K and MP3K should be left open circuit 4381 4382 such that bit numbers 9 and 10 are always binary zeros.

FMC No.	Connector Pin			
	MP1K	MP3K		
Not Applicable	Open	Open		
1	Open	To MP5K		
2	To MP5K	Open		
3	To MP5K	To MP5K		

The foregoing describes the SDI function performed by a data source. ARINC Specification
 429 also discusses the data identification function to be performed by sinks whose system

ATTACHMENT 2-3 NOTES APPLICBLE TO THE STANDARD INTERWIRING

4385numbers are encoded in this way. In summary, the FMC should recognize and accept data4386words in which bit numbers 9 and 10 are either both zeros or form the code defined by pins4387MP1K and MP3K. All other data may be discarded.

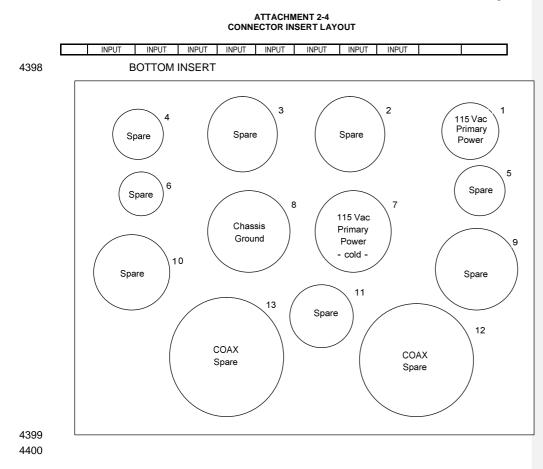
4388 5.6. Data Loader Interface

4389It is expected that the airframe manufacturers will provide, at some convenient location on the4390aircraft, a connection point for an external data loader of the type described in ARINC4391Report 615 and 615A.

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

6.ATTACHMENT 5 ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT 4393 TOP INSERT

4394


	Α	В	С	D	E	F	G	Н	J	К
1	ARINC 42		SPARE	-	29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC
		-		^	D		~	D		INPUT
2	ARINC 429		SPARE		9 OUTPUT			OUTPUT	SPARE	SPARE
	o A	o B	0	o A	o B	SPARE	o A	o B	0	0
	~	Б		~	D	0	^	D		
3	ARINC 42	9 INPUT	SPARE		29 INPUT	SPARE		29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC
	A	D		A	D		A	D		INPUT
4	SPARE	SPARE	SPARE		9 OUTPUT	SPARE		29 INPUT	SPARE	
	0	0	0	o A	o B	0	o A	o B	0	o DISC
				A	Б		A	D		INPUT
5	ARINC 42	9 INPUT	SPARE	-	29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	DISC
	A	D		A	D		~	D		INPUT
6	SPARE	SPARE	SPARE	ARINC 42	9 OUTPUT	SPARE	ARINC 429	9 OUTPUT	SPARE	
	0	0	0	0	o B	0	0	o B	0	0
				A	В		A	в		DISC
7	ARINC 42	9 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	
	0	0	0	0	0	0	0	0	0	0
	A	В		A	В		A	В		DISC
8	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
9	ARINC 42	9 INPUT	SPARE	ARINC 4	29 INPUT		ARINC 42	9 OUTPUT	SPARE	
		0	0		0	0	0		0	0
	A	В		A	В	DISC	A	В		DISC
10	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
11	ARINC 429	OUTPUT	SPARE		29 INPUT	SPARE	ARINC 61	5 OUTPUT	SPARE	
		o B	0		o B	0		o B	0	0
	A	в		A	в		A	в		DISC
12	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
13	ARINC 429	OUTPUT	SPARE	ARINC 42	9 OUTPUT	SPARE	ARINC 42	OUTPUT	SPARE	
	0	0	0	0		0	0	0	0	0
	A	В		A	В		A	В		DISC OUTPUT
14	SPARE	SPARE	SPARE		ETHE	RNET INTERFA	CE #1		SPARE	SPARE
	0	0	0	0	0	0	0	0	0	0
				A	В	С	D	E		
15	ARINC 42	9 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	
	0	0	0	0	0	0	0	0	0	0
	A	В		A	В		A	В		DISC OUTPUT
L							1		1	JUIFUI

4395

MIDDLE INSERT

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

				-	-	-	_			
1		B	C			F	G		J	K
1	ARINC 42	9 INPU I o	SPARE	ARINC 42	29 INPU I o	SPARE	ARINC 4	129 INPUT o	SPARE	SDI CODE INPUT #1
	A	В	0	A	В	0	A	В	0	0
2	ARINC 429	OUTPUT	SPARE	ARINC 429	OUTPUT	SPARE	-	9 OUTPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC INPUT
3	ARINC 42	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	O DISC INPUT
4	SPARE	SPARE	SPARE	ARINC 429	OUTPUT	SPARE		29 INPUT	SPARE	SPARE
	0	0	0	o A	o B	0	o A	o B	0	0
5	ARINC 42	9 INPUT	SPARE	A ARINC 42		SPARE	Л	L29 INPUT	SPARE	
	0	0	0	0	0	0	0	0	0	0
	A	В		А	В		A	В		DISC INPUT
6	ARINC 42	9 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	INPUT
	0	~	0	0	0	0	0	0	0	0
	A	В		A	В		A	В		DISC OUTPUT
7	ARINC 42	9 INPUT	SPARE	ARINC 42	OUTPUT	SPARE	ARINC 4	29 INPUT	SPARE	UUIFUI
	0		0	0	0	0	0	0	0	0
	A	В		A	В		A	В		DISC INPUT
8	ARINC 42	9 INPUT	SPARE	ARINC 429 INPUT		SPARE	ARINC 429 INPUT		SPARE	SPARE
	0	0	0	0		0	0		0	0
	A	В		A	В		А	В		
9										
	ARINC 429		SPARE				-	9 OUTPUT	SPARE	SPARE
	o A	o B	0	o A	o B	o DISC	o A	o B	0	0
						INPUT				
10	SPARE	SPARE	SPARE			RNET INTERF			SPARE	SPARE
	0	0	0	o A	o B	o C	o D	o E	0	0
11										
	0	0	0	0	0	0	0	0	0	0
	DISC INPUT	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC
12	SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE
12	0 SPARE	0	0	0 O	0 0	0	0	0	0	0 OPARE
13										
10	0	0	0	0	0	0	0	0	0	0
	DISC INPUT	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC
14	SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE	INPUT SPARE
14	0	0	0	0	0	0	0	0	0	0
15										
	0	о	о	0	0	о	о	0	о	0
	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	RSVD	RSVD

ATTACHMENT 5

	environmental test	categories
4401		FLIGHT MANAGEMENT SYSTEM CONFIGURATIONS
4402		
4403		
4404		
4405		
4406		
4407		THIS SECTION INTENTIONALLY BLANK
4408		

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

4409 ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
DISTANCE TO GO	001	BCD		Х	Х				
TIME TO GO	002	BCD			0				
PRESENT POSITION LATITUDE	010	BCD		0					
PRESENT POSITION LONGITUDE	011	BCD		0					
GROUND SPEED	012	BCD		0	Х				
SELECTED RUNWAY HEADING	017	BCD		0					
SELECTED N1/EPR (BCD)	021	BCD							
TACAN SELECTED COURSE (BCD)	027	BCD		0					
ILS FREQUENCY	033	BCD		0					
VOR/ILS FREQUENCY #1	034	BCD		0					
VOR/ILS FREQUENCY #2	034	BCD		0					
DME FREQUENCY #1	035	BCD		0					
DME FREQUENCY #2	035	BCD		0					
MLS FREQUENCY/CHANNEL	036	BCD		0					
SET LATITUDE	041	BCD		Х					
SET LONGITUDE	042	BCD		Х					
SET MAGNETIC HEADING	043	BCD		Х					
FAS DATA BLOCK MESSAGE START (see ARINC 743B/755 for details)	045	BLK		0					
FAS DATA BLOCK MESSAGE DATA	046	BLK		0					
ETA (ACTIVE WAYPOINT)	056	BCD			Х				
ACMS INFORMATION	061	BNR		0					
ACMS INFORMATION	062	BNR		0					
ACMS INFORMATION	063	BNR		0					
LONGITUDINAL (ACTIVE WAYPOINT)	066	BCD		0					
CENTER OF GRAVITY (BCD)									
REFERENCE AIRSPEED (VREF)	070	BNR		0	0				
TAKE-OFF CLIMB AIRSPEED (V2)	071	BNR		0	0				
ROTATION SPEED (VR)	072	BNR		0	Х				
CRITICAL ENGINE FAILURE SPEED VI	073	BNR		Х					
ZERO FUEL WEIGHT	074	BNR		0					
GROSS WEIGHT	075	BNR		Х				0	
TARGET AIRSPEED	077	BNR		0					
SELECTED COURSE #1	100	BNR		0					
SELECTED ALTITUDE	102	BNR		0					Х
SELECTED AIRSPEED	103	BNR		0				0	Х
SELECTED VERTICAL SPEED	104	BNR		0					
SELECTED RUNWAY HEADING	105	BNR		0					
SELECTED MACH	106	BNR		0					Х
SELECTED CRUISE ALTITUDE	107	BNR		0					
DESIRED TRACK	114	BNR		0	Х				Х

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
WAYPOINT BEARING	115	BNR		Х	Х				
CROSS TRACK DISTANCE	116	BNR		0	Х				
VERTICAL DEVIATION	117	BNR		0	0				
RANGE TO ALTITUDE	120	BNR			Х				
HORIZONTAL COMMAND SIGNAL	121	BNR		Х					
VERTICAL COMMAND SIGNAL	122	BNR		0					
THROTTLE COMMAND SIGNAL	123	BNR					0	0	
UNIVERSAL COORDINATED TIME (UTC)	125	BCD		Х					
VERTICAL DEVIATION (WIDE)	126	BNR		0					
SELECTED LANDING ALTITUDE	127	BNR		Х					
CURRENT VERTICAL PATH PERF	135	BNR							Х
CURRENT VERTICAL PATH PERF	136	BNR							Х
GREENWICH MEAN TIME (UTC)	150	BNR		Х	Х			0	Х
LOCALIZER BEARING (TRUE)	151	BNR		0					
MAXIMUM ALTITUDE	153	BNR		Х					
RUNWAY HEADING (TRUE)	154	BNR		Х					
ESTIMATED POSITION UNCERTAINTY	167	BNR							Х
CURRENT RNP	171	BNR							Х
DRIFT ANGLE	200	BCD		0					
ENERGY MANAGEMENT (CLEAN)	202	BNR			0				
ENERGY MANAGEMENT SPEED BRAKES	203	BNR			0				
UTILITY AIRSPEED	204	BNR		0	0				
BARO ALTITUDE	204	BNR							
SBAS FAS DATABLOCK WORD #1	205	BLK		0					
(see ARINC 755 for details)									
COMPUTED AIRSPEED	206	BNR							
SBAS FAS DATABLOCK WORD #2	206	BLK		0					
SBAS FAS DATABLOCK WORD #3	207	BLK		0					
TOTAL AIR TEMPERATURE	211	BNR					0	0	
SBAS FAS DATABLOCK WORD #4	211	BLK		0					
ALTITUDE RATE	212	BNR							
STATIC AIR TEMPERATURE	213	BNR					0	0	
SBAS FAS DATABLOCK WORD #5	213	BLK		0					
SBAS FAS DATABLOCK WORD #6	215	BLK		0					
GEOMETRIC VERTICAL RATE	217	BNR							
SBAS FAS DATABLOCK WORD #7	217	BLK		0					
MCDU #1 ADDRESS LABEL	220		Х						
SBAS FAS DATABLOCK WORD #8	220	BLK		0					
MCDU #2 ADDRESS LABEL	221		Х						
SBAS FAS DATABLOCK WORD #9	221	BLK		0					

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	стоку
				GEI		1	Я	THR	TRAJECTORY
MCDU #3 ADDRESS LABEL	222		0						
CDU DATA (PER ARINC 739)	222		X						
PRINTER #1 ADDRESS LABEL	223		~				0		
SBAS FAS DATABLOCK WORD #10	223	BLK		0			0		
PRINTER #2 ADDRESS LABEL	223	DLK		0			0		
SBAS FAS DATABLOCK WORD #11	224	BLK		0			0		
MINIMUM MANEUVERING AIR SPEED	224	BNR		0	0				
SBAS FAS DATABLOCK WORD #12	225	BLK		0	0				
MINIMUM OPERATING FUEL TEMP.	225	BNR		0					
MCDU #4 ADDRESS LABEL	220	DINK		X					
SBAS FAS DATABLOCK WORD #13	22531	BLK		0					
ACTIVE TRAJ INTENT DATA BLOCK	22531	DLK		0					Х
ACMS INFORMATION	232								X
ACMS INFORMATION	233								X
ACMS INFORMATION	234								X
ACMS INFORMATION	235								X
ACMS INFORMATION	230								X
MIN. AIRSPEED FOR FLAP	241	BNR			0				~
EXTENSION									
MODIFIED INTENT DATA BLOCK	242								Х
SBAS FAS DATABLOCK WORD #14	242	BLK		0					
SBAS FAS DATABLOCK WORD #15	244	BLK		0					
MINIMUM AIRSPEED	245	BNR		0					
GENERAL MAX SPEED (VCMAX)	246	BNR		0					
SBAS FAS DATABLOCK WORD #16	246	BLK		0					
CONTROL MINIMUM SPEED (VCMIN)	247	BNR		0					
CONTINUOUS N1 SPEED	250	BNR	0				0		
GO-AROUND N1 LIMIT	253	BNR		Х					
CRUISE N1 LIMIT	254	BNR		Х					
CLIMB N1 LIMIT	255	BNR		Х					
TIME FOR CLIMB	256	BNR		0					
TIME FOR DESCENT	257	BNR		0					
DATE/FLIGHT LEG	260	BCD		Х				0	
FLIGHT NUMBER (BCD)	261	BCD		0					
DOCUMENTARY DATA (PER ARINC 619)	262	BNR				0			
MIN. AIRSPEED FOR FLAP RETRACTION	263	BNR			0				
NDB EFFECTIVITY	263			0					
TIME TO TOUCHDOWN	264	BNR		0	0				
MIN. BUFFET AIRSPEED	265	BNR		0					
MAX. MANEUVER AIRSPEED	267	BNR		0	0				

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

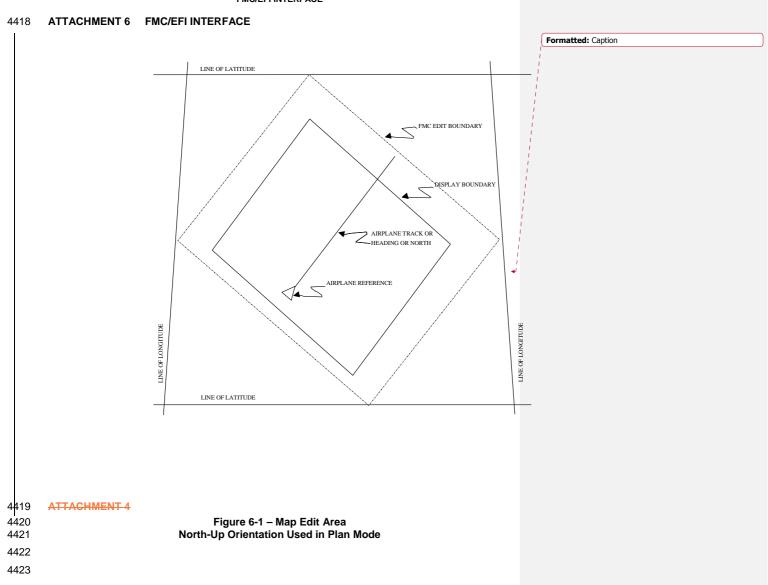
FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
INTENT STATUS	270	DISC							Х
STATUS DISCRETES	270	DISC		Х					
DISCRETE DATA #1	270	DISC			Х				
DISCRETE DATA #2	271	DISC		Х	Х				
DISCRETE DATA #3	272	DISC		0	0				
DISCRETE DATA #6	275	DISC		0	0				
DISCRETE DATA #7	276	DISC		0	0				
APPLICATION DEPENDENT	301				0				
APPLICATION DEPENDENT	302				0				
APPLICATION DEPENDENT	303				0				
PRESENT POSITION LATITUDE	310	BNR		0	Х				Х
PRESENT POSITION LONGITUDE	311	BNR		0	Х				Х
GROUND SPEED	312	BNR		0	Х				Х
TRACK ANGLE TRUE	313	BNR		0	Х				Х
TRUE HEADING	314	BNR							Х
WIND SPEED	315	BNR			Х				Х
WIND DIRECTION (TRUE)	316	BNR			Х				Х
TRACK ANGLE MAGNETIC	317	BNR		0	Х				
MAGNETIC HEADING	320	BNR							Х
DRIFT ANGLE	321	BNR		0	Х				
FLIGHT PATH ANGLE	322	BNR			0				
GEOMETRIC ALTITUDE	323	BNR							
TRACK ANGLE RATE	335	BNR							Х
N1 OR EPR COMMAND	341	BNR		Х			0	0	
N1 BUG DRIVE	342	BNR		Х			0	0	
MAINTENANCE DATA #5	354			0					
ISO ALPHABET #5 MESSAGE	357	ISO-5			0				
FLIGHT INFORMATION	360	BNR		0	0				
N/S VELOCITY	366	BNR							Х
E/W VELOCITY	367	BNR							Х
EQUIPMENT ID	377			Х					

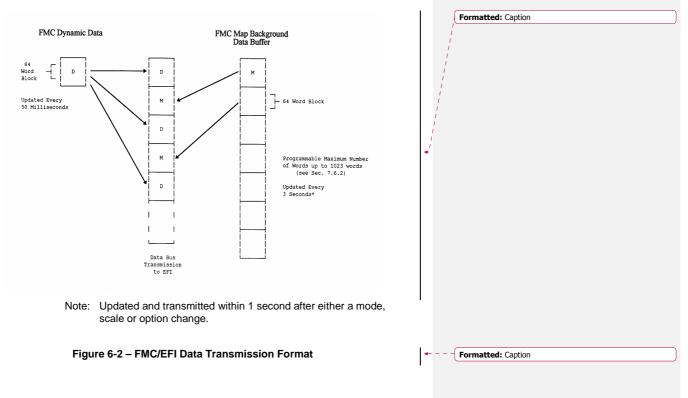
4410 4411

Note:

ATTACHMENT 31.

X = Basic or Baseline


1.2. O = Optional


4412 4413

4415 ATTACHMENT 5 ENVIRONMENTAL TEST CATEGORIES

ENVIRONMENT	RTCA DO-160 SECTION	CATEGORY RTCA DO-160C/D
Temperature and Altitude	4	Category A2/W
Temperature Variation	5	Category A
Humidity	6	Category B
Shock	7	
Vibration	8	Category B'
Explosion	9	Category X
Waterproofness	10	Category X
Hydraulic Fluid	11	Category X
Sand and Dust	12	Category X
- Fungus	13	Category F
- Salt Spray	14	Category X
Magnetic Effects	15	Category Z
Power Input	16	Category A
Voltage Spikes	17	Category A
Audio Frequency		
 Conducted Susceptibility 	18	Category Z
Electromagnetic Compatibility		Category A
- Induced Signal Susceptibility	19	Category Z
- Radio Frequency Susceptibility	20	Category W
- Emission of Radio Frequency Energy	21	Category Z
- Lightning	22	600v/120a

ATTACHMENT 6 FMC/EFI INTERFACE

ATTACHMENT 6 FMC/EFI INTERFACE

ATTACHMENT 6 FMC/EFI INTERFACE Table 6-1 – FMC/EFI Data Type Identification Codes

- - Formatted: Caption

-

ATTACHMENT 6 FMC/EFI INTERFACE

OCTAL	BIT	POS	ITIOI	N					PARAMETER			
LABEL	1	2	3	4	5	6	7	8	PARAMETER			
164	0	1	1	1	0	1	0	0	-Longitude			
364	1	1	1	1	0	1	0	0	DISCRETE WORD - Map Mode			
014	0	0	0	0	1	1	0	0	- Range			
214	1	0	0	0	1	1	0	0	undefined			
114	0	1	0	0	1	1	0	0	undefined			
314	1	1	0	0	1	1	0	0	undefined			
054	0	0	1	0	1	1	0	0	ROTATED SYMBOLS - Runway + Identifier			
254	1	0	1	0	1	1	0	0	 Airport + Runway + Identifier 			
154	0	1	1	0	1	1	0	0	- Marker Beacon			
354	1	1	1	0	1	1	0	0	 Holding Pattern – R 			
034	0	0	0	1	1	1	0	0	 Holding Pattern – L 			
234	1	0	0	1	1	1	0	0	- Procedure Turn – R			
134	0	1	0	1	1	1	0	0	- Procedure Turn – L			
334	1	1	0	1	1	1	0	0	undefined			
074	0	0	1	1	1	1	0	0	undefined			
274	1	0	1	1	1	1	0	0	undefined			
174	0	1	1	1	1	1	0	0	undefined			
374	1	1	1	1	1	1	0	0	undefined			
302	1	1	0	0	0	0	1	0	END OF TRANSMISSION (EOT)			
000	0	0	0	0	0	0	0	0	FILL-IN WORDS			

4432

ATTACHMENT 6 FMC/EFI INTERFACE

4434 Table 6-2 Symbol Word Group

4435 The symbol group is comprised of the following:

1	и	2	6
- 41	H	J	U

Table 6-2A – Latitude Symbol Word ŦĦ`
 32
 31
 30
 29
 28
 27
 26
 25

 P
 SSM
 NS
 Latitude (Degrees)
 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

4437

Table 6-2A-1 – Latitude

Formatted: Caption

_ _

87654321 SYMBOL TYPE

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	
18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	
26	11.25	
27	22.5	
28	45.0	

4438

4439

0 1 North South Table 6-2A-3 - Sign/Status its

BIT 29 VALUE NOTES

Table 6-2A-2 – NS Bit

		•
BIT 31 3		WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

4441							Та	able	- 6-	2B	– L	.or	ngi	tud	le Sy	mb	ol \	Vor	d												
	32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	I
	Ρ	SSM	EW	Longi	tude	(De	gree	s)																SYN	IB	DL 1	ГҮР	Έ			
																															_

4442

Table 6-2B-1 – Longitude

	•	
BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4443

4444

Table 6-2B-2 – EW

BIT 29	VALUE	NOTES
0	East	
1	West	

4445

Table 6-2B-3 – Sign/Status Bits

		-
BIT		WORD
31	30	DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol rotation
		and vector conics)
1	0	Last word of data type group

4446

ATTACHMENT 6 FMC/EFI INTERFACE

4448

48			-	Table) 6-	2C	- A	zir	nut	h S	Syn	nbc	ol M	/or	d (Rot	ate	ed S	Syn	nbo	ols	0	nly)								
	32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	21	
	Р	SSM	±	Azimu	ıth (l	Degr	ees)																	SY	MBC	DL 1	ТΥР	E			1

4449

4450

Table 6-2C-1 – Azimuth

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4451 4452

4453 4454

Table 6-2C-2 – Sign

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2C-3 – Sign/Status Bits

BIT		WORD
31	30	DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol
		rotation and vector
		conics)
1	0	Last word of data type
		group

ATTACHMENT 6 FMC/EFI INTERFACE

4456						Та	ble	6-2	2D -	Sy	mb	ol lo	len	tifi	er \	Wo	rd(s	5)										
	32	31 30	29	28 27	26	25 2	4 23		22	21	20	19 1	8 1	71	6	15	14	1	3 12	11	10	9	8	76	5	4	3 3	2 1
	Ρ	SSM	CHARA	CTER #	3				CHA	RACT	ER#	2				CH/	ARAC	TEF	R #1				SYN	BOL	TYF	ΡE		
			b7				b1		b7					b1		b7					b1							
4457							Та	ble	e 6-2	2D-^	1 –	Sigr	n/St	atu	IS	Bits	6											
							В	IT		WC	DRD)																
							3	1	30	DE	SCI	RIPT	ION	1														
							0		1	Fire	st w	ord o	of da	ata	typ	е												
										gro	up																	
							0		0	Inte	erme	ediat	e po	osit	ion	al,												
										cha	arac	ter v	/ord	s														
							1		1	Co	ntro	l wo	ds	(syı	nbo	bl												
										rota	atior	n and	d ve	cto	r													
										cor	nics))																
							1		0	Las	st w	ord o	of da	ata	typ	е												
										gro	up																	
4458				N	loto.	C	horo	oto	or de	ata i	<u> </u>	0000		<u></u>	r 19	<u>.</u>	45 f	or	nat	wit	h hi	+ 1						
				г	lote:		hara															ιI						
4459						tra	ansn	nπ	eai	irst.	Se	e Se	ectio	on .	20	T At	tac	nm	ent	1.								

ATTACHMENT 6 FMC/EFI INTERFACE

4461

Table 6-2E – Length (Runway Symbols Only)

32	31 3	0 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Ρ	SSM	±	:	Runwa	ay Le	ngth	(Fee	t)											Pad					SY	MB	0L	TYF	Е			
																			(all 0	's)											

4462

4463

Table 6-2E-1 – Runway Length

BIT	VALUE	NOTES
14	1	
15	2	
16	4	
17	8	
18	16	
19	32	
20	64	
21	128	
22	256	
23	512	
24	1024	
25	2048	
26	4096	
27	8192	
28	16384	

4464

4465

Table 6-2E-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2E-3 – Sign/Status Bits

BIT 31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4466 4467

ATTACHMENT 6 FMC/EFI INTERFACE

4469 Table 6-3 Vector Word Group 4470 The Vector Word Group is comprised of the following: 4471 Table 6-3A – Latitude Vector Word Formatted: Caption 87654321 VECTOR TYPE 4472 4473 Table 6-3A-1 – Latitude Formatted: Caption BIT VALUE NOTES 9 0.00008 10 0.00017 0.0003 11 12 0.0006 13 0.0013 14 0.0027 0.0054 15 16 0.0109 17 0.0219 18 0.0439 0.0878 19 20 0.1757 21 0.3515 22 0.7031 23 1.406 2.812 24 25 5.625 26 11.25 22.5 27 45.0 28 4474 Table 6-3A-2 – NS Bit BIT 29 VALUE NOTES 0 North South 1 4475 Table 6-3A-3 – Sign/Status Bits BIT WORD DESCRIPTION <u>31 30</u> 0 1 First word of data type group Intermediate positional, 0 0 character words Control word (symbol 1 1 rotation and vector conics) 1 0 Last word of data type group 4476

ATTACHMENT 6 FMC/EFI INTERFACE

4477

Table 6-3B – Longitude Vector Word

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1
Р	SSM	EW	Longit	Longitude (Degrees) VECTOR TYPE																									

4478

Table 6-3B-1 – Longitude

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4479

Table 6-3B-2 – EW Bit

BIT 29	VALUE	NOTES
0	East	
1	West	

4480

Table 6-3B-3 – Sign/Status Bits

BIT	31 30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

4483 Table 6-3C – Conic Definition Word (Subtended Angle) 32 31 30 29 SSM Subtended Angle (Degrees) 4484 4485

4486

(all 0's) Table 6-3C-1 – Subtended Angle

BIT	VALUE	NOTES
17	0.0439	
18	0.0879	
19	0.1758	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

Table 6-3C-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-3C-3 – Sign/Status Bits

Bľ	Т	
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6 FMC/EFI INTERFACE

4488

Table 6-3D – Conic Definition Word (Radius)

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Р	SSM	Sign	Radiu	s (N	M)													Pad					VE	CT	DR .	TYF	ΡE			
																		(all 0	's)											

4489

Table 6-3D-1 – Radius

BIT	VALUE	NOTES
14	2-7	
15	2 ⁻⁶	
16	2-5	
17	2 ⁻⁴ 2 ⁻³ 2 ⁻²	
18	2 ⁻³	
19	2 ⁻²	
20	2 ⁻¹	
21	2 ⁰	
22	2 ¹	
23	2 ²	
24	2 ³	
25	2 ⁴	
26	2 ⁵	
27	2 ⁶	
28	27	

4490

Table 6-3D-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4491

Table 6-3D-3 – Sign/Status Bits

BIT	•	
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol
		rotation and vector
		conics)
1	0	Last word of data type
		group

ATTACHMENT 6 FMC/EFI INTERFACE

Table 6-3E – Conic Definition Word (Initial Angle) 4494 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Initial Angle (Degrees) Pad VECTOR TYPE 32 31 30 29 SSM Sign Initial Angle (Degrees) (all 0"s) 4495 Table 6-3E-1 – Initial Angle BIT VALUE NOTES 17 0.0439 18 0.0879 19 0.1758 20 0.3515 21 0.7031 22 1.406 23 2.812 24 5.625 25 11.25 26 22.5 27 45.0 28 90.0 4496 Table 6-3E-2 – Sign Bit BIT VALUE NOTES 29 Plus 0 Minus 1 4497 Table 6-3E-3 - Sign/Status Bits

BIT	•	
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control word (symbol
		rotation and vector conics)
1	0	Last word of data type
		group

4498

ATTACHMENT 6 FMC/EFI INTERFACE

4500 Table 6-4 Map References Position Word Group 4501 The Map Reference Position Word Group consists of the following: 4502 Table 6-4A - Latitude (Plan Mode) Word (Label 264) Formatted: Caption 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 32 31 30 29 87654321 Ρ SSM NS Latitude (Degrees) 0 0 1 0 1 1 0 1 4503 Table 6-4A-1 – Latitude VALUE NOTES BIT 9 0.00008 10 0.00017 11 0.0003 12 0.0006 13 0.0013 14 0.0027 15 0.0054 16 0.0109 17 0.0219 0.0439 18 19 0.0878 20 0.1757 21 0.3515 22 0.7031 23 1.406 24 2.812 25 5.625 11.25 26 27 22.50 45.0 28 4504 Table 6-4A-2 - NS Bit BIT VALUE NOTES 29 0 North 1 South 4505 Table 6-4A-3 - Sign/Status Bits BIT 31 30 WORD DESCRIPTION 0 First word of data type 1 group 0 Intermediate positional, 0 character words 1 1 Control word (symbol rotation and vector conics) 1 0 Last word of data type group 4506 4507

ATTACHMENT 6 FMC/EFI INTERFACE

	32 31 30	29	28 27 26		24 23	22 21 20 1	9 18 17 16 15 14	13 12 11 10	
	P SSM	EW	ongitude (De	grees)					0010111
1509					Та	able 6-4B-1	– Longitude		
				BI	Г	VALUE	NOTES		
				9		0.00017			
				10		0.0003			
				11		0.0006			
				12		0.0013			
				13 14		0.0027			
				14		0.0054			
				16		0.0219			
				17		0.0439			
				18		0.0878			
				19		0.1757			
				20		0.3515			
				21		0.7031			
				22		1.406			
				23 24		2.812 5.625			
				24		11.25			
				26		22.5			
				27		45.0			
				28		90.0			
4510						Table 6-4B	-2 – EW Bit		
				Bľ 29		VALUE	NOTES		
				0		East			
				1		West			
4511				•	Table	e 6-4B-3 –	Sign/Status Bits	;	
				BI					
				31			SCRIPTION		
				0	1		of data type group		
				0	0	Intermediat character w	e positional,		
				1	1		rd (symbol rotation	—	
				1	0		of data type group		
4512									
1012									

26

ATTACHMENT 6 FMC/EFI INTERFACE

4	5	1	4

Table 6-4C – Map Mode Discrete Word (Label 364)

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	; 7	' 6	; ;	<i>د</i> ز	4	3	2
Р	SSM	0 (0 0							() ()							00				0	0	1	0	1	1	1	1

4515

Tab	ole 6-4C-1		
NAME	ZERO	ONE	NOTES
MAP			1
VOR			1
ILS			1
PLAN			1
SPARE			1
SPARE			1
EFIS S/T			
NAV AIDS			
GPS			
WAYPOINT DATA			
AIRPORTS			
MAP ORIENT			
VOR/ILS ORIENT			
	NAME MAP VOR ILS PLAN SPARE EFIS S/T NAV AIDS GPS WAYPOINT DATA AIRPORTS MAP ORIENT	MAP VOR ILS PLAN SPARE SPARE EFIS S/T NAV AIDS GPS WAYPOINT DATA AIRPORTS MAP ORIENT	NAMEZEROONEMAPVORILSPLANSPAREEFIS S/TNAV AIDSGPSWAYPOINT DATAAIRPORTSMAP ORIENT

4516

Table 6-4C-2 – Sign/Status Bits

E	BIT		
3	31	30	WORD DESCRIPTION
()	1	First word of data type group
(C	0	Intermediate positional, character words
1	1	1	Control word (symbol rotation and vector conics)
1	1	0	Last word of data type group

Note:

RA ALERT RESET

4517 4518

4519

1. For bits 11 through 16, only 1 bit should be set at a time.

ATTACHMENT 6 FMC/EFI INTERFACE

521		т	able 6-40) – Map Rai	nge Discrete	e Word	(Label 0	14)		
32	2 31 30	29 28 27 26 25 2	4 23 22	2 21 20 19 1	8 17 16 15 1	4 13 12	11 10 9	8765	4 3 2 1	
Р	SSM	Range (Miles)	PAD					0 0 1 1	0 0 0 0	
		Note 1	(all 0's)						-	
22			Та	able 6-4D-1	– Range				* -	Formatted: Caption
			BIT	VALUE	NOTES					
			24	5.0		_				
			25	10.0		_				
			26 27	20.0		_				
			27	40.0 80.0		_				
			28	160.0		_				
			29	100.0						
523			Tab	le 6-4D-2 –	WXR Data					
			BIT	VALUE	NOTES					
			23							
			0							
			1							
524			Table 6	6-4D-3 – Sig	n/Status Bit	s				
			BIT	WORD DES	SCRIPTION					
			31 30							
			0 1	First word o	f data type					
			-	group	51					
			0 0	Intermediat character w						
			1 1	Control wor		_				
					vector conics	5)				
			1 0	Last word o	f data type					
				group						
525		Note:								
526		1. A	ll bits set	to zero repr	esents 320 r	nile rang	ne			
				12 20.0 . opi		e rang				
527										

ATTACHMENT 6 FMC/EFI INTERFACE

4529 Table 6-5 Dynamic Symbol Word Group

4530 The Dynamic Symbol Word Group consists of the following:

4531

Table 6-5A – Altitude	Range Arc V
	Table 6-5A – Altitude

1						Т	at	le	6-	5A	- /	\lti	tuc	le	Ra	nge) (٩rc	; W	lor	d (L	abe	1	57)										+			-(י	For	ma	tted	: Ca	ptic	วท	
3	32	31	30	29	28	27	2	6	25	24	23	22	21	20) 19	91	8	17	16	15	14	1:	3	12	11	10	9	1	8	7	6	5	4	3	2	1	1								
Р	'	SSM	1	±	Altitud	le R	ang	e (1	NM)													Pad						1	1	1	· ۱	1 (0 1	1	0)									
																						(all	0's))																					

Formatted: Caption

4532

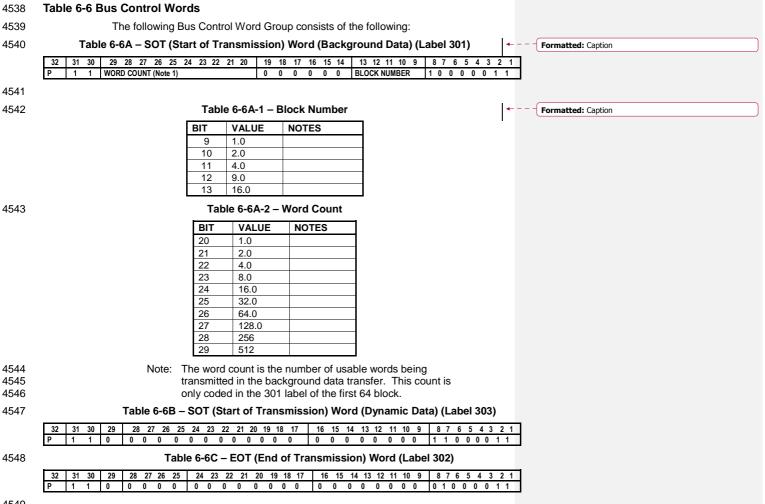
4533

Table 6-5A-1 – Altitude Range

BIT	VALUE	NOTES
14	2-6	
15	2-5	
16	2-4	
17	2 ⁻³	
18	2 ⁻³	
19	2 ⁻¹	
20	2 ⁰	
21	2 ¹	
22	2 ²	
23	2 ³	
24	24	
25	2 ⁵	
26	2 ⁶	
28	27	
28	2 ⁸	

Table 6-5A-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	


4535

4534

Table 6-5A-3 – Sign/Status Bits

BIT 31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

ATTACHMENT 6	
FMC/EFI INTERFACE	

4550	ATTACHMENT 7 FMC/DATALINK INTERFACE
4551 4552	ATTACHMENT 5 Part A Text-Imbedded Error Check for Ground Computer/Airborne Computer Messages
4553 4554	Section 1 End-to-End Error Check
4555 4556 4557 4558 4559 4560	The FMC should provide the facility to perform an "end-to-end" error check on messages received and transmitted via ACARS. This is accomplished by designating the four characters preceding the suffix character (ETX) of the final block of the message as the "text-imbedded" error control field. This field will be used to verify successful transfer of each message to which the end-to-end error check applies.
4561 4562 4563 4564 4565	The allowable character set on which the end-to-end check is performed is defined in Attachment 10 to this Characteristic, entitled "ISO Alphabet No. 5 Subset for Ground Computer/Airborne Computer Message Exchange Via ACARS." In addition, bit patterns of the characters appended to the message by the error checking procedure should be encoded per this ISO subset.
4566 4567	The pad bit for each 7-bit character in the message is set to a binary zero prior to encoding or decoding of the error check.
4568 4569 4570 4571	The error check to be used in the verification of end-to-end message integrity is a Cyclic Redundancy Check (CRC), described in Section 3 of this attachment, "Character-oriented CRC Calculation." The CRC generator polynomial is the same CCITT polynomial introduced into ARINC Specification 429 by Supplement 12.
4572	COMMENTARY
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582	The end-to-end error check provides an assurance that a message composed on the ground has been correctly reconstructed by the FMC (and vice versa for messages originated by the FMC). It supplements the message integrity assurance provisions which are employed at various levels during the transfer of data from originator (e.g., the host airline computer) to the FMC. The normal message integrity checks which, onboard the aircraft, include BCS, word count check, parity check, etc., should continue to be exercised in accordance with the latest version of ARINC Characteristic 724 and this document.
4583	Encoding the CRC at the Message Source
4584 4585 4586	The procedure specifying the application of the CRC by the source on the message text is as follows. (See Section 3 of this attachment, Character-Oriented CRC Calculation, for a detailed description and example of this procedure.)
4587 4588 4589	 The CRC is to be applied to the message text beginning with the first character of the IMI, and ending with the last text character of the message.
4590 4591 4592	 When ordering bits in the message to be CRC'd, the Most Significant Bit (MSB) of the message is the least significant bit of the first character of the IMI. The Least Significant Bit (LSB) of the message is the most

ATTACHMENT 7 FMC/DATALINK INTERFACE

4593 4594		significant bit of the last text character of the message (excluding the ETX character).
		,
4595		After the source has been determined the CRC code from the 16-bit
4596		"remainder," four hexadecimal characters representing these 4-bit bytes
4597		will be encoded as ISO #5 characters for the CRC field. The
4598		hexadecimal characters are determined by assigning 4 bits at a time in
4599		the order specified by the table in Section 2 of this attachment. The
4600		resulting four characters are placed at the end of the original message
4601		text to be transmitted, in the same transmission order as message text
4602		characters; i.e., the LSB of each character is transmitted first.
4603		For character-oriented file transfer protocols, an ETX character follows
4604		the last character of the CRC code.
4605	•	Decoding the CRC at the Message Sink
4606		Upon the receipt of a message which is error-free in accordance with the
4607		link level protocol, the sink will begin verification of the received
4608		message.
4609		 In order to verify the value of the CRC, the sink should first ensure each
4610		7-bit ISO #5 character of the message text has the associated pad bit set
4611		to a binary zero, such that each character can be assumed to be 8 bits in
4612		length. The sink should also ensure any intermediate "end-of-block"
4613		characters have been deleted from the message text.
4614		The sink then operates on the four characters representing the CRC
4615		code to translate them back to the original 16-bit binary value
4616		calculated by the source; i.e., the reverse of the procedure specified
4617		above is performed. Finally, the sink verifies the integrity of the
4618		message text by applying either of the verification procedures
4619		specified for the receiving system in the following section on
4620		Character-Oriented CRC Calculation.
4621		If the CRC confirms message integrity, the sink should accept the
4622		message. If message integrity is not confirmed (the CRC fails), the sink
4623		should discard the message. Further action will be defined by the user
4624		and will depend on the application of the message.
4625		COMMENTARY
4626		This CRC scheme is only compatible with uncorrupted messages
4627		from the host airline computer to the FMC and vice versa. No
4628		intermediate systems may be allowed to modify the message text
4629		portion of the transmission by character substitution or insertion (such
4630		as line feeds, carriage returns, etc.).

ATTACHMENT 7 FMC/DATALINK INTERFACE

4632 Section 2

4633 ISO #5 Representation of Hexadecimal Characters for Binary Data Transmission

This document states that ISO #5 representation of hexadecimal characters should be used for the interchange of binary information between ground-based and airborne computers via ACARS. The following example illustrates the binary-to-ISO character conversion process.

		TRANS	MIS	SION ORDER	२ = =	>		
	LSE	3						MSB
1. BINARY DATA STREAM	1 0	1 1	0 1	00	0 0	000	0 0	11
2. 4 BIT BYTES STREAM	1 0	1 1	0 1	00	0 0	0 0 0	0 0	11
3. HEX CHARACTER VALUE	В		4		0		3	
4. ISO CHARACTER (COLUMN, ROW)	4,2		3,4		3,0		3,3	
5. ISO BIT VALUES (P = PAD BIT)	Ρ	100010	Ρ	0110100	Ρ	0110000	Ρ	0110011
6. ISO BITS TRANSMITTED (PAD BITS set to 0)	0	100010	0	0110100	0	0110000	0	0110011
7. CHARACTER TX ORDER	CH	AR 4	СН	AR 3	СН	AR 2	CH	AR 1

ATTACHMENT 7 FMC/DATALINK INTERFACE

4640 4641 Binary representation of ISO #5 hexadecimal characters is illustrated in the table below.

		0010111						1		1	1	1
					0	0	0	0	1	1	1	1
					0	0	1	1	0	0	1	1
BII 5					0	1	0	1	0	1	0	1
BIT 4	BIT 3	BIT 2	BIT 1	Col →	0	1	2	3	4	5	6	7
БП 4	вна	BITZ	вна	Row ↓	00	10	20	30	40	50	60	70
					00	10	20	30	40	50	60	70
0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
					01	11	21	31	41	51	61	71
0	0	0	1	1	SOH	DC1	!	1	А	Q		
U	U	U		1	30H 02	12	1 22	32	42	52	a 62	q 72
					02	12	22	32	42	52	62	12
0	0	1	0	2	STX	DC2		2	в	R	b	r
					03	13	23	33	43	53	63	73
0	0	1	1	3	ETX	DC3	#	3	с	s	с	s
U	U			3	04	14	# 24	34	44	54	С 64	5 74
					04	14	24	34	44	54	64	74
0	1	0	0	4	EOT	DC4	\$	4	D	т	d	t
					05	15	25	35	45	55	65	75
0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
U		U		5	06	16	26	36	⊑ 46	56	66	u 76
					00	16	20	30	40	20	00	/6
0	1	1	0	6	ACK	SYN	&	6	F	v	f	v
					07	17	27	37	47	57	67	77
0	1	1	1	7	EL	ЕТВ	,	7	G	w	~	w
0				'	08	18	28	38	48	58	9 68	78
					08	10	20	30	40	56	08	10
1	0	0	0	8	BS	CAN	(8	н	х	h	x
					09	19	29	39	49	59	69	79
1	0	0	1	9	нт	ЕМ)	9		Y	i	
-	U	0		3	0A	1A) 2A	3A	4A	5A	6A	У 7А
					UA	iA		ЗА	44	JA	0A	18
1	0	1	0	10	LF	SUB	*	:	J	Z	j	z
					0B	1B	2B	3B	4B	5B	6B	7B
1	0	1	1	11	VT	ESC	+	;	к	ſ	k	{
· ·		•	•		0C	10		, 3C	40	1 5C	6C	۱ 7C
1												10
1	1	0	0	12	FF	FS	,	<	L	١	I	
					0D	1D	2D	3D	4D	5D	6D	7D
1	1	0	1	13	CR	GS	1	=	м	J	m	}
<u> </u>	· · ·	-	· ·		0E	1E	, 2E	3E	4E	5E	6E	7E
									.=			
1	1	1	0	14	SO	RS		>	N	^	n	~
					0F	1F	2F	3F	4F	5F	6F	7F
1	1	1	1	15	SI	US	,	?	0		0	DEL
L	· ·	· ·	· ·		5		· ·	I		-	, J	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Section 3 4643 4644 **Character-Oriented CRC Calculation** Generation of the CRC Code 4645 4646 This CRC calculation method is based on the premise that a message may be 4647 represented as the coefficients of a polynomial, G(x), having k terms, where k is the 4648 number of bits in the message. 4649 COMMENTARY 4650 The notation used to describe the CRC is based on the property of 4651 cyclic codes that a code vector such as 1000000100001 can be represented by a polynomial $G(x) = x^{12} + x^5 + 1$. The elements of a k 4652 element code vector are thus the coefficients of a polynomial of order 4653 4654 k - 1. In this application, these coefficients can have the value 0 or 1, 4655 and all polynomial operations are performed modulo 2. 4656 To create the polynomial G(x) representing the message, the terms are ordered as 4657 follows: 4658 The coefficient of the most significant bit of G(x), (x^{k-1}) , is the LSB of the 4659 first character of the message. 4660 The coefficient of the least significant bit of G(x), (x^0) , is the MSB of the 4661 last character of the message. 4662 For example, if the message, G(x), is 'FPR', the first character is 'F' which is 4663 represented by the code 46 hex or 01000110 binary. The rightmost bit of 'F', 0 in 4664 this example, is therefore the most significant bit of G(x). Similarly, the last 4665 character, 'R', is represented by the code 52 hex or 01010010 and the least 4666 significant bit of G(x) is the leftmost bit of 'R', which is 0. The message FPR has 24 4667 bits so k has a value of 24. 4668 The actual transmission order for the message is MSB to LSB as follows: 4669 Note slashes (/) are used for octet separation only. Transmission Order ==> LSB MSB 01010010 01010000 01000110 R Р F

4670In order to illustrate the mathematical procedure, the entire message is transposed4671for representation as a bit stream with the MSB at the left and the LSB at the right to4672yield:

T	ransmission	Order ==>
MSB		LSB
01100010	00001010	01001010

ATTACHMENT 7 FMC/DATALINK INTERFACE

4675 Expressing the bit stream for this example as a polynomial, G(x), yields:

$$G(x) = x^{22} + x^{21} + x^{17} + x^{11} + x^9 + x^6 + x^3 + x^1$$

4676 4677

To generate the CRC code the generator polynomial is defined as:

$$P(x) = x^{16} + x^{12} + x^5 + 1$$

4678 4679

4680

4681 4682

4683

4684

4685

4686

4687

The CRC code is the one's complement of the remainder obtained from the modulo 2 division of:

$$\frac{x^{16}G(x) + x^{k}(x^{15} + x^{14} + x^{13} + \dots + x^{2} + x + 1)}{P(x)} = Q(x) + \frac{R(x)}{P(x)}$$
$$\frac{x^{16}G(x) + x^{k}(x^{15} + x^{14} + x^{13} + \dots + x^{2} + x + 1)}{P(x)} = Q(x) + \frac{R(x)}{P(x)}$$

where Q(x) is the quotient and R(x) is the remainder.

4

Note: The addition of $x^{16}G(x)$ and $x^k(x^{15} + x^{14} + x^{13} + ... x^2 + x + 1)$ is modulo 2 and is equivalent to inverting the 16 most significant bits of G(x) and appending a bit string of 16 zeroes to the lower order end of G(x).

If the 16-bit binary CRC code were appended to the original G(x) the resulting message, M(x), would be of length n, where n = k + 16. This is equivalent to the following operation:

 $M(x) = x^{16} G(x) + (16 - bit) CRC (Modulo 2).$

4688When the 16-bit binary CRC is transformed into four ISO #5 characters (8 bits4689each), the final message to be transmitted, M*(x) is now of length N* = k + 32, and4690so

$$M^{*}(x) = x^{32}G(x) + (32 - bit)CRC (Modulo 2).$$

4691 4692 Field Code Changed

4693 4694 4695 4696 4697	of 001111 right-hand Mathema	above example with 'FPR' as $G(x)$, the CRC calculation gives a remainder 11/11010010, where the left-hand 0 is the most significant bit and the d 0 is the least significant bit (see Appendix 7 of ARINC Specification 429, tical Example of CRC Encoding/Decoding, for a detailed example of the tical operations involved to arrive at this remainder).
4698 4699 4700 4701	This CRC end of the	code is the one's complement of the remainder, or 11000000/00101100. code is converted to a four-character (ISO #5) code and appended to the emessage over which the CRC code was calculated by applying steps 1 in Section 2 as follows:
4702 4703 4704 4705 4706	1.	Because the message was transposed in this illustration to generate the CRC code, the resultant CRC code should also be transposed from left to right. Transposing 1100000/00101101 yields 10110100/00000011. This operation returns the CRC code to the same transmission order as the original message, with the MSB to the right and the LSB to the left.
4707 4708	2-3.	Separating the 16-bit transposed value into 4-bit segments and expressing it in hex yields B403.
4709 4710 4711	4-7.	The four characters representing this value are coded as ISO #5 characters and appended to the message in the order: MS to LS character. For this example, the order is 3, 0 4, B.
4712	The comp	lete message plus CRC code for this example (read left to right) is:
4713		FPR304B
4714	The trans	mission order of this message is right to left, as:
4715		B403RPF ==>
4716		

4717 4718	Section 4 Verification (Decoding) of the CRC Code	
4719 4720 4721 4722	At the receiving system, the four characters representing the CRC code are converted back into the original binary CRC code; i.e., the steps in Section 2 are performed in reverse order. At this point, verification (decoding) of the CRC is accomplished by either of the following methods:	
4723 4724 4725	 After conversion back to the binary CRC code, the 16-bit binary CRC is appended to the message G(x) (in the same transmission order as the message) resulting in the message M(x), of length n, where n = k + 16 and 	
	$M(x) = x^{16} G(x) + (16 - bit) CRC (Modulo 2).$	
4726 4727	$M(x)$ is multiplied by X ¹⁶ , added to the product $x^n(x^{15} + x^{14} + x^{13} + + x^2 + x + 1)$, and divided by P(x) as follows (where n = k + 16):	
4728		
4729	$\frac{x^{16}M(x) + x^{n}(x^{15} + x^{14} + x^{13} + \dots + x + 1)}{P(x)} = Qr(x) + \frac{Rr(x)}{P(x)}$	Field Code Changed
4730 4731 4732	This CRC procedure is designed to create a constant remainder for error free messages. If the transmission of the serial incoming bits plus CRC code (i.e., $M(x)$) is error free, then the remainder, $Rr(x)$ is always:	
	Transmission Order ==> MSB LSB 00011101 00001111	
4733	(coefficients of x ¹⁵ through x ⁰ , respectively).	
4734 4735 4736 4737 4738	2. An alternate procedure for the receiving system, which will ensure the same data integrity, is to recompute the CRC code on the received message less the four CRC characters (using the same generator polynomial). The generated CRC code is then compared with the one received. The following steps are performed:	
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748	 The received message, M*(x), is stripped of the four CRC characters, leaving only G(x). The four characters representing the CRC code are converted back into the original binary 16-bit CRC code; that is, the steps in Section 2 are performed in reverse order. A binary CRC code is generated for G(x) using the same encoding method described for the message source. The generated binary CRC code is compared with the 16-bit binary CRC code stripped from the message and if they are identical, the message is assumed to be free of errors and exactly represents the message transmitted by the source. 	
4749 4750		

4751 4752	Part B Table-Based	Form	ats for FMC IMI/IEI Mes	ssages	
4753 4754	Section 1 Definition of	Term	s Used In Data Link Me	essages	
4755 4756				s are formatted using a consistent set of syntax re used to describe parts of a message:	C
4757		IMI (Imbedded Message Identifier)			
4758 4759 4760		The IMI is a three alphanumeric character identifier. An IMI is placed at the beginning of the text to identify the relative message content. Only one IMI is used per message. The same IMI can be used for both uplinks and downlinks.			
4761		Examp	les of IMIs are: FPN, PER	, LDI, POS, REJ, etc.	
4762		IEI	(Imbedded Element Iden	ntifier)	
4763 4764		The IE eleme	•	identifier that is used to group one or more	
4765			Examples of IEIs are: FN,	, RP, RM, CG, RW, etc.	
4766		Eleme	nt		
4767 4768 4769 4770 4771 4772 4773 4774		be a si defined charac either a more r indicat	ngle parameter, or a numb d as either fixed length or v ters. Directional elements a single alpha character pro- numeric characters followed	sible part of an uplink or downlink message. It can ber of parameters. A single parameter element is variable length with a defined maximum number are single parameter elements that must contain receding one or more numeric characters, or on d by an alpha character. The alpha character er) that is associated with the numeric value. d or variable length.	is r of iin
4775 4776 4777 4778 4779		param and va be of v	eter elements can be fixed riable length. However, on	ed to group similar or related information. Multi- I length, variable length or a combination of fixe aly one field within a multi-parameter element ca o delimiter between single data elements within	ed an
4780			Example:		
4781			OAT: P23	Single parameter element OAT is +23 °C.	
4782			V1VRV2: 131139147	Multi-parameter element is composed of:	
4783				V1 = 131 knots	
4784				VR = 139 knots	
4785				V2 = 147 knots	
4786					

ATTACHMENT 7 FMC/DATALINK INTERFACE

4787	Parameter
4788	A parameter is an element or part of an element that has the following attributes:
4789	1. Type - Variable or Fixed
4790	1.2. Element Type
4791	2. a. Alpha (A - Z)
4792	a.b. Alphanumeric (A - Z, 0 - 9, dash)
4793	b.c.Numeric (0 - 9)
4794	c.3. Character Length - Number of Characters
4795	3.4. Scaling Factor - Identifies the multiplication factor
4796	4. <u>5.</u> Units - Identifies the Parameter Units
4797	List
4798 4799	A list is a repeatable group of elements within a data link message. Each list contains one or more elements.
4800	Message Format Example
4801	The following is an example of a Predicted Wind Information uplink message (the
4802	IMI for this message is PWI, the IEI is DD for Descent Wind Data and the IEI DS is
4803	for Descent Wind Temperature).
4804	Example:
4805 4806	PWI/DD350270060.310270045.140260040/DS320M50.250M30.100M10.010P10:0
4806	60,,,M04,1013
	Altitude/Wind List (up to ten allowed):
	Altitude Wind
	FL350 270/060 kts
	FL310 270/045 kts
	FLS10 270/045 kts 14000 260/040 kts
4807	

4808

Altitude	Temperature		
FL320	- 50 °C		
FL250	- 30 °C		
FL100	- 10 °C		
1000ft	+10 °C		
Remaining Elements:			
Remaining Elements: TAI On Altitude	6000 ft		
-	6000 ft (Missing Data)		
TAI On Altitude			
TAI On Altitude TAI On/Off Altitude	(Missing Data)		

1013 Hectopascals

QNH

ATTACHMENT 7 FMC/DATALINK INTERFACE

4809 Flight Plan Definition

4810Each independent part of a flight plan is called a Flight Plan Element (FPE). Each4811FPE is preceded by a Flight Plan Element Identifier (FPEI) which identifies the4812group of data that follows. These FPEs are used in combination to fully define the4813FMC flight plan in both the uplinks and downlinks. The flight plan definition is used4814to create a flight plan (either active or inactive) or modify an existing flight plan.

4815 FPEI (Flight Plan Element Identifier)

4816FPEIs are used to identify special elements, which are used in the (Flight Plan)4817Route IEIs of RP, RI, RM, and RA. Examples of Flight Plan Element Identifiers are4818:H:, :V:, ".", "..", "DA", etc.

4819 FPE (Flight Plan Element)

4820 4821

4822

group of elements) used in RP, RI, RM, or RA IEIs. Examples of FPEs (and their corresponding FPEIs) are shown below:

FPE	FPEI	Example
Departure Airport	:DA:	KJFK
Arrival Airport	:AA:	KLAX
Company Route	:CR:	JFKLAX07
Waypoint Spd/Alt/Time	:V:	N47W125,250,AT1250
Direct to Waypoint		BLAKO
Departure Runway	:R:	040
Airway VIA		J36
Arrival Procedure	:A:	DOWNE
Arrival Transition		HECTR
Arrival Runway	(XXX)	(04O)

A Flight Plan Element (FPE) is a special type of variable or fixed length element (or

4823 4824 4825

4826

4830

4831

4832

4833 4834

4835

4836

4837

The last four items in the table illustrate the dual role of the special character "." which is context dependent. It can be used as a "VIA" indicator for an airway, or as a transition indicator if it is preceded by an ":A:" (or an ":AP:" or a :D:), as in DOWNE.HECTR(04O).

4827 4828	Example:	F P N / R MN I A . J 4 8 . B E N N Y , N 3 3 2 4 0 W 1 1 6 2 5 0 : A T : N I A - M0400,280,AT1400:A:BENE3.NIA:AP:ILS32R.EDD
4829	• IN	1I (FPN) followed by

- IEI (RM) followed by
- Direct to waypoint NIA
- Followed by a via airway J48
- To waypoint BENNY with optional lat/lon definition
- Then an along track offset definition of NIA -40.0 with an associated speed restriction of 280 at 14,000 feet
 - Followed by a standard arrival BENE3 with a NIA transition and the standard approach of ILS32R with an EDD transition.

ATTACHMENT 7 **FMC/DATALINK INTERFACE**

4838 **Uplink and Downlink Delimiters**

When constructing an uplink or a downlink message, delimiters are used to 4839 4840 consistently identify the information in the message. The delimiters supersede each 4841 other in the order given (i.e., '/' has the highest priority). 4842

IEI Delimiter '/' solidus, Character 2/15

- 4843 This character precedes each Imbedded Element Identifier which identifies the 4844 beginning of predefined group of elements. This delimiter is always followed by two 4845 alpha characters.
- 4846 List Terminator ':' colon, Character 3/10
- 4847 The colon is an end of list control character. This character is used to terminate a 4848 repetitive list structure.
- 4849 List Entry Terminator '.' period, Character 3/11

4850 The period is a list entry terminator. This character is used to terminate each list 4851 entry (group of elements). List entries are groups of parameters or elements that are 4852 repeated one or more times

4853 Element Terminator ',' comma, Character 2/12

Commas are used to separate elements (unless they have been separated by or terminated with another control character; i.e., '7', '.', c' or another FPEI in the case 4854 4855 4856 of RI, RM, RP, or RAs). Missing elements are denoted by consecutive commas.

4857 **Request Messages**

4858 To allow the receiving system to recognize the difference between a message that 4859 is transmitting data and a message that is requesting data, a special IMI has been 4860 reserved for requests. This IMI ('REQ' is the default) precedes any request 4861 message. The data that follows this IMI depends on whether the message is an 4862 uplink or a downlink.

4863 **Uplink Request A Downlink**

- 4864 The request IMI is followed by an element which contains the IMI of the "reply." This 4865 is optionally followed by a comma (element terminator), which is optionally followed 4866 by a list of elements that define the IEIs to be included in the downlink (all separated 4867 by a list entry terminator). An IMI, or IEIs following the REQ are considered 4868 elements in the uplink.
- 4869 Example: REQPRG, DT.FN
- 4870 This example is a request from the ground for the current destination and current 4871 flight number which results in a downlink of:
- 4872 PRG/DTKSEA/FNSFOSEA001
- 4873 **Downlink Requesting An Uplink**
- 4874 In a downlink request, the request IMI is followed by the requested information.
- 4875 Example: REQFPN/COKSEAKSF002
- 4876 This example is a request from the FMC for a flight plan, the request includes the 4877 entered company route as a data element.

ATTACHMENT 7 FMC/DATALINK INTERFACE

4878 Section 2 **IMI/IEI** Relationships

- 4879
- 4880 4881 4882 4883

This section identifies the IEIs normally associated with IMIs that have been defined. This section will be updated as the need for new IMIs and IEIs is identified. Users are requested to advise the AEEC staff when such a need arises. The basic IEIs are listed in bold text, the dependent IEIs are listed in italics and the extended IEIs are listed as normal text.

4884 4885

					olink Messag					
FPN	FPC	PER	LDI	PWI	PWM	POS	REQ	ALT	LIM	NDB
RP	RP	PD	RW	WD	WM	RF	FPN	AI	PL	SD
RI	RI	SN	CG	DD	DD	SN	FPC	AE		
RM	RM		SN	CB	CB		PER	AN		
FN	FN			AW	AW		LDI	AS		
RA	RA			CS	CS		POS			
MW	GA			DS	DS		PRG			
SD	SN			SN	SN		PRF			
SN				PG	PG		TOD			
							EFB			
							XXX			
							Report			
							IĖIs			

Formatted: Caption

Formatted: Caption

4886

4887 4888

4889

4890

Note: XXX in 'XXX Report IEIs' is an unrecognizable IMI that is followed by		
recognizable IEIs. On some systems, XXX may not support all IEI's. The minimum		
set of IEI's supported is the following: RP, FN, PR, DT, CA, GA.		

Requests Required PC LDI PWI PQ DQ DQ SP SP WQ GA GA SP CA CA CA GA TS TS CA S CA CA CA CA GA S CA C Downlink Messages
 Reports

 PRF
 FPX
 PER
 LDI
 POS
 PRG
 FPM
 ALT AA AB SP GA CA TS AQ TD WI TS GA CA ALT LIM NDB REJ RES FPN CO FN SP GA CA TS RA PS DQ MQ SP GA CA TS DU PR TS GA CA RR TS GA CA SP TS GA CA DT FN TS GA CA AP ED NV WP GL GP FP FH AR TS GA CA RP FN RA TS GA CA AR WR FPN FPC PER LDI PWI POS REQ NDB TS GA CA AK AC RJ FS GA SN CA RP RR

4891

Note that FPX represents FPN and FPC.

ATTACHMENT 7 FMC/DATALINK INTERFACE

4893 Section 3

4896 4897 4898

4894 Uplink IMI Definitions4895 This section

This section lists the currently defined uplink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Contains alternate airport information generated by the airline.
FPC	FLIGHT PLAN	Flight plan information supplied by ATC.
FPN	FLIGHT PLAN	Flight plan information generated by the airline.
LDI	LOAD INFORMATION	Contains load information for takeoff generated by the airline.
LIM	PERFORMANCE LIMITS DATA	Contains performance limits data that is provided by the airline.
NDB	AIRLINE DATABASE	Contains supplemental Navigation Data Base, Effectivity Date, Supplemental Navigation Airport, Navaid, and Waypoint definitions generated by the airline.
PER	PERFORMANCE INITIALIZATION	Contains performance initialization data generated by the airline.
POS	POSITION	Contains specified triggers for automatic position report information generated by the airline.
PWI	PREDICTED WIND DATA	Contains climb, alternate, enroute, descent wind, and/or temperature, and/or tropopause information that is to be applied to the flight plan. Generated by the airline.
PWM	PREDICTED WIND MODIFICATION	Contains climb, alternate, enroute, descent wind, and/or temperature, and/or tropopause information that is to be applied to the modified active flight plan. Descent winds and temperatures data may be applied regardless of the route status. Generated by the airline ground station.
REQ	REQUEST	Contains a type of request (FPN/FPC, PER, LDI, POS, PRG, PRF, TOD, EFB, XXX) for information generated by the airline.
TAC	RESERVED	
TAR	RESERVED	

ATTACHMENT 7 FMC/DATALINK INTERFACE

4901 Section 44902 Downlink IMI Definitions

This section lists the currently defined downlink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Provides the airline with alternate airport information.
EFB	ELECTRONIC FLIGHT BAG	Provides wind/temperature forecast and performance parameter report to an external application
FPC	FLIGHT PLAN	Provides flight plan report to ATC.
FPM	FLIGHT PLAN	Provides flight plan modification information to the airline.
FPN	FLIGHT PLAN	Provides flight plan information to the airline.
LDI	LOAD INFORMATION	Provides the airline with a load information data report for a single runway.
LIM	PERFORMANCE LIMITS DATA	Provides the airline with the current FMC performance limits.
NDB	AIRLINE DATA BASE	Provides the contents of the supplemental data base to the airline.
PER	PERFORMANCE INITIALIZATION	Provides performance initialization data report to the airline.
POS	POSITION	Provides the airline with current position report information.
PRF	PREFLIGHT	Provides preflight report to the airline.
PRG	PROGRESS (ETA) REPORT	Provides the airline with progress report data in response to a trigger.
PWI	PREDICTED WIND DATA	Provides the airline with climb, enroute, descent wind and/or temperature information that is to be applied to the flight plan.
PWM	PREDICTED WIND MODIFICATION	Provides the airline with enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent wind data may be applied regardless of the route status.
REJ	DOWNLINK REJECTION	Provides ATC or the airline with information referencing a rejected uplink message.
REQ	REQUEST	Requests (FPN/FPC, PER, LDI, PWI/PWM, EFB) information from the airline or ATC.
RES	DOWNLINK RESPONSE	Provides a response to an uplink message.
TAC	RESERVED	· · · ·
TAR	RESERVED	
TOD	TOP OF DESCENT	Provides top of descent data to the airline.

ATTACHMENT 7 FMC/DATALINK INTERFACE

4909 4910	Section 5 Uplink IEIs	
4911 4912 4913	the need	ion lists the currently defined uplink IEIs. This section will be updated as for new IEIs is identified. Users are requested to advise the AEEC staff ch a need arises.
	IEI	DESCRIPTION
	AE	COMPANY PREFERRED ALTERNATES DATA
	AI	ALTERNATE INFORMATION DATA
	AN	ALTERNATES INHIBIT DATA
	AW	ALTERNATE WIND DATA
	AS	ALTERNATES FLIGHT LIST DATA
	CA	COMPANY DISTRIBUTION
	CB	CLIMB WIND DATA
	CG	TAKEOFF CENTER OF GRAVITY
	CS	CLIMB TEMPERATURE DATA
	DD	DESCENT FORECASTS
	DS	DESCENT TEMPERATURE DATA
	FN FLIGHT NUMBERS	
	GA GROUND ADDRESS	
	MW	MEAN WIND DATA
	PD	PERFORMANCE INITIALIZATION DATA
	PG	PAGE INFO
	PL	PERFORMANCE LIMITS
	RA	ALTERNATE ACTIVE/INACTIVE ROUTE
	RF	POSITION REPORT FIX
	RI	INACTIVE ROUTE
	RM	ROUTE MODIFICATION
	RP	ACTIVE ROUTE
	RT	REQUIRED TIME OF ARRIVAL
	RW	RUNWAY DATA
	SD	SUPPLEMENTAL NAVIGATION DATABASE
	SN	MESSAGE SEQUENCE NUMBER
	TS TIME STAMP	
	WD	ENROUTE WIND DATA
	WE	WIND VECTOR MAGNITUDE DIFFERENCE
	WL	WAYPOINT LIST
	WM	ENROUTE WIND MODIFICATION

4914

ATTACHMENT 7 FMC/DATALINK INTERFACE

4916 Section 6

4917 Downlink IEIs

4918 4919

4920

This section lists the currently defined downlink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IEI	DESCRIPTION
AA	COMPANY PREFERRED ALTERNATES REQUEST
AB	ALTERNATES FLIGHT LIST REQUEST
AC	ACCEPT
AK	ACKNOWLEDGE
AP	SUPPLEMENTAL NAV DATA BASE AIRPORTS
AQ	WEATHER REQUEST
AR	ALTERNATE INFORMATION REPORT
CA	COMPANY DISTRIBUTION
CO	COMPANY ROUTE REQUEST
CQ	CLIMB FORECAST REQUEST
CU	CLIMB TEMPERATURE REQUEST
DI	DOWNLINK TIME INFORMATION
DQ	DESCENT FORECAST REQUEST
DT	DESTINATION REPORT
DU	DESCENT TEMPERATURE REQUEST
ED	SUPPLEMENTAL EFFECTIVITY DATE
FH	FLIGHT PLAN HISTORY
FN	FLIGHT NUMBER
FP	FUEL PLANNING
FR	FORECAST REPORT
GA	GROUND ADDRESS
GL	GENERAL DATA
GP	GENERAL DIRECTIONS
MQ	MOD WIND REQUEST
NV	SUPPLEMENTAL NAV DATA BASE NAVAIDS
PH	FLIGHT PHASE
PL	PERFORMANCE LIMITS
PP	PERFORMANCE PARAMETERS REPORT
PQ	PERFORMANCE INITIALIZATION REQUEST
PR	PERFORMANCE INITIALIZATION REPORT
PS	POSITION REPORT
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RJ	REJECT
RP	ACTIVE ROUTE
RQ	RUNWAY DATA REQUEST
RR	RUNWAY DATA REPORT
SN	MESSAGE SEQUENCE NUMBER
SP	SCRATCHPAD
TD	TOP OF DESCENT REPORT
TS	TIME STAMP
WI	WAYPOINT INFORMATION
WQ	WIND REQUEST
WP	SUPPLEMENTAL NAV DATA BASE WAYPOINTS
WR	ALTERNATE AIRPORT WEATHER REQUEST

4922 4923		ction 7 I Associated Elements		
4924 4925 4926 4927 4928 4929 4930		default text for all IEIs. This section is IEIs) and their associated elements, ex and IMIs and their associated element	elating elements to IEIs and defines the separated into basic IEIs (also dependent stended IEIs and their associated elements, s. The default IEI content and structure is ent and order of list entries are indicated by to clarify the default text.	
4930			SSOCIATED ELEMENTS	
	AC	ACCEPT	Consists of a variable length field defining the message sequence number and stimulus code.	
		EXAMPLE: /AC12345,451 IEI CONTENT MESSAGE SEQUENCE NUMBER		
	AK	STIMULUS CODE ACKNOWLEDGE	Consists of a variable length field defining the message sequence number and stimulus code.	!
		EXAMPLE: /AK12345,451 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER STIMULUS CODE		
	CA	COMPANY DISTRIBUTION EXAMPLE: /CAFLTOPS IEI CONTENT COMPANY DISTRIBUTION	Consists of an airline internal distribution identifier.	
	CG	TAKEOFF CENTER OF GRAVITY EXAMPLE: /CG200 IEI CONTENT TAKEOFF CENTER OF GRAVITY	Consists of a variable length field.	
	CO	COMPANY ROUTE REQUEST EXAMPLE: /COKBFIKSF001 <u>IEI CONTENT</u> COMPANY ROUTE	Consists of a variable length field.	
	DD	DESCENT FORECAST EXAMPLE: /DD350270060.310270045.140260040 IEI CONTENT LIST ENTRY: ALTITUDE AND WIND TAI ON ALTITUDE TAI ON/OFF ALTITUDE DESCENT TRANSITION ALTITUDE DESCENT ISA DEVIATION QNH		
	DQ	DESCENT FORECAST REQUEST EXAMPLE: /DQ390 IEI CONTENT TOP OF DESCENT ALTITUDE	Consists of a single parameter element defining the top descent altitude.	of
	DS	DESCENT TEMPERATURE EXAMPLE: /DS320M50.250M30.010P10 IEI CONTENT	Consists of a list of up to ten altitude temperature entrie	s

	BASIC IEIS AND	ASSOCIATED ELEMENTS	
	LIST ENTRY: ALTITUDE AND OAT		
DU	DESCENT TEMPERATURE REQUEST	Consists of a single parameter element defining the top of	
		Descent Altitude.	
	EXAMPLE: /DU370 IEI CONTENT		
	TOP OF DESCENT ALTITUDE		
DT	DESTINATION REPORT	Consists of a fixed format, fixed order field.	
5.	EXAMPLE: /DTKSF0,28L,0234,190023,003		
	IEI CONTENT		
	ARRIVAL AIRPORT IDENT		
	DESTINATION RUNWAY IDENT		
	PREDICTED FUEL REMAINING		
		Consists of a variable length field	
FN	<u>FLIGHT NUMBER</u> EXAMPLE: /FNUAL1633A	Consists of a variable length field.	
	IEI CONTENT		
	FLIGHT NUMBER		
GA	GROUND ADDRESS	Consists of a list of addresses. A copy of the network address	3
		not directly used for message routing purposes.	
	EXAMPLE: /GATULDDAA.HEQXESA		
	IEI CONTENT		
	LIST ENTRY: GROUND ADDRESS		
PD	PERFORMANCE INITIALIZATION DAT.	Consists of a fixed format, fixed order field	
	EXAMPLE: /PD2113,,270,,0150,23,,,,P12,M34 IEI CONTENT		
	ZERO FUEL WEIGHT		
	CRUISE CENTER OF GRAVITY		
	CRUISE ALTITUDE		
	PLAN OR BLOCK FUEL		
	RESERVE FUEL		
	COST INDEX		
	TOC OR CRUISE TEMPERATURE CLIMB TRANSITION ALTITUDE		
	FUEL FLOW FACTOR		
	DRAG FACTOR		
	PERF FACTOR		
	IDLE FACTOR		
	TROPOPAUSE ALTITUDE		
	TAXI FUEL		
	ZERO FUEL WEIGHT CENTER OF GRAVITY		
	MINIMUM FUEL TEMPERATURE		
PQ	PERFORMANCE INITIALIZATION REQUEST EXAMPLE: /PQ2113,,270,,0150,23,,,,P12,M34	Consists of a fixed format, fixed order field.	
	IEI CONTENT		
	ZERO FUEL WEIGHT		
	CRUISE CENTER OF GRAVITY		
	CRUISE ALTITUDE		
	PLAN OR BLOCK FUEL		
	RESERVE FUEL		
	TOC OR CRUISE TEMPERATURE		

			SSOCIATED ELEMENTS	
	CLIMB	TRANSITION ALTITUDE	550GIATED ELEMENTS	
		LOW FACTOR		
		FACTOR		
		FACTOR		
		ACTOR		
		PAUSE ALTITUDE		
	TAXI F			
	ZERO I	FUEL WEIGHT CENTER OF GRAVITY		
	MINIM	JM FUEL TEMPERATURE		
PR	PERFC	RMANCE INITIALIZATION REPORT	Consists of a fixed format, fixed order field.	
		PLE: /PR2633,,270,0520,,0150,23,,,,P12,M3		
	IEI COI			
	CURRE	ENT GROSS WEIGHT		
	CRUIS	E CENTER OF GRAVITY		
	CRUIS	E ALTITUDE		
	FUEL F	REMAINING		
	PLAN (OR BLOCK FUEL		
	RESER	VE FUEL		
	COSTI	NDEX		
		EWIND		
		R CRUISE TEMPERATURE		
		TRANSITION ALTITUDE		
		LOW FACTOR		
		FACTOR		
		FACTOR		
	IDLE F			
	TAXI F			
		FUEL WEIGHT CENTER OF GRAVITY		
		JM FUEL TEMPERATURE		
RF		ON REPORT FIX	Consists of a list of reporting points which when seque	nced in
	<u> </u>		flight, trigger the position report.	
	EXAMF	PLE: /RFORTIN.SEA.N3545W090256		
	IEI COI			
		NTRY: WAYPOINT SEQUENCE		
RI		VE ROUTE	A variable length field that consists of flight plan eleme	nts that
			replace the inactive route. These flight plan elements d	lefine a
			flight plan in approximately the same fashion as ATC c	learance
			language.	
	:DA:	DEPARTURE AIRPORT IDENT		
	:AA:	ARRIVAL AIRPORT IDENT		
	:CR:	COMPANY ROUTE		
	:R:	DEPARTURE RUNWAY IDENT		
	:D:	DEPARTURE PROCEDURE		
	:F:	FLIGHT PLAN SEGMENT		
		PLACE BEARING/PLACE BEARING PLACE BEARING DISTANCE		
	:ON:	START OF DESIGNATED FLIGHT PLAN	SEGMENT	
	:ON: :A:	ARRIVAL PROCEDURE		
	.A. :AP:	APPROACH PROCEDURE		
	.AF. ():	ARRIVAL RUNWAY IDENT		
	0.			

	FMGDATALINK IN FERFAGE		
	:V: WAYPOINT SPEED/ALTITUDE/TIME :H: HOLD AT WAYPOINT :WS: WAYPOINT STEP CLIMB :AT: ALONG TRACK WAYPOINT :RP: REPORTING POINTS DIRECT FIX TRANSITION OR AIRWAY VIA :F: AIRWAY INTERCEPT :IC: INTERCEPT COURSE FROM	ASSOCIATED ELEMENTS	
RJ	REJECT EXAMPLE: /RJ12345,451 IELCONTENT MESSAGE SEQUENCE NUMBER STIMULUS CODE	Consists of a variable length field defining the message sequence number and the stimulus code.	
RP	ACTIVE/INACTIVE ROUTE THE FORMAT IS THE SAME AS DESCRIBED F	A variable length field that consists of flight plan elements. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance language. OR THE RI IEL DESCRIPTION.	
RQ	RUNWAY DATA REQUEST EXAMPLE: /RQKSEA,31L,A9,,,,156,2613,,P15,14 IEI CONTENT LIST ENTRY:	Consists of a fixed-list format, fixed order field consisting of data for up to two runway/intersection combinations.	
RT	REQUIRED TIME OF ARRIVAL EXAMPLE: /RTVAMPS,143000 IEI CONTENT RTA WAYPOINT IDENT RTA TIME OPTIONAL RTA CONSTRAINT	Consists of a fixed format, fixed order field	
RW	RUNWAY DATA	Consists of a fixed-list entry format field consisting of data for up to six runway/intersection combinations followed by a departure airport	

	EXAMPLE: /RW13R,A9,PO9,,0,1125,2613,2850,P	SSOCIATED ELEMENTS	
		23,005,250015,1,15,1,08,P38,131139147,0,	
	15,1135,,130137145.31L,ETC:KBFI		
	TAKEOFF RUNWAY IDENT		
	RUNWAY INTERSECTION		
	POSITION SHIFT		
	RUNWAY LENGTH REMAINING		
	INVALID FLAG		
	TRIM		
	REFERENCE TAKEOFF GROSS WEIGH		
	STANDARD LIMIT TAKEOFF GROSS WE	IGHT	
	OAT OR SAT		
	TAKEOFF RUNWAY SLOPE		
	TAKEOFF RUNWAY WIND		
	TAKEOFF RUNWAY CONDITION		
	TAKEOFF FLAPS		
	TAKEOFF THRUST RATING		
	VTR PERCENTAGE		
	ASSUMED TEMPERATURE		
	TAKEOFF SPEEDS		
	ALTERNATE THRUST RATING		
	ALTERNATE FLAPS		
	ALTERNATE TRIM		
	ALTERNATE LIMIT TAKEOFF GROSS W	EIGHT	
	ALTERNATE TAKEOFF SPEEDS		
	ALTERNATE ASSUMED TEMPERATURE		
	FLAP/SLAT CONFIGURATION		
	ALTERNATE FLAP/SLAT CONFIGURATION	N	
	ALTERNATE VTR PERCENTAGE		
	DEPARTURE AIRPORT IDENT		
	BARO SETTING		
	THRUST REDUCTION ALTITUDE		
	ACCELERATION ALTITUDE		
	ENGINE-OUT ACCELERATION ALTITUDE		
	NOISE ABATEMENT END ALTITUDE		
	NOISE ABATEMENT SPEED		
	NOISE ABATEMENT DERATE THRUST		
	NOISE ABATEMENT THRUST		
	NOISE ABATEMENT START ALTITUDE		
SN	MESSAGE SEQUENCE	Consists of a variable length format field defining the m	essage
		sequence number.	
	EXAMPLE: /SN12345		
	IEI CONTENT		
	MESSAGE SEQUENCE NUMBER		
SP	SCRATCHPAD	Consists of a variable length field that contains the con	tents of
0.		the CDU scratch pad.	
	EXAMPLE: /SPSCRATCHPADMESSAGE		
	IEI CONTENT		
	SCRATCHPAD		
TS	TIME STAMP	Consists of a fixed length field.	
	EXAMPLE: /TS152533,200290		
	IEI CONTENT		
	GREENWICH MEAN TIME		

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	DATE		
VD	ENROUTE WIND DATA	Consists of an altitude and a variable length list of entries include the waypoint, the waypoint winds that apply to that altitude, and the waypoint temperature, and the waypoint tropopause altitude.	
	EXAMPLE: /WD310,SEA,120015,350M35,600		- Formatted: Highlight
	IEI CONTENT		
	WIND ALTITUDE		Formatted: Highlight
	LIST ENTRY:		
	WAYPOINT NAME OR POSITION		
	WAYPOINT WIND		
	WAYPOINT ALTITUDE/OAT		
	WAYPOINT TROPOPAUSE ALTITUDE		Formatted: Indent: Left: 0.5"
VQ	WIND REQUEST	Consists of a list of elements defining altitudes for which w are requested, followed by a list of elements defining wayp in the route for which the request is being made.	
	EXAMPLE: /WQ350.370.390.410:SEA.N4030V	1 0	
	IEI CONTENT		
	LIST ENTRY: WIND LEVEL ALTITUDE		
	LIST ENTRY: WIND LEVEL WAYPOINT		
POS	POSITION REPORT	Consists of elements used to define a position report.	
	EXAMPLE: POSN47261W122185,SEA,093118	3,350,ORTIN,093436,BARRO,M32,120015,0485,784	
	IEI CONTENT		
	CURRENT POSITION		
	(CROSSED) WAYPOINT IDENT		
	GREENWICH MEAN TIME		
	GOTO (NEXT) WAYPOINT IDENT ETA AT GOTO WAYPOINT		
	GOTO+1 (FOLLOWING) WAYPOINT IDENT		
	STATIC AIR TEMPERATURE (SAT)		
	ACTUAL WIND		
	FUEL REMAINING		
	TARGET MACH		
EJ	REJECT	Consists of the uplinked IMI, time uplink is received and a error codes.	list of
	REJPWI,HHMMSS,103,,006,CB/.108,,CB,/CB.1 UPLINKED IMI	109,,001,NOVALIDIEI/TShhmmss,mmddyy	
	LIST ENTRY:		
	ERROR TYPE CODE ERROR DATA CODE		
	LITERAL ERROR DATA		
	EXTENDED REJECTION DATA		
ES	RESPONSE	Consists of the uplinked IMI, time uplink is received and a	list of
		error codes.	
	EXAMPLE:	RESFPN/AC,073	
A	COMPANY PREFERRED ALTERNATES REQUEST	Consists of a fixed format, fixed order field.	
	EXAMPLE: /AAN47261W122185,BOE123,KSE	A.KSFO.SEASFO	
	IEI CONTENT		
	CURRENT POSITION		
	FLIGHT NUMBER		

	ARRIVAL AIRPORT IDENT COMPANY ROUTE	
٩B	ALTERNATES FLIGHT LIST REQUEST	Consists of a fixed format, fixed order field.
	EXAMPLE: /ABN47261W122185,BOE123,KSEA,	
	IEI CONTENT	
	CURRENT POSITION	
	FLIGHT NUMBER	
	DEPARTURE AIRPORT IDENT	
	ARRIVAL AIRPORT IDENT	
	COMPANY ROUTE	
٩E	COMPANY PREFERRED ALTERNATES DATA	Consists of a variable length list of entries of alternate airport information followed by fixed format, fixed order fields.
	EXAMPLE:/AEKSEA,1,09020,350P10,HUMPP,KN	I.WH,2,080100,300M5,ELN:300,1290
	<u>IEI CONTENT</u>	
	LIST ENTRY	
	COMPANY PREFERRED ALTN IDENT	
	COMPANY PREFERRED ALTN PRIORIT COMPANY PREFERRED ALTN WIND	Ť
	COMPANY PREFERRED ALTN ALTITUE	
	COMPANY PREFERRED ALTN ALTITUDE	
	COMPANY PREFERRED ALTN SPEED	
	COMPANY PREFERRED ALTN OFFSET	
41	ALTERNATE INFORMATION DATA	Consists of a variable length list of entries consisting of alternation
		information
	EXAMPLE: /AIKSFO,D,1423,230,120045,M15.KL	AX,M,1700,310,325020,P34
	IEI CONTENT	
	LIST ENTRY:	
	ALTERNATE TYPE DISTANCE TO ALTERNATE	
	ALTITUDE TO ALTERNATE	
	ESTIMATED WIND TO ALTERNATE	
	TEMPERATURE AT ALTERNATE	
٩N	ALTERNATES INHIBIT DATA	Consists of a variable length list of airports inhibited from being
		alternate airports
	EXAMPLE: /ANKPAE.KSEA	
	<u>IEI CONTENT</u>	
	LIST ENTRY: ALTN INHIBIT	
٩P	SUPPLEMENTAL NDB AIRPORTS	Consists of a list of airports to be included in the supplemental
	EXAMPLE: /APKABC,N39152W121185,01740,E1	navigation data base
	IEI CONTENT	0.KDEF,1N37440W119116,00900,W12
	LIST ENTRY:	
	AIRPORT IDENT	
	AIRPORT LAT/LON	
	AIRPORT ELEVATION	
	AIRPORT MAGVAR	
٩Q	WEATHER REQUEST	Consists of a variable length list of alternate airports followed by the primary airport
	EXAMPLE: /AQKSFO.KLAX.KONT:KPHX	
	EXAMPLE: /AQKSFO.KLAX.KONT:KPHX IEI CONTENT LIST ENTRY:	

	BASIC IEIS AND A ARRIVAL AIRPORT IDENT	SSOCIATED ELEMENTS
AR	ALTERNATE INFORMATION REPORT	Consists of a variable length list consisting of alternate
		destination data.
	EXAMPLE: /ARKSFO,D,132456,0120,0123,310,31 IEI CONTENT	10050.KLAX,D,142523,0109,0206,325,340100
	LIST ENTRY	
	ALTERNATE IDENT	
	ALTERNATE TYPE	
	ETA AT ALTERNATE DESTINATION	
	FUEL REMAINING AT ALTERNATE	
	DISTANCE TO ALTERNATE ALTITUDE TO ALTERNATE	
	CRUISE WIND TO ALTERNATE	
AS	ALTERNATES FLIGHT LIST DATA	Consists of a variable length list consisting of alternate
		destination wind and temperature data.
	EXAMPLE: /ASKDEN,18030,350M5.KLAX,02040	350P10
	LIST ENTRY:	
	ALTN FLIGHT LIST IDENT ALTN FLIGHT LIST WIND	
	ALTN FLIGHT LIST ALTITUDE/OAT	
AW	ALTERNATE WIND DATA	Consists of a multi-parameter element defining the altitude and wind.
	EXAMPLE: /AW220035040	wind.
	<u>IEI CONTENT</u>	
	ALTITUDE AND WIND	
СВ	CLIMB WIND DATA	Consists of a list of up to ten altitude wind entries.
	EXAMPLE: /CB350270060.310270045.14026004/ IEI CONTENT	0.100230020
	LIST ENTRY: ALTITUDE AND WIND	
CQ	CLIMB FORECAST REQUEST	Consists of a single parameter element defining the top of climb
		altitude.
	EXAMPLE: /CQ370	
CS	CRUISE ALTITUDE CLIMB TEMPERATURE DATA	Consists of a list of up to ten altitude temperature entries.
03	EXAMPLE: /CS120P05.250M30.300M40	Consists of a list of up to ten autode temperature entries.
	IEI CONTENT	
	LIST ENTRY: ALTITUDE AND OAT	
CU	CLIMB TEMPERATURE REQUEST	Consists of a single parameter element defining the top of climb
		altitude.
	EXAMPLE: /CS370	
	IEI CONTENT CRUISE ALTITUDE	
DI	DOWNLINK TIME INFORMATION	Consists of a fixed format, fixed order field containing time
5.		information.
	EXAMPLE: /D105163251635.051636	
	IEI CONTENT	
	DOWNLINK GENERATION TIME GREENWICH MEAN TIME	
ED	SUPPLEMENTAL EFFECTIVITY DATE	Consists of a fixed length field defining the effectivity date of the
20		supplemental navigation data base.
	EXAMPLE: /EDJAN0191/	
	IEI CONTENT	

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	BASIC IEIS AND ASSOCIATED ELEMENTS		
	EFFECTIVITY DATE/		
FΗ	FLIGHT PLAN HISTORY	Consists of a variable length list of parameters that are the different waypoints of the flight plan.	linked to
	EXAMPLE: /FHLACRE.132034.240K.0700.01	197,P23,132016,235,Y,150,012,ILS32R,1100,etc	
	IEI CONTENT	- , -, , , , , , ,	
	LIST ENTRY:		
	PREDICTED WAYPOINT IDENT		
	ETA AT PREDICTED WAYPOINT		
	PREDICTED AIRSPEED		
	ALTITUDE TO PREDICTED WAYPOINT		
	FUEL REMAINING AT PREDICTED WAYPO	INT	
	OAT AT PREDICTED WAYPOINT		
	WIND AT PREDICTED WAYPOINT		
	TAS AT PREDICTED WAYPOINT		
	PROCEDURE INDICATOR		
	COURSE INTO PREDICTED WAYPOINT		
	DISTANCE TO PREDICTED WAYPOINT		
	PROCEDURE IDENTIFIER		
P	CURRENT GROSS WEIGHT	Consists of a fixed format, fixed order field	
Ρ	FUEL PLANNING EXAMPLE: /FP1605,1100,12,220,08,140,110	Consists of a fixed format, fixed order field.	
	IEI CONTENT	J,F20,300	
	TAKEOFF GROSS WEIGHT		
	LANDING GROSS WEIGHT		
	TAXI FUEL		
	TRIP FUEL		
	RESERVE FUEL		
	ALTERNATE FUEL		
	FINAL FUEL		
	FINAL FUEL EXTRA FUEL		
R	EXTRA FUEL	Consists of multiple variable length lists of elements def	
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT	wind and temperature forecasts for climb, cruise, and de	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,32014005030	wind and temperature forecasts for climb, cruise, and de	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0- IEL CONTENT	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0- IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0- IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY:	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WINE LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 D	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0 IEL CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND W	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND W LIST ENTRY: (DESCENT) ALTITUDE AND C	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 D	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND VC LIST ENTRY: (DESCENT) ALTITUDE AND CONT GENERAL DATA	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND VC LIST ENTRY: (DESCENT) ALTITUDE AND CONT GENERAL DATA	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 D	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND C LIST ENTRY: (DESCENT) ALTITUDE AND C GENERAL DATA EXAMPLE: /GL290690,757-200,,BE4900500	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,32014005030 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WINE LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND W LIST ENTRY: (DESCENT) ALTITUDE AND W LIST ENTRY: (DESCENT) ALTITUDE AND V LIST ENTRY: (DESCENT) ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND V LIST ENTRY: (DESCENT) ALTITUDE AND V UST ENTRY: (DESCENT) ALTITUDE AND V LIST ENTRY: (DESCENT) ALTITUDE AND V AND V AND V AND V AND V AND V AND V AND V AND V AND V	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
R	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0 IEL CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WINE LIST ENTRY: (CLIMB) ALTITUDE AND WINE WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND W LIST ENTRY: (DESCENT) ALTITUDE AND C GENERAL DATA EXAMPLE: /GL290690,757-200,,BE4900500 PW2040,KPDX,BFIMWO02.230.255 IEL CONTENT	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0- IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: (WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND V LIST ENTRY: (GL290690,757-200,,BE4900500 PW2040,KPDX,BFIMWO02.230.255 IEI CONTENT DATE	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,320140050:0- IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND OC GENERAL DATA EXAMPLE: /GL290690,757-200,,BE4900500 PW2040,KPDX,BFIMWO02.230.255 IEI CONTENT DATE AIRCRAFT TYPE	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.
	EXTRA FUEL PLAN OR BLOCK FUEL FORECAST REPORT EXAMPLE: /FR020120015.100125020.30013 ORD,280140035,300M45.ORD,3201400500 IEI CONTENT LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT LIST ENTRY: (DESCENT) ALTITUDE AND OT LIST ENTRY: (DESCENT) ALTITUDE AND O UST ENTRY: (DESCENT) ALTITUDE AND C GENERAL DATA EXAMPLE: /GL290690,757-200,,BE4900500 PW2040,KPDX,BFIMWO02.230.255 IEI CONTENT DATE AIRCRAFT TYPE ENGINE THRUST	wind and temperature forecasts for climb, cruise, and de 30040:020P15.250M30:SEA,280130035,300M40.SEA,320130 40120015.120125020.300130040:020P15.250M30 0 VIND DAT Consists of a fixed order field.	escent.

	DEPARTURE AIRPORT IDENT	SSOCIATED ELEMENTS	
	ARRIVAL AIRPORT IDENT		
	COST INDEX		
	ZERO FUEL WEIGHT		
	ENGINE TYPE		
	ALTERNATE DESTINATION		
	ALTERNATE COMPANY ROUTE		
	CRUISE ALTITUDE		
	CENTER OF GRAVITY		
GP	GENERAL PREDICTIONS	Consists of a fixed format, fixed order field.	
	EXAMPLE: /GPKBFI,140000,0201,0280,230,2700,	,2180,,,,,,,255,KSEA,0140,14033,206,230	
	ARRIVAL AIRPORT IDENT ETA AT DESTINATION		
	DISTANCE TO DESTINATION		
	PREDICTED DESTINATION FUEL		
	ACTIVE CRUISE ALTITUDE		
	TAKEOFF GROSS WEIGHT		
	LANDING GROSS WEIGHT		
	TOTAL FUELFOB		
	PLAN OR BLOCK FUEL		
	TRIP FUEL		
	RESERVE FUEL		
	EXTRA FUEL		
	FINAL FUEL		
	CENTER OF GRAVITY		
	ALTERNATE DESTINATION ALTERNATE FUEL		
	ALTERNATE FOEL		
	DISTANCE TO ALTERNATE		
	ALTERNATE CRUISE ALTITUDE		
MQ	MOD WIND REQUEST	Consists of a list of elements defining altitudes for which	h winds
		are requested, followed by a list of elements defining w	
		in the modified route for which the request is being ma	de.
	EXAMPLE: /MQ350.370.390.410:SEA.N4030W110	D.ORD.ETC	
	IEI CONTENT		
	LIST ENTRY: WIND LEVEL ALTITUDE		
MW		Consists of a fixed order fixed format field	
IVIVV	MEAN WIND DATA EXAMPLE: /MWKBFI,KMWH,P045	Consists of a fixed order, fixed format field.	
	IEI CONTENT		
	DEPARTURE AIRPORT IDENT		
	ARRIVAL AIRPORT IDENT		
	MEAN WIND		
NV	SUPPLEMENTAL NDB NAVAIDS		
	EXAMPLE: /NVABCD,N25131W108473,11300,VTF	H,01250,W11	
	IEI CONTENT		
	LIST ENTRY:		
	NAVAID IDENT		
	NAVAID LAT/LON		
	NAVAID ELEVATION NAVAID MAGVAR		

	BASIC IEIS AND	ASSOCIATED ELEMENTS
PG	PAGE INFO	Consists of a fixed format field defining page information
	EXAMPLE: /PG13	
	IEI CONTENT	
BU	PAGE INFO	
PH	FLIGHT PHASE	Consists of a fixed format field defining FMC flight phase.
	EXAMPLE: /PH2 IEI CONTENT	
	FLIGHT PHASE	
PL	PERFORMANCE LIMITS	Consists of a fixed format, fixed order field.
	EXAMPLE: /PL25,210340,220340,240320,5008	
	IEI CONTENT	20,000020,000100
	TIME ERROR TOLERANCE	
	CLIMB CAS LIMITS	
	CRUISE CAS LIMITS	
	DESCENT CAS LIMITS	
	CLIMB MACH LIMITS	
	CRUISE MACH LIMITS	
PP	DESCENT MACH LIMITS	Operations of a floor disorder field
PP	PERFORMANCE PARAMETERS REPORT EXAMPLE:	Consists of a fixed order field.
	/PP757-	
		50,,250,,0150,23,1,180,180,100250,100250,,1020,P14,M1,5,130,
	36089	
	IEI CONTENT	
	AIRCRAFT TYPE	
	ENGINE TYPE	
	NAVIGATION DATA BASE IDENT	
	PERFORMANCE DATABASE IDENT	
	FLIGHT NUMBER	
	ZERO FUEL WEIGHT CRUISE CENTER OF GRAVITY	
	CRUISE ALTITUDE	
	PLAN OR BLOCK FUEL	
	RESERVE FUEL	
	COST INDEX	
	CLIMB DERATE	
	CLIMB TRANSITION ALTITUDE	
	DESCENT TRANSITION ALTITUDE	
	DESCENT SPEED LIMIT	
	FUEL FLOW FACTOR DRAG FACTOR	
	PERF FACTOR	
	IDLE FACTOR	
	DESTINATION QNH	
	DESTINATION TEMPERATURE	
	DESTINATION ISA DEVIATION	
	ENTERED LANDING FLAP/SLAT CONFIGURA	TION
	ENTERED LANDING SPEED	
	TROPOPAUSE ALTITUDE	
PS	POSITION REPORT	Consists of a fixed format, fixed order field.
		350,ORTIN,093436,BARRO,M32,120015,0485,789,ECON
	<u>IEI CONTENT</u>	

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	BASIC IEIS AND ASSOCIATED ELEMENTS								
	CURRENT POSITION								
	CROSSED WAYPOINT IDENT								
	GREENWICH MEAN TIME								
	CURRENT ALTITUDE								
	GOTO (NEXT) WAYPOINT IDENT								
	ETA AT GOTO WAYPOINT								
	GOTO + 1 (FOLLOWING) WAYPOINT IDENT								
	STATIC AIR TEMPERATURE (SAT)								
	ACTUAL WIND								
	FUEL REMAINING								
	TARGET MACH								
	CRUISE SPEED MODE								
	ENGINE OUT STATUS								
	ZERO FUEL WEIGHT								
RA	ALTERNATE ROUTE	A variable length field that consists of flight plan elements that							
		replace the inactive route. These flight plan elements define a							
		flight plan in approximately the same fashion as ATC clearance							
	EXAMPLE:								
	THE FORMAT IS THE SAME AS DESCRIBED F	OR THE RI IEI DESCRIPTION.							
RM	ROUTE MODIFICATION	A variable length field that that consists of flight plan elements							
		that replace the inactive route. These flight plan elements define							
	a flight plan in approximately the same fashion as ATC								
	clearance language. The RM cannot contain the CR: or								
		flight plan element identifiers.							
		OR THE RI IEI DESCRIPTION WITH THE ADDITION OF THE							
	FOLLOWING: LO: LATERAL OFFSET								
RR		Consists of a fixed format, fixed order field.							
	EXAMPLE: /RRKBFI,13R,A9,P09,,155,1125,285	5,,P25,U35,250015,1,15,2,,P40,108119126							
	DEPARTURE AIRPORT IDENT								
	RUNWAY INTERSECTION								
	POSITION SHIFT								
	RUNWAY LENGTH REMAINING								
	TAKEOFF CENTER OF GRAVITY								
	CURRENT GROSS WEIGHT								
	REFERENCE TAKEOFF GROSS WEIGHT								
	OAT OR SAT								
	TAKEOFF RUNWAY SLOPE								
	TAKEOFF RUNWAY WIND								
	TAKEOFF RUNWAY CONDITION								
	TAKEOFF FLAPS								
	TAKEOFF THRUST RATING								
	VTR PERCENTAGE								
	SELECTED TEMPERATURE								
	TAKEOFF SPEEDS								
	BARO SETTING								
	FLAP/SLAT CONFIGURATION								
	THRUST REDUCTION ALTITUDE								
	ACCELERATION ALTITUDE								
	ENGINE-OUT ACCELERATION ALTITUDE								

	BASIC IEIS AND	ASSOCIATED ELEMENTS						
SD	SUPPLEMENTAL NAVIGATION DATA	Consists of an effectivity date and four separate lists that define						
	BASE	the supplemental data base airport, navaid, waypoint and						
		runway elements in that order.						
	EXAMPLE: /SDJAN0190,KABC,N45240W119235,00911,W23.KJLL,etc:ABC,N45354W122506,11550,							
	VTH,00530,W21.SEE,etc:ABCDE,N45354W122506,,, ,W22.WPT01,etc:05L,LFBO,N33125E010259,005,131,11125.02R,etc							
	IEI CONTENT EFFECTIVITY DATA LIST ENTRY:							
	AIRPORT ELEVATION AIRPORT MAGVAR							
	LIST ENTRY:							
	NAVAID IDENT							
	NAVAID LAT/LON							
	FREQUENCY							
	CLASS OF NAVAID							
	NAVAID ELEVATION							
	NAVAID MAGVAR							
	LIST ENTRY:							
	WAYPOINT IDENT							
	WAYPOINT LAT/LON							
	REFERENCE IDENT							
	REFERENCE LAT/LON							
	RADIAL/DISTANCE							
	WAYPOINT MAGVAR							
	LIST ENTRY:							
		RUNWAY LAT/LON						
		RUNWAY ELEVATION RUNWAY LENGTH						
ГD	TOP OF DESCENT REPORT	Consists of top of descent time and location, and current weight.						
ID.	EXAMPLE: /TD134230,N59151W132251,3153,001							
	IEI CONTENT							
	TOP OF DESCENT ETA							
	TOP OF DESCENT LOCATION							
	CURRENT GROSS WEIGHT							
	STIMULUS CODE							
NE	WIND VECTOR MAGNITUDE DIFFERENCE	Consists of a fixed length field used to define the downlink						
		trigger threshold for wind discrepancies.						
	EXAMPLE: /WE020							
	IEI CONTENT							
	WIND VECTOR MAGNITUDE DIFFERENCE							
NI	WAYPOINT INFORMATION Contains a list of waypoints and their ETAs.							
	EXAMPLE: /WIBDX,143205.CGC,144510.N33E010,153512							
	IEI CONTENT							
	LIST ENTRY:							
	WAYPOINT NAME OR POSITION							
	ETA AT PREDICTED WAYPOINT							
VL	WAYPOINT LIST	Contains a list of waypoints for which data is to be included in a						
		top of descent downlink.						

ATTACHMENT 7 FMC/DATALINK INTERFACE

EXAMPLE: /WLBDX.CGC.NSG.N33E010 IEI CONTENT	
IELCONTENT	
LIST ENTRY:	
WAYPOINT NAME OR POSITION	
WM ENROUTE WIND MODIFICATION Consists of an altitude and a variable length list of entries that include the waypoint, the waypoint winds that apply to that altitude, and the waypoint temperature, and the waypoint temperature.	
EXAMPLE: /WM310,SEA,120075,350M35,60000,N04030W120,130090,,55000	
IEI CONTENT	
WIND ALTITUDE	
LIST ENTRY:	
WAYPOINT NAME OR POSITION	
WAYPOINT WIND	
WAYPOINT ALTITUDE/OAT	
WAYPOINT TROPOPAUSE ALTITUDE	
WP SUPPLEMNTAL NDB WAYPOINTS Consists of a list of waypoints to be included in the supplemental navigation data base.)
EXAMPLE: /WPEFGH,N21421W101113,SRP,1090020,W09	
IEI CONTENT	
LIST ENTRY:	
WAYPOINT IDENT	
WAYPOINT LATION	
REFERENCE IDENT	
RADIALDISTANCE	
WAYPOINT MAGVAR	
WR <u>ALTERNATE AIRPORT WEATHER REQUEST</u> Consists of a variable length list of entries defining destination	
and alternate identifiers.	
EXAMPLE: /WRKLAX.KSFO.KPHX	
IEI CONTENT	
LIST ENTRY: DESTINATION AND ALTERNATE IDENTS	

ATTACHMENT 7 FMC/DATALINK INTERFACE

4933 4934	Section 8 Element Definitions					
4935 4936 4937 4938	This section contains an alphabetical table of defined elements indicating the formats and attributes of each element. This section will be updated as the need for new elements is identified. Users are requested to advise the AEEC staff when such a need arises.					
4939	Notes:					
4940 4941	 This element may require one or more elements to completely define the desired data. 					
4942 4943	1.2. Some implementations require that this element be uplinked in a fixed length format of maximum character length.					
4944	2.3. See Section 10 for further definition of codes.					
4945	3.4. Millibars = Hectopascals = 100 newton/meter2					
	Element Type Length Elem Char Scale Units Notes					

v v v v v	s s s s s	AN N AN AN	10 5 3 13	1	Feet Feet	
v v v v	s s s	N AN	3			
v v v	S S	AN		100	Feet	
V V	S		13			
v	-	AN				
			13			
_	М	Ν	9			
F	S	Ν	3	100	Feet	
F	S	Ν	3	1	Degrees	
V	S	Ν	3	1	Knots	2
V	М	Ν	6			
F	S	Ν	3	1	Degrees	
V	S	Ν	3	1	Knots	
v	S	AN	11			
V	S	Ν	5	1	Feet	
V	S	AN	4			
F	S	AN	13			
METER ETER			RIC			
	V F V V V V F F	V S V M F S V S V S V S V S V S V S V S WETER A = ALL	V S N V M N F S N V S AN F S AN METER A = ALPHA	V S N 3 V M N 6 F S N 3 V S N 3 V S AN 11 V S N 5 V S AN 4 F S AN 13 METER A = ALPHA X	V S N 3 1 V M N 6	V S N 3 1 Knots V M N 6

V = VAF F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Not
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
AIRPORT MAGVAR	V	S	AN	3			
DIRECTIONAL	F		A	1		E=East	
						W=West	
MAGNITUDE	V		Ν	2	1	Degrees	
ALTERNATE ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
ALTERNATE COMPANY ROUTE	V	S	AN	10			
ALTERNATE CRUISE ALTITUDE	V	S	N	3	100	Feet	
ALTERNATE DESTINATION	V	S	AN	4			1
ALTERNATE FLAP/SLAT							
CONFIGURATION	F	S	N	1			
ALTERNATE FLAPS	V	S	N	2	1	Degrees	
ALTERNATE FUEL	V	S	N	5	0.1	Klbs	
ALTERNATE IDENT	V	S	AN	10			
ALTERNATE LIMIT TAKEOFF							

V = VARIABLE F = FIXED

M = MULTIPARAMETER A

AN = ALPHANUMERIC D = DIRECTIONAL

V F F F F	S M S S S	N N N N	5 9 3 3 3 1	0.1	Klbs Knots Knots No derate 1=	
F F F	S S S	N N N	3 3 3	1	Knots Knots 0= No derate	
F	s s	N N	3	1	Knots Knots 0= No derate	
F	S	N	3		Knots 0= No derate	
				1	0= No derate	
F	S	Ν	1		No derate	
					1=	
					Derate 1	
					2= Derate 2	
					I	
					9= Derate 9	
F	М	N	6			1
F	S	N	2	1	Hour	
F	S	Ν	2	1	Minute	
F	S	Ν	2	1	Second	
V	D	AN	5			
F		А	1		P=Plus	
					M=Minus	
V		N	4	0.01	Degrees	
F	S	A	1		M=Missed	1
					Appr	
					D=Dir to	
					from	
					Present Pos	
	F V F V	F S F S V D F V F S PARAMETER A = ALF	F S N F S N V D AN F A V N F S A PARAMETER A = ALPHA	F S N 2 F S N 2 V D AN 5 F A 1 V N 4 F S A 1	F S N 2 1 F S N 2 1 V D AN 5 7 F A 1 1 V N 4 0.01 F S A 1 PARAMETER A = ALPHA N = N	F S N 2 1 Minute F S N 2 1 Second V D AN 5 P=Plus F A 1 Minute MeMinus V N 4 0.01 Degrees V N A 1 MeMissed F S A 1 Memissed F S A 1 Memissed F S A 1 Memissed Popr Popr Popr Popr Persent Pos Present Pos Present Pos

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VAF F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ALTERNATE VTR PERCENTAGE	V	S	N	2	1	Percent	
ALTERNATE WIND	v	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	v	S	N	3	1	Knots	
ALTITUDE AND WIND	v	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	v	S	N	3	1	Knots	
ALTITUDE TO ALTERNATE	v	S	Ν	3	100	Feet	1
ALTITUDE TO PREDICTED WPT	v	S	N	4	10	Feet	
ALTN FLIGHT LIST ALT/OAT	v	М	AN	6			
ALTITUDE	F	S	N	3	100		
DIRECTIONAL	F	D	A	1			
MAGNITUDE	v		N	2	1		
ALTN FLIGHT LIST IDENT	v	S	AN	4			
ALTN FLIGHT LIST WIND	v	D	N	6			
DIRECTIONAL	F		N	3	1		
MAGNITUDE	v		N	3	1		
ALTN INHIBIT	v	S	AN	4			
ARRIVAL AIRPORT IDENT	v	s	AN	4			
ASSUMED TEMPERATURE	v	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	

V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA

A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

	on	Туре	Туре Ту	уре	Length	Scale	Units	Notes
MAGNITUDE	V		N	2	2	1	°C	
BARO SETTING	V	D	AN	1 5	;			
DIRECTIONAL	F		А	1			H=QNH	
							E=QFE	
MAGNITUDE	V		Ν	4	ŀ	1	Hecto-pascals	4
CENTER IRS POSITION	F	S	AN	1	13			
DIRECTIONAL	F		А	1			N=North	
							S=South	
DEGREES	F		Ν	2	2	1	Degrees	
MINUTES	F		Ν	3	3	0.1	Minutes	
DIRECTIONAL	F		A	1			E=East	
							W=West	
DEGREES	F		Ν	3	3	1	Degrees	
MINUTES	F		Ν	3	3	0.1	Minutes	
CENTER OF GRAVITY	V	S	Ν	3	3	0.1	Percent	
CLASS OF NAVAID	V	S	A	7	,			
CLIMB CAS LIMITS	F	М	Ν	6	3			
MINIMUM CLB CAS	F	S	N	3	3	1	Knots	
MAXIMUM CLB CAS	F	S	N	3	3	1	Knots	
CLIMB DERATE	F	S	Ν	1]		N=as required	
							N=0 (NoDerate)	
							N=1 (Derate 1)	
							N=2 (Derate 2)	
CLIMB MACH LIMITS	F	М	Ν	6	;			
MINIMUM CLB MACH	F	S	Ν	3	3	0.001	Mach	
RIABLE	S = SINGLE PARAMETI	ĒR	A = ALPHA			N = NU	IMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
MAXIMUM CLB MACH	F	S	N	3	0.001	Mach	
CLIMB SPEED LIMIT	F	М	N	6			
ALTITUDE	F	S	N	3	100	Feet	
SPEED	F	S	N	3	1	Knots (CAS)	
CLIMB TRANSITION ALTITUDE	V	S	Ν	3	100	Feet	
CLIMB WIND	V	М	Ν	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	Ν	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
COMPANY DISTRIBUTION	V	S	AN	10			
COMPANY PREFERRED ALTN ALTITUDE	V	S	N	3	100	Feet	
COMPANY PREFERRED ALTN ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	Ν	3	100		
DIRECTIONAL	F	D	A	1			
MAGNITUDE	V		N	2	1		
COMPANY PREFERRED ALTN IDENT	V	S	AN	4			
COMPANY PREFERRED ALTN OFFSET	V	D	AN	3			
DIRECTIONAL	F		A	1			
DISTANCE	V		Ν	2	1		
COMPANY PREF ALTN OVERHEAD FIX	V	S	AN	13			
COMPANY PREFERRED ALTN PRIORITY	F	S	N	1			
COMPANY PREFERRED ALTN SPEED	V	М	Ν	4			
TYPE	F	s	N	1			
SPEED VALUE	V	S	N	S	1, 0.001		

V = VAF F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC D = DIRECTIONAL

Elemen Descriptio		Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
COMPANY PREFERRED	ALTN WIND	v	М	Ν	6			
DIRECTIONAL		F	S	N	3	1		
MAGNITUDE		V	S	Ν	3	1		
COMPANY ROUTE		V	S	AN	10			
COST INDEX		V	S	Ν	4			
COURSE IN		F	S	Ν	3	1	Degrees	
COURSE INTO PREDICT	ED WAYPOINT	V	S	Ν	3	1	Degrees	1
CROSS TRACK DEVIATIO	N	V	D	AN	4			
DIRECTIONAL		F		A	1		L or R	
DISTANCE		V		Ν	3	0.1	NM	
CROSSED WAYPOINT ID	ENT	V	S	AN	13			
CRUISE ALTITUDE		V	S	Ν	3	100	Feet	
CRUISE CAS LIMITS		F	М	Ν	6			
MINIMUM CRZ CAS		F	S	N	3	1	Knots	
MAXIMUM CRZ CAS		F	S	Ν	3	1	Knots	
CRUISE CENTER OF GR	AVITY	V	S	Ν	3	0.1	Percent	
CRUISE MACH LIMITS		F	М	Ν	6			
MINIMUM CRZ MACH		F	S	N	3	0.001	Mach	
MAXIMUM CRZ MACH		F	S	N	3	0.001	Mach	
CRUISE SPEED MODE		V	S	AN	17		Active Cruise	
							Page Title	
CRUISE WAYPOINT WIN	D	V	М	Ν	6			
DIRECTIONAL		F	S	Ν	3	1	Degrees	
MAGNITUDE		v	S	Ν	3	1	Knots	2
CRUISE WIND		V	М	Ν	6			
	S = SINGLE PARA M = MULTIPARAM		A = ALF AN = AI	PHA PHANUME	RIC		IUMERIC IRECTIONAL	

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	v	S	N	3	1	Knots	1
CRUISE WIND TO ALTERNATE	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	v	S	N	3	1	Knots	
CURRENT ALTITUDE	v	S	N	3	100	Feet	
CURRENT CALIBRATED AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		А	1		K or M	
CURRENT GROSS WEIGHT	v	S	N	5	0.1	Klbs	
CURRENT GROSS WEIGHT AT PRED WPT	V	S	N	5	0.1	Klbs	
CURRENT GROUND SPEED	F	S	N	3	1	Knots	
CURRENT POSITION	F	S	AN	13			
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
CURRENT TRUE AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	

Descrip	ent tion	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
CURRENT VERTICAL S	PEED	V	D	AN	5			
DIRECTIONAL		F		A	1		U or D	
SPEED VALUE		v		N	4	1	Feet/min	
DATE		F	Μ	Ν	6			
DAY		F	S	Ν	2		Day	
MONTH		F	S	Ν	2		Month	
YEAR		F	S	Ν	2		Year	
DEPARTURE AIRPORT	IDENT	v	S	AN	4			
DESCENT CAS LIMITS		F	М	Ν	6			
MINIMUM DES CAS		F	S	Ν	3	1	Knots	
MAXIMUM DES CAS		F	S	N	3	1	Knots	
DESCENT ISA DEVIATI	ON	v	D	AN	3			
DIRECTIONAL		F		A	1		P=Plus	
							M=Minus	
MAGNITUDE		v		Ν	2	1	°C	
DESCENT MACH LIMIT	S	F	М	Ν	6			
MINIMUM DES MACI	H	F	S	N	3	0.001	Mach	
MAXIMUM DES MAC	н	F	S	N	3	0.001	Mach	
DESCENT SPEED LIMI	г	F	М	Ν	6			
ALTITUDE		F	S	N	3	100	Feet	
SPEED		F	S	Ν	3	1	Knots (CAS)	
DESCENT TRANSITION	ALTITUDE	v	S	N	3	100	Feet	
DESCENT WIND		v	М	N	9			
ALTITUDE		F	S	N	3	100	Feet	2
		F	s	N	3	1	Degrees	
DIRECTIONAL							0	

ATTACHMENT 7 FMC/DATALINK INTERFACE

s s D	N AN AN A A A A A A A A A A	3 3 10 3 1 2 4 3 2	1 1 1 1 1 1 1	Knots Degrees P=Plus M=Minus °C Hecto pascals	4
S D S	AN AN A N N AN N	10 3 1 2 4 3	1	P=Plus M=Minus °C Hecto	4
D	AN A N N AN	3 1 2 4 3		M=Minus °C Hecto	4
S	A N AN N	1 2 4 3		M=Minus °C Hecto	4
	N N AN N	2 4 3		M=Minus °C Hecto	4
	N AN N	4		°C Hecto	4
	N AN N	4		Hecto	4
	AN N	3	1		4
D	N				
		2			
	Δ				
	~	1		L=Left	
				C=Center	
				R=Right	
				O=None	
D	AN	3			
	A	1		P=Plus	
				M=Minus	
	N	2	1	°C	
S	N	4	1	NM	
S	N	4	1	NM	
S	N	4	1	NM	1
	N	4	1	NM	
S	N	6			
			1	Hours	
	s M		M N 6		M N 6

V = VAR F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1		
DRAG FACTOR	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	v		Ν	2	0.1	Percent	
EFFECTIVITY DATE	F	М	AN	7			
MONTH	F	S	A	3		Month	
DAY	F	S	A	2		Day	
YEAR	F	S	Ν	2		Year	
ENGINE-OUT ACCELERATION							
ALTITUDE	v	S	Ν	5	1	Feet	
ENGINE-OUT STATUS	V	S	N	1		0=All Engine	
						1=Engine Out	
ENGINE THRUST	F	S	Ν	3	0.1	Klbs	
ENGINE TYPE	V	S	AN	15			
ENTERED LANDING FLAP/SLAT CONFIGURATION	F	S	N	1			
ENTERED LANDING SPEED	F	S	Ν	3	1	Knots (CAS)	
ENTERED IRS HEADING	F	S	Ν	3	1	Degrees	
ERROR DATA CODE	F	S	Ν	3			3
ERROR TYPE CODE	F	S	N	3			3
ESTIMATED WIND TO ALTERNATE	V	М	Ν	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2

V = VARIABLE F = FIXED S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
ETA AT ALTERNATE DESTINATION	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	Ν	2	1	Second	
ETA AT DESTINATION	F	М	Ν	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT GOTO WAYPOINT	F	М	Ν	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT PREDICTED WAYPOINT	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA CHANGE VARIABLE	F	S	N	1	1	Minutes	
EXTENDED REJECTION DATA	v	S	AN	25			
EXTRA FUEL	v	D	AN	6			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	v		N	5	0.1	Klbs	
FINAL FUEL	V	S	Ν	5	0.1	Klbs	
FLAP/SLAT CONFIGURATION	F	S	N	1			

V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA

A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
FLIGHT NUMBER	V	S	AN	10			
FLIGHT PATH ANGLE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
ANGLE	V		N	2	0.1	Degrees	
FLIGHT PHASE	F	S	N	1		0= Preflight	
						1=Takeoff	
						2=Climb	
						3=Cruise	
						4= Descent	
						5=	
						5= Approach	
						6=Go Around	
						7=Done	
FMC BEST POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
FMC POSITION PRIOR TO POS UPDATE	F	S	AN	13			

ATTACHMENT 7 FMC/DATALINK INTERFACE

S = SINGLE PARAMETER M = MULTIPARAMETER V = VARIABLE A = ALPHA N = NUMERIC A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL F = FIXED

DIRECTIONAL DEGREES MINUTES DIRECTIONAL		F		А	1		N=North	
MINUTES		F					IN-INUILII	
MINUTES		-					S=South	
		F		N	2	1	Degrees	
DIRECTIONAL		F		N	3	0.1	Minutes	
		F		А	1		E=East	
							W=West	
DEGREES		F		Ν	3	1	Degrees	
MINUTES		F		Ν	3	0.1	Minutes	
FMC SOFTWARE PART I	NUMBER	F	S	Ν	10			
FMC SYSTEM DATE		F	М	Ν	6			
DAY		F	S	Ν	2	1		
MONTH		F	S	Ν	2	1		
YEAR		F	S	Ν	2	1		
FMC SYSTEM TIME		F	М	Ν	6			
HOURS		F	S	Ν	2	1	Hours	
MINUTES		F	S	Ν	2	1	Minutes	
SECONDS		F	S	Ν	2	1	Seconds	
FREQUENCY		F	S	Ν	5	0.01	MHz	1
FUEL AT DESTINATION		V	S	Ν	5	0.1	Klbs	
FUEL FLOW FACTOR		V	D	AN	3			
DIRECTIONAL		F		А	1		P=Plus	
							M=Minus	
MAGNITUDE		V		Ν	2	0.1	Percent	
FUEL REMAINING		V	S	Ν	5	0.1	Klbs	
FUEL REMAINING AT AL	TN DEST	v	S	Ν	5	0.1	Klbs	1

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
FUEL REMAINING AT PREDICTED WPT	V	S	N	5	0.1	Klbs	1
GOTO (NEXT) WPT IDENT	V	S	AN	13			
GOTO+1 (FOLLOWING) WPT IDENT	V	S	AN	13			
GREENWICH MEAN TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Seconds	
GROUND ADDRESS	V	S	AN	7			
HOLD EFC TIME	F	М	N	4			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
IDLE FACTOR	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
INACTIVE COMPANY ROUTE	V	S	AN	10			
INVALID FLAG	F	S	N	1		Nothing	
						0=Valid	
						1=Invalid	
IRS-C MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-L MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	
ABLE S = SINGLE PAF M = MULTIPARA		A = ALF AN = AI			N = N	IUMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
IRS-R MODE	F	S	N	1		1=Align
						2=Nav
						3=Attitude
IRS MONITOR	F	М	N	9		
LEFT IRS DRIFT	F	S	N	3	0.1	NM/hour
CENTER IRS DRIFT	F	S	N	3	0.1	NM/hour
RIGHT IRS DRIFT	F	S	N	3	0.1	NM/hour
LABEL CODE	F	S	N	3		
LANDING GROSS WEIGHT	V	S	N	5	0.1	Klbs
LEFT DME DISTANCE	V	S	N	4	0.1	NM
LEFT DME FREQUENCY	F	S	N	5	0.01	MHz
LEFT GNSS POSITION	F	S	AN	13		
DIRECTIONAL	F		A	1		N=North
						S=South
DEGREES	F		N	2	1	Degrees
MINUTES	F		N	3	0.1	Minutes
DIRECTIONAL	F		А	1		E=East
						W=West
DEGREES	F		N	3	1	Degrees
MINUTES	F		N	3	0.1	Minutes
LEFT ILS FREQUENCY	F	S	N	5	0.01	MHz

V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	No
LEFT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
LEFT VOR BEARING	F	S	Ν	4	0.1	Degrees	
LEFT VOR FREQUENCY	F	S	Ν	5	0.01	MHz	
LITERAL ERROR DATA	V	S	AN	13			
LOCALIZER DEVIATION	V	D	AN	4		DDM	
DIRECTIONAL	F		A	1		L = Left	
						R = Right	
MAGNITUDE	V		Ν	3	0.001		
MANEUVER MARGIN	V	S	Ν	3	0.01		
MAXIMUM CLIMB CAS	F	S	Ν	3	1	Knots	
MAXIMUM CLIMB MACH	F	S	Ν	3	0.001	Mach	
MAXIMUM CRUISE CAS	F	S	Ν	3	1	Knots	
MAXIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MAXIMUM DESCENT CAS	F	S	N	3	1	Knots	
MAXIMUM DESCENT MACH	F	S	N	3	0.001	Mach	
MEAN WIND	V	D	AN	4			
DIRECTIONAL	F		A	1		P=Plus	
ABLE S = SI	NGLE PARAMETER	A = ALF	РНА		N = N	UMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						M=Minus	
MAGNITUDE	V		N	3	1	Knots	
MESSAGE SEQUENCE NUMBER	V	S	AN	10			
MINIMUM CLIMB CAS	F	S	N	3	1	Knots	
MINIMUM CLIMB MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE CAS	F	S	N	3	1	Knots	
MINIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE TIME	F	S	N	1	1	Minutes	
MINIMUM DESCENT CAS	F	S	N	3	1	Knots	
MINIMUM DESCENT MACH	F	S	N	3	0.001	Mach	
MINIMUM FUEL TEMPERATURE	V	D	AN	3		P=Plus	
DIRECTIONAL	F		A	1		M=Minus	
MAGNITUDE	V		N	2	1	°C	
MINIMUM R/C - CLB	V	S	N	3	1	Feet/min	
MINIMUM R/C - CRZ	V	S	N	3	1	Feet/min	
MINIMUM R/C - ENG OUT	V	S	N	3	1	Feet/min	
MOD CRZ WAYPOINTS	V	S	AN	13			
MOD PLAN CRUISE ALTITUDE	V	S	N	3	100	Feet	
MONITOR CODE	F	S	N	2			
NAVAID ELEVATION	V	S	N	5	1	Feet	
NAVAID IDENT	V	S	AN	4			
NAVAID LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		A	1		N=North	
						S-South	

S=South

V = VARIABLE F = FIXED S = SINGLE PARAMETER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
DEGREES	F		N	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
NAVAID MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		A	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
NAVAID TYPE	F	S	A	1		D=DME	
						V=VOR	
NAVIGATION DATA BASE IDENT	V	S	AN	10			
NETWORK ADDRESS	V	S	AN	7			
NOISE ABATEMENT END ALTITUDE	V	S	V	5	1	Feet	
NOISE ABATEMENT SPEED	F	S	Ν	3	1	Knots	
NOISE ABATEMENT DERATE THRUST	F	S	Ν	1		N=as required	
						N=0 (no noise derate Thrust)	
						N=1 (Derate 1)	
						N=2 (Derate 2)	
						N=3 (Max Climb)	
NOISE ABATEMENT THRUST	V	М	AN	6			
THRUST TYPE	F	S	A	1		n=n1	

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
						N=N1	
						E=EPR	
THRUST VALUE	V	S	N	5	0.01	Percent or EPR	
NOISE ABATEMENT START ALTITUDE	V	S	Ν	5	1	Feet	
OAT OR SAT	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
OAT AT PREDICTED WAYPOINT	V	D	AN	3			-
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	2	1	°C	
PAGE ID	V	М	AN	3			
PAGE NUMBER	V		N	2	1		
LAST PAGE FLAG	F		Ν	1		Blank= Page	
						to Follow	
						E=End	
PAGE INFO	F	М	N	2			
PAGE NUMBER	F	S	N	1			
NUMBER OF PAGES	F	S	N	1			
PERF DEFAULTS CONFIG NO.	V	S	А	10			
PERF FACTOR	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	v		N	2	0.1	Percent	
ABLE S = SINGLE PAI M = MULTIPAR		A = ALF	PHA LPHANUME	DIC			-

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
PERFORMANCE DATA BASE IDENT	V	S	AN	10			
PLAN OR BLOCK FUEL	V	S	Ν	5	0.1	Klbs	
POSITION SHIFT	v	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
SHIFT	v		Ν	2	100	Feet	
PREDICTED AIRSPEED	F	D	AN	4			1
SPEED	F		N	3	1 or		
TYPE	F		A	1	0.001	K=Knot	
1112			~	I	0.001	M=Mach	
	V		N	-	0.4		
PREDICTED DESTINATION FUEL		S		5	0.1	Klbs	1
PREDICTED FUEL REMAINING	V	S	N	5	0.1	Klbs	1
PREDICTED WAYPOINT IDENT	V	S	AN	13			
ACTIVE CRUISE ALTITUDE	V	S	Ν	3	100	Feet	
PROCEDURE INDICATOR	F	S	А	1		Y=	1
						Proc.mbr.	
						N=Not	
						Proc.mbr.	
PROCEDURE IDENT	V	S	AN	6			1
PROCEDURE WAYPOINT	F	S	А	1		Y or N	
QNH	V	S	N	4	1	Hecto pascals	4
QRH T/O SPD CONFIG NUM	V	S	A	10			
RADIAL/DISTANCE	F	М	AN	7			1

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VARIABLI F = FIXED

M = MULTIPARAMETER

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
RADIAL	F	S	N	3	1	Degrees	
DASH	F	S	AN	1			
DISTANCE	F	S	N	3	1	NM	
RADIO MEASUREMENT	V	S	N	4	0.1	NM or degrees	
REFERENCE AIRPORT IDENT	V	S	AN	4			
REFERENCE CRZ WAYPOINT IDENT	V	S	AN	13			
REFERENCE IDENT	V	S	AN	5			1
REFERENCE LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
REFERENCE RTA WAYPOINT IDENT	V	S	AN	13			
REFERENCE TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
REPORT STIMULUS	F	S	N	3			3
RESERVE FUEL	V	S	N	5	0.1	Klbs	
RIGHT DME DISTANCE	V	S	N	4	0.1	NM	
RIGHT DME FREQUENCY	F	S	N	5	0.01	MHz	

V = VARIABLE F = FIXED

S = SINGLE PARAMETER

A = ALPHA AN = ALPHAI

A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
RIGHT GPS POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT ILS FREQUENCY	F	S	N	5	0.01	MHz	
RIGHT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		Ν	2	1	Degrees	
MINUTES	F		Ν	3	0.1	Minutes	
DIRECTIONAL	F		A	1		E=East	
						W=West	
DEGREES	F		Ν	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT VOR BEARING	F	S	Ν	4	0.1	Degrees	
RIGHT VOR FREQUENCY	F	S	N	5	0.01	MHz	
RTA CONSTRAINT	F	S	А	2		AA=AT AFTER	or
						AB=AT BEFORE	or
						AT =AT	

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VARIABLI F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
RTA COST INDEX	v	D	AN	5			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
COST INDEX	V		Ν	4	1		
RTA TAKEOFF WINDOW TIM	IES F	М	Ν	12			
FIRST HOURS	F	S	Ν	2	1	Hours	
FIRST MINUTES	F	S	Ν	2	1	Minutes	
FIRST SECONDS	F	S	Ν	2	1	Seconds	
LAST HOURS	F	S	N	2	1	Hours	
LAST MINUTES	F	S	Ν	2	1	Minutes	
LAST SECONDS	F	S	Ν	2	1	Seconds	
RTA TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
RTA TIME ERROR TOLERAN	ICE V	S	N	2	1	Seconds	
RTA WAYPOINT IDENT	V	S	AN	13			
RTA WINDOW TIMES	F	М	N	12			
FIRST HOURS	F	s	N	2	1	Hours	
FIRST MINUTES	F	S	N	2	1	Minutes	
FIRST SECONDS	F	S	N	2	1	Seconds	
LAST HOURS	F	s	N	2	1	Hours	
LAST MINUTES	F	S	N	2	1	Minutes	
LAST SECONDS	F	s	N	2	1	Seconds	
RUNWAY COURSE	V	S	N	3	1	Degrees	
	SINGLE PARAMETER	A = Al AN = A	_PHA ALPHANUME	RIC		UMERIC IRECTIONAL	

V = VAF F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

be Length Scale	Units
6 1	Feet
3	
2	
1	L=Left
	C=Center
	R=Right
	O=None
3	
13	
1	N=North
	S=South
2 1	Degrees
3 0.1	Minutes
1	E=East
	W=West
3 1	Degrees
3 0.1	Minutes
5 1	Feet
3 100	Feet
24	
3	
1	P=Plus
	M=Minus
2 1	°C
5 0.1	Klbs
	5 0.1 N = NU NUMERIC D = DI

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
STATIC AIR TEMPERATURE (SAT)	V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	v		Ν	2	1	°C	
STEADY/INTERMITTENT	F	S	А	1	S or I		
STIMULUS CODE	F	S	N	3			3
SYSTEM CODE	F	S	N	2			
TAI ON ALTITUDE	V	S	N	3	100	Feet	
TAI ON/OFF ALTITUDE	F	М	N	6			
TAI ON ALTITUDE	F	S	Ν	3	100	Feet	
TAI OFF ALTITUDE	F	S	N	3	100	Feet	
TAKEOFF CENTER OF GRAVITY	V	S	N	3	0.1	Percent	
TAKEOFF FLAPS	V	S	N	2	1	Degrees	
TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
TAKEOFF RUNWAY CONDITION	F	S	Ν	1		1=Wet	

2=Dry
3=1/4 water
4=1/2 water
5=1/4 slush
6=1/2 slush
7=compact snow
8= wet skid resist
N = NUMERIC

V = VARIABLE F = FIXED S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
TAKEOFF RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		Ν	2			
RUNWAY SUFFIX	F		А	1		L=Left	
						C=Center	
						R=Right	
						O=None	
TAKEOFF RUNWAY SLOPE	V	D	AN	3			
DIRECTIONAL	F		A	1		U=Up	
						D=Down	
MAGNITUDE	V		Ν	2	0.1	Percent	
TAKEOFF RUNWAY WIND	V	М	Ν	6			
DIRECTIONAL	F	S	Ν	3	1	Degree	
MAGNITUDE	V	S	Ν	3	1	Knots	2
TAKEOFF SPEEDS	F	М	Ν	9			
V1	F	S	Ν	3	1	Knots	
VR	F	S	Ν	3	1	Knots	
V2	F	S	Ν	3	1	Knots	2
TAKEOFF THRUST RATING	F	S	Ν	1		0= No derate	
						1= Derate 1	
						2= Derate 2	
						ļ	
						I	
						8=Bump	

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

N = NUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						9=Derate	
TAKEOFF TIME							
HOURS	F	S	Ν	2	1	Hour	
MINUTES	F	S	Ν	2	1	Minute	
TARGET MACH	V	S	Ν	3	.001	Mach	
TAS AT PREDICTED WAYPOINT	v	S	Ν	3	1	Knots	1
TAXI FUEL	V	S	Ν	5	0.1	Klbs	
TEMPERATURE AT ALTERNATE	V	D	AN	3			1
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
THRUST REDUCTION ALTITUDE	V	S	N	5	1	Feet	
TIME DETERMINED	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	S	Ν	2	1	Seconds	
TIME ERROR TOLERANCE	V	S	Ν	2	1	Seconds	
TIME TO GO TO DESTINATION 1	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 2	V	S	Ν	3	1	Minutes	
TIME TO GO TO DESTINATION 3	V	S	Ν	3	1	Minutes	
TIME TO GO TO DESTINATION 4	V	S	Ν	3	1	Minutes	
TIME TO GO TO DESTINATION 5	V	S	Ν	3	1	Minutes	
TIME TO GO TRIGGER	V	S	Ν	3	1	Minutes	

V = VARIABLE F = FIXED

S = SINGLE PARAMETER A = ALPHA M = MULTIPARAMETER AN = ALPHAN M = MULTIPARAMETER

A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
TIME UPLINK IS RECEIVED	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOC OR CRUISE TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
TOP OF DESCENT ALTITUDE	V	S	N	3	100	Feet	
TOP OF DESCENT ETA	F	М	N	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOP OF DESCENT LOCATION	F	S	AN	13			
DIRECTIONAL	F		А	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		А	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
TOTAL FUEL/FOB	V	S	N	5	0.1	Klbs	
TRACK ANGLE MAG	F	S	N	3	1	Degrees	
TRIGGER NUMBER	F	S	Ν	3	1		
	GLE PARAMETER	A = ALF AN = Al	°HA _PHANUME	RIC		UMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VARIABLE F = FIXED

Element		pe Leng Typ		Char Length	Scale	Units	Notes
TRIGGER TRIPPED TIME	F	М	Ν	6			
HOURS	F	S	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	s	Ν	2	1	Seconds	
TRIGGER UPLINK TIME	F	М	Ν	6			
HOURS	F	s	Ν	2	1	Hours	
MINUTES	F	S	Ν	2	1	Minutes	
SECONDS	F	s	Ν	2	1	Seconds	
TRIM	V	D	AN	5			
DIRECTIONAL	F		A	1		P=Plus	
						M=Minus	
MAGNITUDE	V		Ν	4	0.01	Degrees	
TRIP FUEL	V	S	Ν	5	0.1	Klbs	
TROPOPAUSE ALTITUDE	F	S	Ν	5	1	Feet	
UPLINKED IMI	F	S	A	3			
VERTICAL DEVIATION	V	D	AN	6			
DISTANCE	V		Ν	5	1	Feet	
DIRECTIONAL	F		A	1		H or L	
VTR PERCENTAGE	V	S	Ν	2	1	Percent	
WAYPOINT ALTITUDE/OA	ν. T	М	AN	6			1
ALTITUDE	F	S	Ν	3	100	Feet	
OAT DIRECTIONAL	F	D	Ν	1		P=Plus	
						M=Minus	
OAT MAGNITUDE	V		Ν	2	1	°C	
WAYPOINT BEARING	F	S	Ν	3	1	Degrees	1
	S = SINGLE PARAMETER M = MULTIPARAMETER		= Alpha N = Alphanum	ERIC		IUMERIC PIRECTIONAL	

Element Descriptio		Туре	Length Type	Elem Type	Char Length	Scale	Units	Not
WAYPOINT IDENT	١	/	S	AN	5			
WAYPOINT LAT/LON	F		S	AN	13			1
DIRECTIONAL	F			A	1		N=North	
							S=South	
DEGREES	F			Ν	2	1	Degrees	
MINUTES	F			Ν	3	0.1	Minutes	
DIRECTIONAL	F			A	1		E=East	
							W=West	
DEGREES	F	:		Ν	3	1	Degrees	
MINUTES	F	:		Ν	3	0.1	Minutes	
WAYPOINT MAGVAR	١	/	D	AN	3			1
DIRECTIONAL	F	:		A	1		E=East	
							W=West	
MAGNITUDE	V	/		N	2	1	Degrees	
WAYPOINT NAME OR PO	SITION	/	S	AN	13			
WAYPOINT SEQUENCE	١	/	S	AN	13			
WAYPOINT WIND	١	/	М	Ν	6			
DIRECTIONAL	F		S	Ν	3	1	Degrees	1
MAGNITUDE	V	/	S	N	3	1	Knots	2
WIND ALTITUDE	N	/	S	Ν	3	100	Feet	
WIND AT PREDICTED WA	YPOINT \	/	М	Ν	6			1
DIRECTIONAL	F	:	S	Ν	3	1	Degrees	
MAGNITUDE	Ň	/	S	N	3	1	Knots	
WIND LEVEL ALTITUDE	Ň	/	S	Ν	3	100	Feet	
WIND LEVEL WAYPOINT	١	/	S	AN	13			
	S = SINGLE PARAME M = MULTIPARAMET		A = ALF AN = AL	PHA PHANUME	RIC		UMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units N	otes
WIND VECTOR MAGNITUDE							
DIFFERENCE	v	S	N	3	1	Knots	
ZERO FUEL WEIGHT	v	S	N	5	0.1	Klbs	
ZERO FUEL WEIGHT CG	v	S	N	3	0.1	Percent	

4946 4947

> V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

4948Section 94949Flight Plan Elen

4949 Flight Plan Element Definitions

4950 4951

This section contains the flight plan element identifiers and a complete description of each flight plan element.

	FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
	:DA:	DEPARTURE AIRPORT							
			AIRPORT IDENTIFIER	v	s	AN	4		
	:AA:	ARRIVAL AIRPORT							
			AIRPORT IDENTIFIER	V	S	AN	4		
	:CR:	COMPANY ROUTE							
			COMPANY ROUTE	V	S	AN	10		
	:R:	DEPARTURE RUNWAY							
			RUNWAY IDENTIFIER	F	D	AN	3		
			RWY NUMBER			Ν	2		
			RWY SUFFIX			А	1		L=LEFT
									C=CENTER
									R=RIGHT
		SUFFIX							O=NO
	:D:	DEPARTURE PROCEDURE							
			PROCEDURE IDENT	V	S	AN	10		
	:F:	FLIGHT PLAN SEGMENT							
		PUBLISHED IDENT							
			FIX IDENTIFIER	v	S	AN	5		
			OPTIONAL INTRO.(,)						
V = VARI F = FIXEI			NGLE PARAMETER IULTIPARAMETER	A = ALPHA AN = ALPH		C		UMERIC	AL

FPEI Dese	ription Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
	OPTIONAL LAT/LON	F	М	AN	13		
	DIRECTIONAL			A	1		N OR S
	DEGREES			N	5		
	DIRECTIONAL			А	1		E OR W
	DEGREES			N	6		
LAT/LON							
	LATITUDE/ LONGITUDE	V	м	AN	13		
	DIRECTIONAL			A	1		N OR S
	DEGREES			N	5		
	DIRECTIONAL			A	1		E OR W
	DEGREES			N	6		
PB/PB							
	FIX IDENTIFIER	V	S	AN	5		
	OPTIONAL INTRO.(,)						
	OPTIONAL LAT/LON	F	м	AN	13		
	DIRECTIONAL			A	1		N OR S
	DEGREES			N	5		
	DIRECTIONAL			A	1		E OR W
	DEGREES			Ν	6		
	OPTIONAL TERM.(,)						
	BEARING	F	S	N	3	1	DEGREES
	DASH						
	FIX IDENTIFIER	V	S	AN	5		
	OPTIONAL INTRO.(,)						
IABLE	S = SINGLE PARAMETER M = MULTIPARAMETER	A = ALPHA AN = ALPH				UMERIC	

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		OPTIONAL LAT/LON	F	М	AN	13		
		DIRECTIONAL			А	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			А	1		E OR W
		DEGREES			N	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	Ν	3	1	DEGREES
	PBD							
		FIX IDENTIFIER	V	S	AN	5		
		OPTIONAL INTRO.(,)						
		OPTIONAL LAT/LON	F	м	AN	13		
		DIRECTIONAL			А	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			А	1		E OR W
		DEGREES			N	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	N	3	1	DEGREES
		DASH						
		DISTANCE	F	S	N	4	0.1	NM
ON:	START OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
OF:	END OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
	DIRECT FIX	SAME AS :F:						

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VARIABLE F = FIXED

S = SINGLE PARAMETER M = MULTIPARAMETER

A = ALPHA A = ALPHA N = NUMERIC AN = ALPHANUMERIC D = DIRECTIONAL

N = NUMERIC

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
:A:	ARRIVAL PROCEDURE							
		PROCEDURE IDENT	v	S	AN	10		
:AP:	APPROACH PROCEDURE							
		PROCEDURE IDENT	v	S	AN	10		
0	ARRIVAL RUNWAY							
		RUNWAY IDENTIFIER	F	м	AN	3		
		RWY NUMBER		S	N	2		
		RWY SUFFIX		S	А	1		L=LEFT
								C=CENTER
								R=RIGHT
	SUFFIX							O=NO
:V:	WAYPOINT SPD/ALT/TIME							
		FIX IDENTIFIER	V	S	AN	13		
		COMMA (,)						
		OPTIONAL* SPEED	F	S	Ν	3	1	KNOTS
		COMMA (,)						
		OPTIONAL* ALTITUDE	v	D	AN	6		
		DIRECTIONAL	F		А	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V		Ν	4	10	FEET
VARIABLE		SINGLE PARAMETER	A = ALPHA AN = ALPH		C		UMERIC	AL

Element Length Elem Char FPEI Description Length Scale Units Description Туре Туре Туре COMMA (,) OPTIONAL ALTITUDE ٧ D AN 6 DIRECTIONAL F AA=AT OR 2 А ABOVE AB=AT OR BELOW AT=AT ALTITUDE v Ν 4 10 FEET COMMA (,) OPTIONAL TIME* ٧ D AN 6 AA=AT OR AFTER DIRECTIONAL F А 2 AB=AT OR BEFORE AT=AT TIME F Ν 4 1 HOURS MINUTES UTC (HHMM) * For speed-only, altitudeonly, or time-only constraints Note: Either speed, altitude or time, or any combination must be included. :H: HOLD AT WAYPOINT FIX IDENTIFIER V s AN 13 COMMA (,) SPEED F s Ν 3 1 KNOTS V = VARIABLE S = SINGLE PARAMETER N = NUMERIC A = ALPHA

ATTACHMENT 7 FMC/DATALINK INTERFACE

F = FIXED

 S = SINGLE PARAMETER
 A = ALPHA

 M = MULTIPARAMETER
 AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Descript	tion	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
			COMMA (,)						
			ALTITUDE	V	D	AN	6		
			DIRECTIONAL	F		А	2		AA=AT OR
									ABOVE
									AB=AT OR
									BELOW
									AT=AT
			ALTITUDE	V	s	N	4	10	FEET
			COMMA (,)						
			TARGET SPEED	F	S	N	3	1	KNOTS
			COMMA (,)						
			TURN DIRECTION	F	S	А	1		L=LEFT
									R=RIGHT
			COMMA (,)						
			INBOUND COURSE	F	S	N	3	1	DEGREES
			COMMA (,)						
			EFC TIME	F	м	N	4		
			HOURS	F	S	N	2	1	00-24 HOURS
			MINUTES	F	S	N	2	1	MINUTES
			COMMA (,)						
			LEG TIME	F	S	N	2	0.1	MINUTES
			COMMA (,)						
			LEG DISTANCE	V	S	N	3	0.1	NM
:WS:	WAYPOINT CLIMB	STEP							
V = VARIABLE F = FIXED			IGLE PARAMETER	A = ALPHA AN = ALPH		IC		UMERIC	AL

FPEI	Descript	tion	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
			FIX IDENTIFIER	V	S	AN	13		
			COMMA (,)						
			ALTITUDE	V	S	Ν	3	100	FEET
:AT:	ALONG WAYPOINT	TRACK							
			FIX IDENTIFIER	V	S	AN	5		
			DASH (-)						
			DISTANCE	V	D	AN	5	0.1	NM
			DIRECTIONAL	F		A	1		P=PLUS
									M=MINUS
			DISTANCE	V		N	4	0.1	NM
			COMMA (,)						
			SPEED	F	s	N	3	1	KNOTS
			COMMA (,)						
			ALTITUDE	V	D	AN	6		
			DIRECTIONAL	F		A	2		AA=AT OR
									ABOVE
									AB=AT OR
									BELOW
									AT=AT
			ALTITUDE	V	S	N	4	10	FEET
			COMMA (,)						
			OPTIONAL ALTITUDE	V	D	AN	6		
			DIRECTIONAL	F		А	2		AA=AT OR
									ABOVE
RIABLE ED			GLE PARAMETER LTIPARAMETER	A = ALPHA AN = ALPH		IC		UMERIC	AL

ATTACHMENT 7 FMC/DATALINK INTERFACE

V = VAF F = FIXE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V	S	N	4	10	FEET
:RP:	REPORTING POINTS							
	LATITUDE RP	LATITUDE	V	м	AN	3		
		DIRECTIONAL	F	s	А	1		N=NORTH
								S=SOUTH
		DEGREES	V	S	N	2		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	S	N	2		
	LONGITUDE RP	LONGITUDE	V	м	AN	4		
		DIRECTIONAL	F	S	A	1		E=EAST
								W=WEST
		DEGREES	V	s	N	3		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	s	N	2		
	TRANSITION							
		TRANSITION IDENT	V	s	AN	5		
	AIRWAY VIA/EXIT VIA							
	AIRWAY VIA							
		AIRWAY IDENTIFIER	V	s	AN	5		
	AIRWAY EXIT VIA							
		FIX IDENTIFIER	v	S	AN	6		
:LO:	LATERAL OFFSET	OFFSET	V	D	AN	3		
BLE		S = SINGLE PARAMETER M = MULTIPARAMETER			A = ALPHA AN = ALPHANUMERIC			AL

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Unit
		DIRECTIONAL	F		A	1		L=LEFT R=RIGHT
		DISTANCE	V/F		Ν	2/3	1/0.1	NM
		For backward compatibility, resolution of 1 NM or a fixe systems may not support 0.1	d length of 3	numerics v				
		OPTIONAL COMMA (,)						
		OPTIONAL START FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL END FIX IDENTIFIER	v	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL INTERCEPT ANGLE	V	S	N	3		DEGREE
:F:.	AIRWAY INTERCEPT							
		AIRWAY IDENTIFIER	V	S	AN	5		
:IC:	INTERCEPT COURSE FROM							
		PUBLISHED IDENT, PB/PB or PBD as defined in the :F: FLIGHT PLAN FPE, followed by a COMMA (,) and COURSE:						
		COURSE	V	s	Ν	3	1	DEG
:CS:	CRUISE SPEED SEGME	NT						
	FIX IDENTIFIER		V	S	AN	13		
IABLE	S = SIN	GLE PARAMETER	A = ALPHA			N = N	UMERIC	
D	M = MU	LTIPARAMETER	AN = ALPH	ANUMER	IC	D = D	IRECTION/	AL

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description		igth Elem pe Type		Length	Scale	Units
	COMMA (,)							
	SPEED TARGET		V	S	AN	3		Mach 000-999
								E=Econ
								L=LRC
	OPTIONAL COMMA (,)							
	OPTIONAL ALTITUDE		F	s	Ν	3	100	FT
	OPTIONAL COMMA (,)							
	OPTIONAL FIX IDENTIFIER	V	S	AN	13			
	OPTIONAL COMMA (,)							
	OPTIONAL SPEED TARGET	V	S	AN	3		Mach 000-999	
								E=Econ
								L=LR

4952

V = VARIABLE F = FIXED S = SINGLE PARAMETER M = MULTIPARAMETER A = ALPHA AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

4953 Section 10

4956 4957 4958

4954 Codes and Triggers

4955 10.1 Error Type Codes

Error type codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	END TO END CRC
002	002	INVALID ATC
003	003	SYNTAX ERROR
004	004	MISSING ELEMENT
005	005	RESERVED FOR DEFINITION (B-737)
006	006	N/A FOR IN AIR
007	007	MISSING ALL DATA FOR DEPENDENT ELEMENT
800	800	INCOMPATIBLE DATA
009	009	FMC DOWNMODE
010	00A	REFERENCE MISMATCH
011	00B	NOT IN NDB
012	00C	DUPLICATE WAYPOINT
013	00D	ROUTE FULL ERROR
014	00E	DATA BASE FULL ERROR
015	00F	ENTRY SLOT UNAVAILABLE
016	010	DUPLICATE SUPPLEMENT NDB DEFINITION
017	011	RESERVED FOR DEFINITION (B-737)
018	012	RESERVED FOR DEFINITION (B-737)
019	013	RESERVED FOR DEFINITION (B-737)
020	014	RESERVED FOR DEFINITION (B-737)
021	015	NO MINIMUM FLIGHT PLAN
022	016	NO ACTIVE ROUTE FOR DOWNLINK
023	017	UNSOLICITED UPLINK
024	018	DATA NOT ALLOWED IN TAKEOFF PHASE
025	019	DATA NOT ALLOWED IN CLIMB PHASE
026	01A	DATA NOT ALLOWED IN CRUISE PHASE
027	01B	DATA NOT ALLOWED IN DESCENT PHASE
028	01C	INCOMPATIBLE RANGE
029	01D	DEPARTURE AIRPORT DOES NOT EXIST
030	01E	DESTINATION AIRPORT DOES NOT EXIST
031	01F	ATO DISTANCE IS ENTERED OVER AN INVALID LEG
032	020	NEGATIVE ATO IS ENTERED OVER MOD DIRECT TO WPT
033	021	ATO DISTANCE IS GREATER THAN LEG LENGTH
034	022	INITIAL FIX IS FLOATER OR PPOS
035	023	PBPB WAYPOINT WITH NO VALID INTERSECTION
036	024	DIRECT WPT AFTER INTERCEPT WAYPOINT
037	025	HOLD ENTERED ON NON-HARD WAYPOINT

DEC CODE	HEX CODE	DESCRIPTION
038	026	ALTITUDE RESTRICTION ON ALT ONLY WAYPOINT
039	027	TO FIX EQUALS FROM ON ROUTE PAGE
040	028	RESERVED FOR DEFINITION (B-737)
041	029	TO FIX IS NOT ON AIRWAY
042	02A	TO FIX CAUSES CHANGE OF DIRECT ON AIRWAY
043	02B	FROM AND TO NOT ON ENTERED AIRWAY
044	02C	CRUISE ALTITUDE LESS THAN MIN CRUISE ALT
045	02D	EFC MORE THAN 6 HOURS PAST HOLD FIX ETA
046	02E	RUNWAY REMAINING GREATER THAN RUNWAY LENGTH
047	02F	RESERVED FOR DEFINITION (B-737)
048	030	UNSOLICITED MOD WIND BECAUSE OF LONG DELETE
049	031	INAPPROPRIATE DATA TYPE
050	032	RESERVED FOR DEFINITION (B-737)
051	033	UNSOLICITED MOD WIND
052	034	CRUISE WIND IN DESCENT
053	035	DATA NOT ALLOWED IN PHASE
054	036	HOLD ENTERED ON HOLD EXIT WITH EXIT ARMED
055	037	VIA TYPE OF PROCEDURE TO FIX ENTRY NOT ALLOWED
056	038	ENTERED AIRPORT ID – DIRECT
057	039	VIA ENTERED FOR FIRST ROUTE SEGMENT
058	03A	AIRWAY UNPACK WAS UNSUCCESSFUL
059	03B	COMPANY ROUTE UNPACK UNSUCCESSFUL
060	03C	N/A FOR AIRCRAFT STATE
061	03D	PROCEDURE NOT FOUND (FOR ENROUTE AFTER)
062	03E	N/A FOR AIRCRAFT INSTALLATION
063	03F	DATA ELEMENT NOT ALLOWED ON GROUND
064	040	NO OFFSET EXISTS
065	041	NO OFFSET AT LEG
066	042	OFFSET IS ACTIVE
067	043	OFFSET DATA INCOMPATIBLE
068	044	NO OFFSETABLE LEG EXISTS
069	045	IMI LOST DUE TO WARM START
070	046	IMI LOST DUE TO OVERFLOW
071-100	047-064	RESERVED FOR DEFINITION (B-737)
101	065	BUFFER FULL
102	066	INCOMPATIBLE IEI
103	067	INVALID IEI FORMAT
104	068	INVALID IMI FORMAT
105	069	NOT ALLOWED ON GROUND
106	06A	INVALID REQUEST LABEL
107	06B	NO IEIS IN MESSAGE
108	06C	NO DATA IN ELEMENT TEXT
109	06D	INVALID FORMAT AND/OR RANGE
110	06E	NOT ALLOWED WHEN AIRBORNE

DEC CODE	HEX CODE	DESCRIPTION
111	06F	NO APPLICABLE ROUTE
112	070	NO APPLICABLE IEI
113	071	NO REPORTING POINTS CREATED
114	072	ZERO FUEL WEIGHT CAUSES INVALID GROSS WEIGHT
115	073	PRIORITY MESSAGE PENDING
116	074	MULTIPLE ROUTE IEI
117	075	NO ROUTE IEI
118	076	NO FLIGHT PLAN ELEMENTS
119	077	NO ACTIVE ROUTE
120	078	FIRST FLIGHT PLAN ELEMENT INVALID
121	079	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
122	07A	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
123	07B	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
124	07C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
125	07D	MULTIPLE DIRECT TO FIX
126	07E	MULTIPLE OF FLIGHT PLAN ELEMENT NOT ALLOWED
127	07F	FROM FIX IS NOT ON AIRWAY
128	080	AIRWAY/AIRWAY INTERSECTION NOT FOUND
129	081	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
130	082	NO FIX MATCH IN ROUTE
131	083	MULTIPLE HOLD AT FIX
132	084	BASE PROCEDURE UNDEFINED
133	085	LAT/LON REPORTING POINT NOT FOUND
134	086	CURRENT FLIGHT PLAN CONDITIONS INVALID FOR OFFSET
135	087	FPEI INCOMPATIBLE WITH IEI
136	088	NO COMPATIBLE RUNWAYS
137	089	AIRWAY FLIGHT PLAN ELEMENT IS NOT CLOSED
138	08A	NO FROM FIX FOR AIRWAY FLIGHT PLAN ELEMENT
139	08B	SPARE
140	08C	EXCEEDS CHARACTER LIMIT
141	08D	DERATE OPTION NOT SELECTED
142	08E	PAGES OUT OF SEQUENCE
143	08F	TIMED OUT
144	090	NO VALID RWY RECORDS
145-200	091-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201	0C9	DEPENDENT IMI REJECTED
202	0CA	DUPLICATE IEIS
203	0CB	REPORT NOT ALLOWED WITH INVALID A/C POSITION
204	0CC	BLOCK NOT SUFFICIENT FOR TAXI AND ROUTE RESERVE
205	0CD	WINDOW ALTITUDE CONSTRAINT NOT ALLOWED
206	0CE	NOT ALLOWED FOR ALTERNATE FLIGHT PLAN
207	0CF	DESTINATION DOES NOT MATCH ORIGIN OF ALTERNATE
208	0D0	PILOT DEFINED STORE IS FULL
209-300	0D1-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 7 FMC/DATALINK INTERFACE

ATTACHMENT 7 FMC/DATALINK INTERFACE

4961 10.2 Error Data Codes

4962 4963 4964 Error codes are listed as decimal and hexadecimal values. Depending in implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	RTA WAYPOINT DATA CODE
002	002	RTA TIME DATA CODE
003	003	ALTERNATE AIRPORT ID DATA CODE
004	004	ALTERNATE AIRPORT TYPE DATA CODE
005	005	ALTERNATE AIRPORT DISTANCE DATA CODE
006	006	ALTERNATE AIRPORT ALTITUDE DATA CODE
007	007	ALTERNATE AIRPORT WIND DATA CODE
008	008	CLEAR FLIGHT PLAN DATA CODE
009	009	FLIGHT NUMBER DATA CODE
010	00A	COST INDEX DATA CODE
011	00B	CRUISE ALTITUDE DATA CODE
012	00C	CRUISE (TOC) TEMP DATA CODE
013	00D	ZERO FUEL WEIGHT DATA CODE
014	00E	CRUISE WIND DATA CODE
015	00F	RESERVE FUEL DATA CODE
016	010	CRUISE CENTER OF GRAVITY DATA CODE
017	011	CLIMB TRANSITION ALTITUDE DATA CODE
018	012	TAKEOFF DEPARTURE RUNWAY ID DATA CODE
019	013	RUNWAY INTERSECTION DATA CODE
020	014	RUNWAY POSITION SHIFT DATA CODE
021	015	RUNWAY LENGTH REMAINING DATA CODE
022	016	T/O RUNWAY INVALID FLAG DATA CODE
023	017	TRIM DATA CODE
024	018	TAKEOFF REFERENCE GROSS WEIGHT DATA CODE
025	019	TAKEOFF FLAPS DATA CODE
026	01A	V1 SPEED DATA CODE
027	01B	V2 SPEED DATA CODE
028	01C	VR SPEED DATA CODE
029	01D	TAKEOFF SEL TEMP DATA CODE (ASSUMED TEMP)
030	01E	T/O RUNWAY SLOPE DATA CODE
031	01F	T/O RUNWAY WIND DATA CODE
032	020	T/O RUNWAY CONDITION DATA CODE
033	021	TAKEOFF DERATE DATA CODE
034	022	RESERVED FOR DEFINITION (B-737)
035	023	OUTSIDE AIR TEMP DATA CODE
036	024	DESCENT WIND ALT DATA CODE
037	025	DESCENT WIND DIR/MAG DATA CODE
038	026	TAKEOFF CENTER OF GRAVITY DATA CODE
039	027	RESERVED FOR DEFINITION (B-737)

DEC CODE	HEX CODE	DESCRIPTION
040	028	BLOCK FUEL DATA CODE (PLAN FUEL)
041	029	DESCENT TRANSITION ALTITUDE DATA CODE
042	02A	TAI ON DATA CODE
043	02B	TAI ON/OFF ALTITUDE DATA CODE
044	02C	DESCENT ISA DEV DATA CODE
045	02D	QNH DATA CODE
046	02E	TIME ERROR TOLERANCE DATA CODE
047	02F	MIN CLB CAS DATA CODE
048	030	MIN CLB MACH DATA CODE
049	031	MIN CRZ CAS DATA CODE
050	032	MIN CRZ MACH DATA CODE
051	033	MIN DES CAS DATA CODE
052	034	MIN DES MACH DATA CODE
053	035	MAX CLB CAS DATA CODE
054	036	MAX CLB MACH DATA CODE
055	037	MAX CRZ CAS DATA CODE
056	038	MAX CRZ MACH DATA CODE
057	039	MAX DES CAS DATA CODE
058	03A	MAX DES MACH DATA CODE
059	03B	DEPARTURE AIRPORT DATA CODE
060	03C	DESTINATION AIRPORT DATA CODE
061	03D	COMPANY ROUTE DATA CODE
062	03E	DEPARTURE RUNWAY DATA CODE
063	03F	DEPARTURE BASE PROCEDURE DATA CODE
064	040	DEPARTURE TRANSITION PROCEDURE DATA CODE
065	041	AIRWAY VIA DATA CODE
066	042	INITIAL FIX WAYPOINT DATA CODE
067	043	INITIAL FIX PBD DATA CODE
068	044	INITIAL FIX PBPB DATA CODE
069	045	INITIAL FIX LAT/LON DATA CODE
070	046	DIRECT WPT AFTER SID DATA CODE
071	047	DIRECT PBD AFTER SID DATA CODE
072	048	DIRECT PBPB AFTER SID DATA CODE
073	049	DIRECT LAT/LON AFTER SID DATA CODE
074	04A	DIRECT WAYPOINT AFTER STAR DATA CODE
075	04B	DIRECT PBD AFTER STAR DATA CODE
076	04C	DIRECT PBPB AFTER STAR DATA CODE
077	04D	DIRECT LAT/LON AFTER STAR DATA CODE
078	04E	DIRECT WAYPOINT AFTER APPROACH DATA CODE
079	04F	DIRECT PBD AFTER APPROACH DATA CODE
080	050	DIRECT PBPB AFTER APPROACH DATA CODE
081	051	DIRECT LAT/LON AFTER APPROACH DATA CODE
082	052	DIRECT TO WAYPOINT DATA CODE
083	053	DIRECT TO PBD DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
084	054	DIRECT TO PBPB DATA CODE
085	055	DIRECT LAT/LON DATA CODE
086	056	ENROUTE WAYPOINT DATA CODE
087	057	DIRECT WAYPOINT DATA CODE
088	058	DIRECT PBD DATA CODE
089	059	DIRECT PBPB DATA CODE
090	05A	DIRECT LAT/LON DATA CODE
091	05B	RESERVED FOR DEFINITION (B-737)
092	05C	REF WAYPOINT 2 LAT/LON DATA CODE
093	05D	STAR BASE PROCEDURE DATA CODE
094	05E	STAR TRANS PROCEDURE DATA CODE
095	05F	APPROACH BASE PROCEDURE DATA CODE
096	060	APPROACH TRANSITION PROCEDURE DATA CODE
097	061	DESTINATION RUNWAY DATA CODE
098	062	HOLD ID AND ALT RESTRICTION DATA CODE
099	063	HOLD TARGET SPEED DATA CODE
100	064	HOLD TURN DIRECTION DATA CODE
101	065	HOLD INBOUND COURSE DATA CODE
102	066	HOLD EFC TIME DATA CODE
103	067	HOLD LEG TIME DATA CODE
104	068	HOLD LEG DISTANCE DATA CODE
105	069	ATO WAYPOINT INFORMATION DATA CODE
106	06A	UPLINK REQUESTING DOWNLINK DATA CODE
107	06B	WAYPOINT SPD/ALT RESTRICTION DATA CODE
108	06C	NETWORK ADDRESS DATA CODE
109	06D	COMPANY ROUTING ADDRESS DATA CODE
110	06E	MESSAGE SEQUENCE NUMBER DATA CODE
111	06F	REFERENCE CRUISE WIND ALT DATA CODE
112	070	ENROUTE WIND WAYPOINT ID DATA CODE
113	071	ENROUTE WIND DIR/MAG DATA CODE
114	072	SUPP EFFECT DATE DATA CODE
115	073	SUPP AIRPORT ID DATA CODE
116	074	SUPP AIRPORT LAT DATA CODE
117	075	SUPP AIRPORT LON DATA CODE
118	076	SUPP AIRPORT ELEVATION DATA CODE
119	077	SUPP AIRPORT MAG VAR DATA CODE
120	078	SUPP NAVAID ID DATA CODE
121	079	SUPP NAVAID LAT DATA CODE
122	07A	SUPP NAVAID LON DATA CODE
123	07B	SUPP NAVAID ELEVATION DATA CODE
124	07C	SUPP NAVAID MAG VAR DATA CODE
125	07D	SUPP NAVAID FREQUENCY DATA CODE
126	07E	SUPP NAVAID CLASS DATA CODE
127	07F	SUPP WAYPOINT ID DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
128	080	SUPP WAYPOINT LAT DATA CODE
129	081	SUPP WAYPOINT LON DATA CODE
130	082	SUPP WAYPOINT MAG VAR DATA CODE
131	083	SUPP REF WAYPOINT ID DATA CODE
132	084	SUPP REF WAYPOINT REF LAT/LON DATA CODE
133	085	SUPP REF WAYPOINT RADIAL DATA CODE
134	086	SUPP REF WAYPOINT DISTANCE DATA CODE
135	087	WIND VECTOR MAGNITUDE DIFFERENCE DATA CODE
136	088	WAYPOINT SEQUENCE ID DATA CODE
137	089	ETA CHANGE DATA CODE
138	08A	ETA TO DEST 1 DATA CODE
139	08B	ETA TO DEST 2 DATA CODE
140	08C	ETA TO DEST 3 DATA CODE
141	08D	ETA TO DEST 4 DATA CODE
142	08E	ETA TO DEST 5 DATA CODE
143	08F	RESERVED FOR DEFINITION (B-737)
144	090	RESERVED FOR DEFINITION (B-737)
145	091	ROUTE BUILDING PARAMETER DATA CODE
146	092	ROUTE DATA TYPE CODE
147	093	PERF INIT DATA TYPE CODE
148	094	TAKEOFF REF DATA TYPE CODE
149	095	RTA DATA TYPE CODE
150	096	ALTERNATE INFO DATA TYPE CODE
151	097	SUPP NDB DATA TYPE CODE
152	098	AUTO INSERT DATA TYPE CODE
153	099	ACTIVE WIND DATA TYPE CODE
154	09A	MOD WIND DATA TYPE CODE
155	09B	DESCENT FORECAST DATA TYPE CODE
156	O9C	PERF LIMITS DATA TYPE CODE
157	09D	SPARE DATA TYPE CODE
158	09E	LATERAL OFFSET DIST DATA CODE
159	09F	LATERAL OFFSET START WPT DATA CODE
160	0A0	LATERAL OFFSET END WPT DATA CODE
161-200	0A1-0C8	RESERVED FOR DEFINITION (B-737)
201	0C9	FUEL FLOW FACTOR DATA CODE
202	0CA	DRAG FACTOR DATA CODE
203	0CB	LIMIT TAKEOFF GROSS WEIGHT DATA CODE
204	0CC	THRUST RATING DATA CODE
205	0CD	VTR PERCENTAGE DATA CODE
206	0CE	ALTERNATE FLAPS DATA CODE
207	0CF	ALTERNATE TRIM DATA CODE
208	0D0	ALTERNATE LIMIT TAKEOFF GROSS WEIGHT DATA CODE
209	0D1	TAKEOFF SPEEDS DATA CODE
210	0D2	ALTERNATE TAKEOFF SPEEDS DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
211	0D3	WAYPOINT ALTITUDE/OAT DATA CODE
212	0D4	LATERAL OFFSET DATA CODE
213	0D5	ALONG TRACK OFFSET DATA CODE
214	0D6	WAYPOINT STEP CLIMB DATA CODE
215	0D7	LAT/LON REPORTING POINT DATA CODE
216	0D8	GROUND ADDRESS DATA CODE
217	0D9	DIRECT FIX DATA CODE
218	0DA	HOLD SPEED RESTRICTION DATA CODE
219	0DB	POSITION REPORTING POINT DATA CODE
220	0DC	ENROUTE WIND SEGMENT DATA CODE
221	0DD	ENROUTE SEGMENT DATA CODE
222	0DE	OPEN ENDED AIRWAY DATA CODE
223	0DF	ALTERNATE THRUST RATING DATA CODE
224	0E0	SEQUENCE NUMBER DATA CODE
225	0E1	MINIMUM FUEL TEMPERATURE DATA CODE
226	0E2	COMPANY PREFERRED AIRPORT IDENT DATA CODE
227	0E3	COMPANY PREFERRED PRIORITY DATA CODE
228	0E4	COMPANY PREFERRED WIND DATA CODE
229	0E5	COMPANY PREFERRED ALT/OAT DATA CODE
230	0E6	COMPANY PREFERRED OVERHEAD FIX DATA CODE
231	0E7	COMPANY PREFERRED ALTITUDE DATA CODE
232	0E8	COMPANY PREFERRED SPEED DATA CODE
233	0E9	COMPANY PREFERRED OFFSET DATA CODE
234	0EA	FLIGHT LIST AIRPORT IDENT DATA CODE
235	0EB	FLIGHT LIST WIND DATA CODE
236	0EC	FLIGHT LIST ALT/OAT DATA CODE
237	0ED	ALTERNATE INHIBIT AIRPORT IDENT DATA CODE
238	OEE	ALTERNATE TAKEOFF VTR PERCENTAGE DATA CODE
239	0EF	THRUST REDUCTION ALTITUDE DATA CODE
240	0F0	ACCELERATION ALTITUDE DATA CODE
241	0F1	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
242	0F2	PAGING DATA CODE
243	0F3	INTERCEPT COURSE FROM IDENT DATA CODE
244	0F4	INTERCEPT COURSE FROM COURSE DATA CODE
245	0F5	CRUISE SPEED SEGMENT START WAYPOINT DATA CODE
246	0F6	CRUISE SPEED SEGMENT END WAYPOINT DATA CODE
247	0F7	CRUISE SPEED SEGMENT SPEED DATA CODE
248	0F8	CRUISE SPEED SEGMENT ALTITUDE DATA CODE
249-300	0F9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	PERF FACTOR DATA CODE
302	12E	TAXI FUEL DATA CODE
303	12F	ZERO FUEL WEIGHT CG DATA CODE
304	130	TROPOPAUSE ALTITUDE DATA CODE
305	131	IDLE FACTOR DATA CODE

ATTACHMENT 7 FMC/DATALINK INTERFACE

DEC CODE	HEX CODE	DESCRIPTION
306	132	MEAN WIND DATA CODE
307	133	CLIMB WIND ALTITUDE DATA CODE
308	134	CLIMB WIND DIR/MAG DATA CODE
309	135	ALTERNATE DESTINATION WIND ALTITUDE DATA CODE
310	136	ALTERNATE DESTINATION WIND DIR/MAG DATA CODE
311	137	STAR/ENROUTE TRANSITION DATA CODE
312	138	THRUST REDUCTION ALTITUDE DATA CODE
313	139	ACCELERATION ALTITUDE DATA CODE
314	13A	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
315	13B	ALTERNATE ASSUMED TEMP DATA CODE
316-400	13C-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)
401	191	NOISE ABATEMENT END ALTITUDE DATA CODE
402	192	NOISE ABATEMENT SPEED DATA CODE
403	193	NOISE ABATEMENT DERATED THRUST DATA CODE
404	194	HOLD ALTITUDE DATA CODE
405	195	NOISE ABATEMENT THRUST DATA CODE
406	196	NOISE ABATEMENT START ALTITUDE DATA CODE
407	197	SUPP REF AIRPORT DATA CODE
408	198	SUPP RUNWAY DATA CODE
409	199	SUPP RUNWAY LAT DATA CODE
410	19A	SUPP RUNWAY LON DATA CODE
411	19B	SUPP RUNWAY COURSE DATA CODE
412	19C	SUPP RUNWAY ELEVATION DATA CODE
413	19D	SUPP RUNWAY LENGTH DATA CODE
414	19E	CLIMB TEMPERATURE ALTITUDE DATA CODE
415	19F	CLIMB TEMPERATURE DATA CODE
416	1A0	DESCENT TEMPERATURE ALTITUDE DATA CODE
417	1A1	DESCENT TEMPERATURE DATA CODE

ATTACHMENT 7 FMC/DATALINK INTERFACE

4967 10.3 Extended Error Codes

4968 4969 4970 Extended error codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION	
001	001	ALL OF MESSAGE TEXT DISCARDED	
002	002	REMAINDER OF MESSAGE TEXT DISCARDED	
003	003	ALL OF DATA TYPE DISCARDED	
004	004	REMAINDER OF DATA TYPE DISCARDED	
005	005	ALL OF ELEMENT TEXT DISCARDED	
006	006	REMAINDER OF ELEMENT TEXT DISCARDED	
007	007	ALL OF LIST DISCARDED	
800	008	REMAINDER OF LIST DISCARDED	
009	009	ALL OF LIST ELEMENT DISCARDED	
010	00A	ALL OF MULTI-PARAMETER ELEMENT DISCARDED	
011	00B	ALL OF ROUTE BUILDING PARAMETER DISCARDED	
012	00C	ALL APPROACH PROCEDURE RELATED DATA DISCARDED	
013	00D	ALL DEPARTURE AIRPORT RELATED DATA DISCARDED	
014	00E	ALL ARRIVAL AIRPORT RELATED DATA DISCARDED	
015	00F	ALL SID RELATED DATA DISCARDED	
016	010	ALL STAR RELATED DATA DISCARDED	
017	011	NEXT AIRWAY DISCARDED	
018	012	SINGLE ELEMENT DISCARDED	
019-100	013-064	RESERVED FOR DEFINITION (B-737)	
101	065	ALL OF LIST ENTRY DISCARDED	
102	066	ALL OF ENROUTE SEGMENT DISCARDED	
103	067	ALTERNATE RUNWAY DATA DISCARDED	
104	068	RESERVED FOR DEFINITION (BOEING AIRCRAFT)	
105	069	ALL OF ELEMENT TEXT DISCARDED	
106-200	06A-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)	
201-300	0C9-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)	

ATTACHMENT 7 FMC/DATALINK INTERFACE

4973	10.4	Triggers,	Stimulus	Code,	and	Report	Stimulus	Codes
------	------	-----------	----------	-------	-----	--------	----------	-------

4974 4975 4976

Triggers, stimulus codes and report stimulus codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	4R INIT REF
002	002	4L SUPP NAV DATA INDEX
003	003	4R SUPP NAV DATA INDEX
004	004	5R PERF INIT
005	005	5L PERF LIMITS
006	006	5R PERF LIMITS
007	007	4L TAKEOFF REF 1/2
800	008	6R MOD LEGS EXTENDED DATA
009	009	6L ALTERNATE DEST
010	00A	1L DATA LINK
011	00B	2L DATA LINK
012	00C	3L DATA LINK
013	00D	4L DATA LINK
014	00E	5L DATA LINK
015	00F	1R DATA LINK
016	010	2R DATA LINK
017	011	3R DATA LINK
018	012	4R DATA LINK
019	013	5R DATA LINK
020	014	6R DATA LINK
021	015	1R MAINT BITE INDEX
022	016	2R MAINT BITE INDEX
023	017	3R MAINT BITE INDEX
024	018	4R MAINT BITE INDEX
025	019	5R MAINT BITE INDEX
026	01A	6R MAINT BITE INDEX
027	01B	6R FMCS BITE INDEX
028	01C	6R FMCS SENSOR STATUS 2/2
029	01D	6R FMCS ANALOG DISCRETES
030	01E	6R IRS MONITOR
031	01F	6R FMCS INFLIGHT FAULTS 3/3
032	020	6R FMCS FLIGHT SELECT
033	021	6R FMCS FLIGHT 'N'
034	022	3R ROUTE
035	023	6R ACT LEGS EXTENDED DATA
036	024	5L PROGRESS 3/3
037	025	5R PROGRESS 3/3
038	026	6L PROGRESS 3/3
039	027	6R PROGRESS 3/3

DEC CODE	HEX CODE	DESCRIPTION
040	028	DES FORECAST
041	029	TIME TO DESTINATION 1
042	02A	TIME TO DESTINATION 2
043	02B	TIME TO DESTINATION 3
044	02C	TIME TO DESTINATION 4
045	02D	TIME TO DESTINATION 5
046	02E	CHANGE IN DESTINATION ETA
047	02F	CHANGE IN DESTINATION AIRPORT
048	030	CHANGE IN ARRIVAL RUNWAY
049	031	EFC ENTRY
050	032	WIND DISCREPANCY
051	033	WAYPOINT SEQUENCE
052	034	POS SHIFT TO IRS LEFT
053	035	POS SHIFT TO IRS RIGHT
054	036	POS SHIFT TO IRS CENTER
055	037	POS SHIFT TO RADIO
056	038	POS SHIFT TO GPS LEFT
057	039	POS SHIFT TO GNSS RIGHT
058	03A	VERIFY POSITION MESSAGE
059	03B	INSUFFICIENT FUEL MESSAGE
060	03C	MOD PLAN EXECUTION
061	03D	CRUISE ALTITUDE CHANGE
062	03E	RTA UNACHIEVABLE MESSAGE
063	03F	HOLDING PATTERN EXIT
064	040	HOLDING PATTERN ENTRY
065	041	FMC FAULT
066	042	SENSOR FAILURE
067	043	BAD NAVAID
068	044	INAIR
069	045	COMPANY UPLINK TEXT ERROR
070	046	ATC UPLINK TEXT ERROR
071	047	COMPANY UPLINK ACKNOWLEDGE
072	048	ATC UPLINK ACKNOWLEDGE
073	049	COMPANY ROUTE DATA ACCEPTED
074	04A	ATC ROUTE DATA ACCEPTED
075	04B	COMPANY ROUTE DATA ACCEPTED WITH EDIT
076	04C	ATC ROUTE DATA ACCEPTED WITH EDIT
077	04D	COMPANY ROUTE DATA REJECTED
078	04E	ATC ROUTE DATA REJECTED
079	04F	COMPANY RTA DATA ACCEPTED
080	050	ATC RTA DATA ACCEPTED
081	051	COMPANY RTA DATA ACCEPTED WITH EDIT
082	052	ATC RTA DATA ACCEPTED WITH EDIT
083	053	COMPANY RTA DATA REJECTED

ATTACHMENT 7 FMC/DATALINK INTERFACE

DEC CODE	HEX CODE	DESCRIPTION
084	054	ATC RTA DATA REJECTED
085	055	COMPANY WIND TEMP DATA ACCEPTED
086	056	ATC WIND DATA ACCEPTED
087	057	COMPANY WIND TEMP DATA ACCEPTED WITH EDIT
088	058	ATC WIND DATA ACCEPTED WITH EDIT
089	059	COMPANY WIND TEMP DATA REJECTED
090	05A	ATC WIND DATA REJECTED
091	05B	COMPANY DESCENT FORECAST DATA ACCEPTED
092	05C	ATC DESCENT FORECAST DATA ACCEPTED
093	05D	COMPANY DESCENT FORECAST DATA ACCEPTED WITH EDIT
094	05E	ATC DESCENT FORECAST DATA ACCEPTED WITH EDIT
095	05F	COMPANY DESCENT FORECAST DATA REJECTED
096	060	ATC DESCENT FORECAST DATA REJECTED
097	061	COMPANY PERF INIT DATA ACCEPTED
098	062	ATC PERF INIT DATA ACCEPTED
099	063	COMPANY PERF INIT DATA ACCEPTED WITH EDIT
100	064	ATC PERF INIT DATA ACCEPTED WITH EDIT
101	065	COMPANY PERF INIT DATA REJECTED
102	066	ATC PERF INIT DATA REJECTED
103	067	COMPANY PERF LIMIT DATA ACCEPTED
104	068	ATC PERF LIMIT DATA ACCEPTED
105	069	COMPANY PERF LIMIT DATA ACCEPTED WITH EDIT
106	06A	ATC PERF LIMIT DATA ACCEPTED WITH EDIT
107	06B	COMPANY PERF LIMIT DATA REJECTED
108	06C	ATC PERF LIMIT DATA REJECTED
109	06D	RESERVED FOR DEFINITION (B-737)
110	06E	RESERVED FOR DEFINITION (B-737)
111	06F	RESERVED FOR DEFINITION (B-737)
112	070	RESERVED FOR DEFINITION (B-737)
113	071	RESERVED FOR DEFINITION (B-737)
114	072	RESERVED FOR DEFINITION (B-737)
115	073	UPLINK REQUESTING A DOWNLINK
116	074	TIME TO TOP OF DESCENT 1
117	075	TIME TO TOP OF DESCENT 2
118	076	TIME TO TOP OF DESCENT 3
119	077	TIME TO TOP OF DESCENT 4
120	078	TIME TO TOP OF DESCENT 5
121-200	079-0C8	RESERVED FOR DEFINITION (B-737)
201-300	0C9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	MULTI-LEVEL WIND TEMP DATA ACCEPTED
302	12E	MULTI-LEVEL WIND TEMP DATA REJECTED
303-400	12F-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

4978 ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

4979 4980

[Deleted by Supplement 5]

APPENDIX A REFERENCE DOCUMENTS

ATTACHMENT 6APPENDIX A REFERENCE DOCUMENTS

- 4984 The latest versions of the following documents apply:
- 4985 ARINC Specification 413A: Guidance for Aircraft Electrical Power Utilization and Transient
- 4986 Protection

- 4987 ARINC Specification 424: Navigation System Data Base
- 4988 ARINC Specification 429: Digital Information Transfer System (DITS)
- 4989 **ARINC Specification 600**: Air Transport Avionics Equipment Interfaces
- 4990 ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment (BITE)
- 4991 **ARINC Report 607:** Design Guidance for Avionic Equipment
- 4992 ARINC Report 608A: Design Guidance for Avionics Test Equipment
- 4993 ARINC Report 610B: Guidance for Use of Avionics Equipment and Software in Simulators
- 4994 ARINC Specification 615: Airborne Computer High Speed Data Loader
- 4995 ARINC Specification 615A: Software Data Loader with High Density Storage Medium
- 4996 ARINC Specification 618: Air-Ground Character-Oriented Protocol Specification
- 4997 ARINC Specification 622: ATS Data Link Applications Over ACARS Air-Ground Network
- 4998 ARINC Report 624: Design Guidance for Onboard Maintenance System
- 4999 ARINC Report 625: Industry Guide for Component Test Development and Management
- 5000 ARINC Report 626: Standard ATLAS Language for Modular Test
- 5001 **ARINC Specification 646:** *Ethernet Local Area Network (ELAN)*
- 5002 **ARINC Report 651:** Design Guidance for Integrated Modular Avionics
- 5003 ARINC Specification 653: Avionics Application Software Standard Interface
- 5004 ARINC Report 660B: CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts
- 5005 ARINC Specification 661: Cockpit Display System Interfaces to User Systems
- 5006 ARINC Specification 664: Aircraft Data Network
- 5007 ARINC Characteristic 701: Flight Control Computer System
- 5008 ARINC Characteristic 704: Inertial Reference System
- 5009 ARINC Characteristic 705: Attitude and Heading Reference System
- 5010 ARINC Characteristic 706: Subsonic Air Data System
- 5011 ARINC Characteristic 708A: Airborne Weather Radar with Forward Looking Windshear Detection
- 5012 Capability
- 5013 ARINC Characteristic 709: Airborne Distance Measuring Equipment
- 5014 ARINC Characteristic 710: Mark 2 Airborne ILS Receiver
- 5015 **ARINC Characteristic 711:** Mark 2 Airborne VOR ILS Receiver
- 5016 ARINC Characteristic 724B: Aircraft Communication Addressing and Reporting System (ACARS)
- 5017 ARINC Characteristic 725: Electronic Flight Instruments (EFI)
- 5018 ARINC Characteristic 737: On-Board Weight and Balance System
- 5019 ARINC Characteristic 738: Air Data and Inertial Reference System (ADIRS)
- 5020 ARINC Characteristic 739A: Multi-Purpose Control and Display Unit
- 5021 ARINC Characteristic 740: Multiple-Input Cockpit Printer
- 5022 ARINC Characteristic 743A: GNSS Sensor
- 5023 ARINC Characteristic 743B: GNSS Landing System Sensor Unit (GLSSU)

APPENDIX A REFERENCE DOCUMENTS

- 5024 ARINC Characteristic 744: Full-Format Printer
- 5025 ARINC Characteristic 744A: Full-Format Printer with Graphics Capability
- 5026 ARINC Characteristic 745: Automatic Dependent Surveillance
- ARINC Characteristic 755: Multi-Mode Landing System Digital 5027
- ARINC Characteristic 756: GNSS Navigation and Landing Unit (GNLU) 5028
- ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2 5029
- ARINC Characteristic 760: GNSS Navigation Unit (GNU) 5030
- EUROCONTROL Specification on Data Link Services (DLS) 5031 EUROCONTROL SPEC-0116:
- ICAO Doc 4444: Procedures for Air Navigation Services Air Traffic Management 5032
- ICAO Doc 8168 Vol 1: Aircraft Operations Flight Procedures 5033
- 5034 ICAO Doc 9613: Performance-Based Navigation Manual
- 5035 ICAO Doc 10037: Global Operational Data Link (GOLD) Manual
- 5036 RTCA DO-160/EUROCAE ED-14: Environmental Conditions and Test Procedures for Airborne 5037 Equipment
- RTCA DO-178/EUROCAE ED-12: Software Considerations in Airborne Systems and Equipment 5038 5039 Certification
- 5040 RTCA DO-200/EUROCAE ED-76: Standards for Processing Aeronautical Data
- 5041 RTCA DO-201/EUROCAE ED-77: Standards for Aeronautical Information
- 5042 RTCA DO-219: Minimum Operational Performance Standards for ATC Two-Way Data Link 5043 Communications
- 5044 RTCA DO-229: Minimum Operational Performance Standards for Global Positioning
- 5045 System/Satellite-Based Augmentation System Airborne Equipment
- RTCA DO-236/EUROCAE ED-75: Minimum Aviation System Performance Standards: Required 5046 5047 Navigation Performance for Area Navigation
- 5048 RTCA DO-257B: Minimum Operational Performance Standards for the Depiction of Navigational 5049 Information on Electronic Maps
- 5050 RTCA DO-258/EUROCAE ED-100: Interoperability Requirements for ATS Applications Using 5051 ARINC 622 Data Communications
- 5052 RTCA DO-264/EUROCAE ED-78: Guidelines for Approval of the Provision and Use of Air Traffic 5053 Services Supported by Data Communications
- 5054 RTCA DO-280/EUROCAE ED-110: Interoperability Requirements Standard for Aeronautical 5055 Telecommunication Network Baseline 1
- 5056 RTCA DO-283: Minimum Operational Performance Standards for Required Navigation 5057 Performance for Area Navigation
- 5058 RTCA DO-290/EUROCAE ED-120: Safety and Performance Requirements Standard for Air Traffic 5059 Data Link Services in Continental Airspace
- RTCA DO-305/EUROCAE ED-154: Future Air Navigation Systems 1/A Aeronautical 5060
- 5061 Telecommunication Network Interoperability Standard (FANS 1/A ATN B1 Interop Standard)
- RTCA DO-306/EUROCAE ED-122: Safety and Performance Standard for Air Traffic Data Link 5062 5063
- Services in Oceanic and Remote Airspace (Oceanic SPR Standard)
- 5064 RTCA DO-308: Operational Services and Environment Definition (OSED) for Aeronautical 5065 Information Services (AIS) and Meteorological (MET) Data Link Services
- 5066 RTCA DO-324: Safety and Performance Requirements (SPR) for Aeronautical Information
- 5067 Services (AIS) and Meteorological (MET) Data Link Services

APPENDIX A REFERENCE DOCUMENTS

- 5068 RTCA DO-350/EUROCAE ED-2289: Safety and Performance Standard for Baseline 2 ATS Data 5069 Communications
- RTCA DO-351/EUROCAE ED-229: Interoperability Requirements Standard for Baseline 2 ATS 5070 5071 Data Communications
- 5072 RTCA DO-352/EUROCAE ED-230: Interoperability Requirements Standard for Baseline 2 ATS 5073 Data Communications, FANS 1/A Accommodation
- 5074 RTCA DO-353/EUROCAE ED-231: Interoperability Requirements Standard for Baseline 2 ATS
- Data Communications, ATN Baseline 1 Accommodation 5075

APPENDIX B ACRONYMS

APPENDIX AAPPENDIX B ACRONYMS 5076 5077 **APPENDIX B** ACARS Aircraft Communications Addressing and Reporting System 5078 ACK Acknowledgement 5079 ADC Air Data Computer 5080 Air Data/Inertial Reference System ADIRS 5081 ADIRU Air Data/Inertial Reference Unit 5082 ADS Automatic Dependent Surveillance 5083 ADS-B Automatic Dependent Surveillance - Broadcast 5084 ADS-C Automatic Dependent Surveillance - Contract 5085 AEEC Airlines Electronic Engineering Committee 5086 AF Arc to a Fix 5087 AFM Airplane Flight Manual 5088 AFN **ATS Facilities Notification** 5089 AFCS Auto Flight Control System AHRS 5090 Altitude Heading Reference System 5091 AMI Airline Modifiable Information ANP 5092 Actual Navigation Performance AOC 5093 Airline Operational Communication APM 5094 Airplane Personality Module Aircraft Separation Assurance System 5095 ASAS Air Traffic Control 5096 ATC 5097 ATM Air Traffic Management Aeronautical Telecommunications Network 5098 ATN 5099 ATS Air Traffic Services ATO Along Track Offset 5100 Air Traffic Services 5101 ATS 5102 BITE **Built-In Test Equipment** 5103 RΡ Bottom Plug CAS **Computed Air Speed** 5104 5105 CDTI Cockpit Display of Traffic Information Comité Consultatif International Téléphonique et Télégraphique 5106 CCITT 5107 CDA Continuous Descent Approach CDO 5108 **Continuous Descent Operation** CDU 5109 **Control Display Unit** 5110 CF Course to a Fix 5111 CMU **Communications Management Unit** 5112 CNS Communications, Navigation and Surveillance 5113 CPDLC Controller/Pilot Data Link Communication 5114 CRC Cyclic Redundancy Check 5115 CTS Clear to Send 5116 DA **Decision Altitude**

APPENDIX B ACRONYMS

5117	DITS	Digital Information Transfer System
5118	DLIC	Data Link Initiation of Communications
5119	DME	Distance Measurement Equipment
5120	EFC	Expected Further Clearance
5121	EFIS	Electronic Flight Information System
5122	EIS	Electronic Information System
5123	ELAN	Ethernet Local Area Network
5124	EMD	Electronic Map Display
5125	EPU	Estimated Position Uncertainty
5126	ETA	Estimated Time of Arrival
5127	ETE	Estimated Time Enroute
5128	ETOPS	Extended-range Twin-engine Operations
5129	ETP	Equal-Time Point
5130	EUROCAE	European Organization for Civil Aviation Electronics
5131	FAF	Final Approach Fix
5132	FANS	Future Air Navigation System
5133	FAS	Final Approach Segment
5134	FASDM	Final Approach Segment Data Message
5135	FCOM	Flight Crew Operations Manual
5136	FEP	Final End Point
5137	FIR	Flight Information Region
5138	FLS	FMS-based Landing System
5139	FMC	Flight Management Computer
5140	FMCS	Flight Management Computer System
5141	FMF	Flight Management Function
5142	FMS	Flight Management System
5143	FRT	Fixed Radius Transition
5144	GBAS	Ground Based Augmentation System
5145	GLS	GNSS-based Landing System
5146	GLSSU	GPS/SBAS Landing System Sensor Unit
5147	GNLU	GNSS-based Navigation and Landing Unit
5148	GNSS	Global Navigation Satellite System
5149	GNSSU	Global Navigation Satellite System Unit
5150	GPS	Global Positioning System
5151	HSI	Horizontal Situation Indicator
5152	IAF	Initial Approach Fix
5153	ICAO	International Civil Aviation Organization
5154	IF	Initial Fix
5155	IFR	Instrument Flight Rules
5156	IGS	Instrument Guidance System
5157	ILS	Instrument Landing System

APPENDIX B ACRONYMS

5158	IMI	Imbedded Message Identifier
5159	IPC	Illustrated Parts Catalog
5160	IRS	Inertial Reference System
5161	IRU	Inertial Reference Unit
5162	ISA	International Standard Atmosphere
5163	LDA	Localizer Directional Aid
5164	LDU	Link Data Unit
5165	LNAV	Lateral Navigation
5166	LOC	Localizer
5167	LP	Localizer Performance
5168	LPV	Localizer Performance with Vertical Guidance
5169	LRC	Long Range Cruise
5170	LRU	Line Replaceable Unit
5171	LSB	Least Significant Bit
5172	LTP	Landing Threshold Point
5173	MAHP	Missed Approach Holding Point
5174	MAP	Missed Approach Decision Point
5175	MASPS	Minimum Airborne System Performance Standards
5176	MCDU	Multi-Purpose Control Display Unit
5177	MCU	Modular Concept Unit
5178	MDA	Minimum Decision Altitude
5179	MDH	Minimum Decision Height
5180	MEA	Minimum Enroute IFR Altitude
5181	MLS	Microwave Landing System
5182	MMO	Maximum Operating Mach
5183	MMR	Multi-Mode Receiver
5184	MOCA	Minimum Obstruction Clearance Altitude
5185	MOPS	Minimum Operational Performance Standards
5186	MORA	Minimum Off-Route Altitude
5187	MP	Middle Plug
5188	MSB	Most Significant Bit
5189	MTBF	Mean Time Between Failure
5190	MTBUR	Mean Time Between Unit Removal
5191	MU	Management Unit
5192	NAK	Negative Acknowledgement
5193	ND	Navigational Display
5194	NDB	Non-Directional Beacon or Navigation Data Base
5195	NFF	No Fault Found
5196	PBD	Point Bearing/Distance
5197	PBN	Performance-Based Navigation
5198	PDC	Predeparture Clearance

APPENDIX B ACRONYMS

5199	PDMV	Procedure Design Magnetic Variation
5200	PFD	Primary Flight Display
5201	PVT	Position Velocity and Time
5202 5203	QFE*	Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above the station
5204 5205	QNH*	Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above mean sea level
5206	RAIM	Receiver Autonomous Integrity Monitoring
5207	RF	Constant Radius Arc to a Fix
5208	RNAV	Area Navigation
5209	RNP	Required Navigation Performance
5210	RTA	Required Time of Arrival
5211	RTS	Request to Send
5212	RVSM	Reduced Vertical Separation Minima
5213	SARPS	Standards and Recommended Practices
5214	SBAS	Satellite Based Augmentation System
5215	SDI	Source Destination Identifier
5216	SID	Standard Instrument Departure
5217	STAR	Standard Terminal Arrival Route
5218	SUA	Special Use Airspace
5219	TACAN	Tactical Air Navigation System
5220	TAI	Thermal Anti-Ice
5221	TAWS	Terrain Awareness and Warning System
5222	тсс	Thrust Control Computer
5223	TOAC	Time of Arrival Control
5224	TP	Top Plug
5225	TTE	Total Time Error
5226	UIR	Upper Flight Information Region
5227	UTC	Universal Time Coordinated
5228	VFR	Visual Flight Rules
5229	VMO	Maximum Operating Speed
5230	VNAV	Vertical Navigation
5231	VOR	VHF Omni-Range Navigation
5232	VORTAC	Co-Located VOR and TACAN
5233	VSD	Vertical Situation Display
5234	VTR	Variable Thrust Rating
5235	WBS	Weight and Balance System
		- ·

	ARINC CHARACTERISTIC 702A – Page 271	
	APPENDIX C GLOSSARY	
5236	APPENDIX C GLOSSARY	
5237 5238 5239	ACARS – Aircraft Communications Addressing and Reporting System: A digital datalink network providing connectivity between aircraft and ground end systems (command and control, air traffic control, etc.).	
5240	Accuracy – For Navigation:	
5241	The degree of conformance between calculated position and true position.	
5242 5243 5244	Accuracy – For Navigation Data: The degree of conformance between estimated or measured value and its true value.	
5245	Actual Time of Arrival (ATA)	
5246	The time at which the aircraft crosses a fix.	
5247	ADS-B – Automatic Dependent Surveillance-Broadcast:	
5248	A vehicle or object will broadcast a message on a set regular basis which includes	
5249	its position (such as lat, long, altitude), velocity, and possibly other information.	
5250	These position reports are based on accurate navigation systems. There are three	
5251	accepted links, ADS-B: 1090 Extended Squitter (see also 1090 Extended Squitter),	
5252 5253	Universal Access Transceiver (see also UAT), and VDL-4 (see also VDL-4). Military aircraft will use 1090 ES with few exceptions.	
5254	ADS-C – Automatic Dependaent Surveillance-Contract:	
5255	ADS C is the same as ADS A. Automatic Dependent Surveillance Addressed is aA	Formatted: Glossary Description
5256	datalink application that provides for contracted services between ground systems	Formatted: Font: Not Bold
5257	and aircraft. Contracts are established such that the aircraft will automatically	Formatted: Folic: Not Bold
5258	provide information obtained from its own on-board sensors, and pass this	
5259	information to the ground system under specific circumstances dictated by the	
5260	ground system (except in emergencies). A datalink application that provides a	Formatted: Font: 11 pt, Font color: Auto, Pattern: Clear
5261	means for a ground facility to establish an agreement with the aircraft navigation	
5262	system(s), via data link, specifying under what conditions ADS-C reports will be	
5263	initiated, and what data will be contained in the reports,	Formatted: Font: Arial, 11 pt, Font color: Auto
5264		
5265	Airway	
5266	A control area or portion thereof established in the form of a corridor equipped with	
5267	radio navigation aids.	
5268	Altitude	
5269	The vertical distance of a level, a point or an object considered as a point, measured	
5270	from mean sea level (MSL).	
5271	AOC – Airline Operational Control (Aeronautical Operational Control):	
5272	Operational messages used between aircraft and airline dispatch centers or, by	
5273	extension, the DoD to support flight operations to support flight operations. This	

APPENDIX C GLOSSARY

5274 5275 5276 includes, but is not limited to, flight planning, flight following, and the distribution of information to flights and affected personnel.

5277	APV – Approach Procedure with Vertical Guidance:
5278	An instrument procedure which utilizes lateral and vertical guidance but does not
5279	meet the requirements established for precision approach and landing operations.
	······································
5280	A non-precision approach using GPS that has some vertical guidance. This
5281	vertical guidance is less precise than that for a precision approach (e.g., ILS) and
5282	therefore the approach minimums (weather, ceiling, and visibility) are higher.
5283	Area Navigation (RNAV)
5284	A method of navigation which permits aircraft operation on any desired flight path
5285	within the coverage of station-referenced navigation aids or within the limits of the
5286	capability of self-contained aids, or a combination of these. Note that the desired
5287	path can be designated by any point(s) in a common reference coordinate system.
5288	ATN – Aeronautical Telecommunications Network:
5289 5290	A n internetwork architecture that allows ground/ground, air/ground, and avionic
5290 5291	data subnetworks to interoperate by using common interface services and protocols. based on the ISO OSI Reference Model.
5231	
5292	ATSU – Air Traffic Services Unit:
5293	A unitfacility established for the purpose of receiving reports concerning air traffic
5294	services and flight plans submitted before departure. It is a generic term meaning air
5295	traffic control unitcenter, flight information center, or air traffic service reporting
5296	office. Within this document, the term is used as defined above and not to be
5297	confused with an onboard avionics unit.
5298	Availability – For Navigation:
5299	It is the percentage of the time that the required accuracy and integrity are useable
5300	to meet a specified flight phase.
5500	
5301	BCD – Binary Coded Decimal
5301 5302	BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number
5301	BCD – Binary Coded Decimal
5301 5302 5303	BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details.
5301 5302 5303 5304	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing
5301 5302 5303 5304 5305	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true
5301 5302 5303 5304	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing
5301 5302 5303 5304 5305	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true
5301 5302 5303 5304 5305 5306	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees.
5301 5302 5303 5304 5305 5306 5307	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation
5301 5302 5303 5304 5305 5306 5307 5308 5309	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details.
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information:
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information: Avionics technology that displays the relative location of nearby aircraft to enhance
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information:
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information: Avionics technology that displays the relative location of nearby aircraft to enhance the pilot's awareness of the surrounding environment.
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information: Avionics technology that displays the relative location of nearby aircraft to enhance the pilot's awareness of the surrounding environment. CMU – Communication Management Unit:
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312	 BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details. Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point. through 360 degrees. BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details. CDTI – Cockpit Display of Traffic Information: Avionics technology that displays the relative location of nearby aircraft to enhance the pilot's awareness of the surrounding environment.

5316	applications related to datalink. It also interfaces to the flight management system
5317	(FMS) and to the crew displays.
5318	CNS/ATM – Communication, Navigation, Surveillance/Air Traffic Management:
5319	CNS/ATM is a system based on digital technologies, satellite systems, and
5320	enhanced automation to achieve a seamless global Air Traffic Management in the
5321	future. Modern CNS systems will eliminate or reduce a variety of constraints
5322	imposed on ATM operations today.
5522	imposed of Arm operations today.
5323	Containment
5324	A set of interrelated parameters used to define the performance of an RNP RNAV
5325	navigation system. These parameters are containment integrity, containment
5326	continuity, and containment region.
5520	continuity, and containment region.
5327	Continuity
5328	The continuity of a system is the capability of the total system (comprising all
5329	elements necessary to maintain aircraft position within the defined airspace) to
5330	perform its function without nonscheduled interruptions during the intended
5331	operation. The continuity risk is the probability that the system will be unintentionally
5332	interrupted and not provide guidance information for the intended operation. More
5333	specifically, continuity is the probability that the system will be available for the
5334	duration of a phase of operation, presuming that the system was available at the
5335	beginning of that phase of operation. See the definition of containment continuity for
5336	how this parameter applies to RNP airspace.
0000	
5337	Coordinates
5338	The intersection of lines of reference, usually expressed in degrees / minutes /
5339	seconds of latitude and longitude, used to determine a position or location.
0000	
5340	Course
5341	1. The intended direction of flight in the horizontal plane measured in degrees from
5342	north.
5343	2. The ILS localizer signal pattern usually specified as the front course or the back
5344	course.
5345	3. The intended track along a straight, curved, or segmented MLS path.
5346	CPDLC – Controller-Pilot Data Link Communications:
5347	The CPDLC application provides for the exchange of flight planning, clearance, and
5348	informational data between a flight crew and air traffic control. This application
5849	supplements voice communications and in some areascases will likely supersede it
5350	in the future.
1	
5851	Cross-Track Containment Limit
5852	A distance that defines the one-dimensional containment limit in the cross-track
5853	dimension. The resulting containment region is centered upon the desired path and
5854	is bounded by the cross-track containment limit. There is a required cross-track
5855	containment limit associated with a particular RNP.
100	

5356	Cross-Track Error
5357	The perpendicular deviation that the airplane is to the left or right of the desired
5358	path. This error is equal to the cross-track component of the total system error.
5359	

APPENDIX C GLOSSARY		
5360 5361 5362 5363	Curvilinear Optimum Path A vertical flight path composed of multiple straight segments that enable improved flight efficiency through the specification of a path optimized for aircraft performance.	
5364 5365	Defined Path The output of the FMS' path definition function.	
5366 5367 5368	Desired Path The path that the flight crew and air traffic control can expect the aircraft to fly, given a particular route leg or transition.	
5369 5370 5371 5372 5373	Direct Geodesic track between two navigational aids, fixes, points or any combination thereof. When used by pilots in describing off-airway routes, points defining direct route segments become compulsory reporting points unless the aircraft is under radar contact.	
5374 5375 5376 5377	Distance-To-Go The distance between the aircraft present position and the waypoint to which the aircraft is flying. In the case of an aircraft flying a parallel offset, the distance-to-go is measured to the offset reference point.	
5378 5379 5380	Dynamic RNP Advanced RNP concept whereby ATS datalink may be used to uplink procedural waypoints and assign RNP values to them.	
5381 5382 5383	EFIS – Electronic Flight Instrumentation System: Digital display that combines aircraft attitude and performance data from different sources on a single display.	
5384 5385	EGNOS – European Geostationary Navigation Overlay Service: Europe's SBAS implementation (see also SBAS).	
5386 5387 5388	Estimate of Position Uncertainty (EPU) A measure based on a defined scale in nautical miles or kilometers which conveys the current position estimation performance.	
5389 5390	Estimated Position The output of the FMS' position estimation function.	
5391 5392	Estimated Time of Arrival (ETA) The time at which the FMS predicts that a fix will be crossed.	
5393 5394 5395 5396 5397	FANS-1/A – Future Aircraft Navigation System 1/A: A set of operational capabilities which make use of the ACARS network and are centered around direct datalink communications between the flight crew and air traffic control. Operators benefit from FANS-1/A in oceanic and remote airspace around the world.	

APPENDIX C GLOSSARY

5401

5402

5405

5407

5408 5409

5410

5411

5421

5423

5425

5427

5428

5431

5432

5433

APPENDIX C GLOSSARY 5399 Fix 5400 A fix is a generic name for a geographical position. A fix is referred to as a fix, waypoint, intersection, reporting point, etc. Flight Level (FL) 5403 A surface of constant atmospheric pressure which is related to a specific pressure 5404 datum, 1013.2 hPa (29.92 in Hg) and is separated from other surfaces by specific pressure intervals. 5406 Flight Path Angle The angular displacement of the vertical flight path from a horizontal plane that passes through a reference datum point. The specified angle is from the TO fix or reference datum point. Flight Technical Error (FTE) The accuracy with which the aircraft is controlled as measured by the indicated 5412 aircraft position with respect to the indicated command or desired position. It does 5413 not include blunder errors. 5414 FMF - Flight Management Function: 5415 A single instance of the flight management system software where the software may be 5416 5417 hosted as a single executable in a federated system or as one or more partitions in an ARINC 653 partitioned operating system. 5418 A collection of processes or applications that facilitates area navigation (RNAV) and 5419 5420 related functions to be executed during all phases of flight. The FMF is resident in an avionics computer and automates navigational functions reducing flight crew workload particularly during instrument meteorological conditions. The Flight 5422 Management System encompasses the FMF<<>>. FMS – Flight Management System: 5424 A specialized computer system that automates a variety of functions to enhance the efficiency of an aircraft and reduce workload on the flight crew. The functions 5426 typically include: position determination, navigation, flight planning, performance planning, lateral and vertical guidance, database management and others.A computer system that uses a large database to allow routes to be preprogrammed 5429 and fed into the system by a means of a data loader. The system is constantly 5430 updated with respect to position by reference to designated sensors. The sophisticated program and its associated database insure that the most appropriate aids are automatically selected during the information update cycle. The flight management system is interfaced/coupled to cockpit displays to provide the flight 5434 crew situational awareness and/or an autopilot. 5435 GBAS - Ground-Based Augmentation System: The ICAO defines GBAS as a system that augments ground systems (typically at an airport) with equipment similar in functionality to a GPS satellite. This augmentation

5436 5437 5438 allows an aircraft to determine its vertical/lateral position to very great accuracy. The 5439 ultimate goal is CAT IIIC operation. The US LAAS is a GBAS.

5440 **Geodesic Line**

APPENDIX C GLOSSARY

A line of shortest distance between any two points on a mathematically defined surface (i.e. WGS-84). A geodesic line is a line of double curvature and usually lies between the two normal section lines which the two points determine. If the two terminal points are nearly in the same latitude, the geodesic line may cross one of the normal section lines. It should be noted that, except along the equator and along the meridians, the geodesic line is not a plane curve and cannot be sighted over directly.

5448 Geometric Path

5441

5442

5443

5444

5445

5446

5447

5449

5450

5451 5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5475

5476

5478

5479

5481

A vertical flight path defined by a straight line between two points or based upon a specified flight path angle from a reference datum point.

GLS – GNSS Landing System:

A safety-critical system consisting of the hardware and software that augments the GPS SPSGNSS position to provide for precision approach and landing capability (much like the ground-based ILS does now). The positioning service provided by GPSGNSS is insufficient to meet the integrity, continuity, accuracy, and availability demands of precision approach and landing navigation. The GLS augments the basic GPSGNSS position data in order to meet these requirements. These augmentations are based on differential GPSGNSS concepts.

GNSS – Global Navigation Satellite System:

GNSS is the ICAO recognized term for space-based navigation systems that provide enroute/terminal navigation with non-precision approach and precision approach capabilities. When receiving signals from at least four satellites, a GPSGNSS receiver can determine latitude, longitude, altitude and time. Examples of GNSS systems include Galileo, GPS, GLONASS, and BeiDou. The US system is GPS.

GPS – Global Positioning System:

AThe United States' GNSS System.minimum of 24 satellite constellation in six orbits 11,000 miles above the earth. Positioned so that users can receive signals from six satellites nearly 100% of the time at any point on Earth. Developed by DoD primarily for military purposes. When receiving signals from at least four satellites, a GPS receiver can determine latitude, longitude, altitude and time. Without RAIM (see also RAIM) and FDE (see also FDE), the user cannot be certain that GPS meets the accuracy, availability, and integrity requirements critical to safety of flight.

5474 Heading

The direction in which the longitudinal axis of an aircraft is pointed, usually expressed in degrees from North (true, magnetic, compass or grid).

5477 Holding Procedure

A predetermined maneuver which keeps an aircraft within specified a airspace while awaiting further clearance.

5480 Host Track/Route

The track or route defined by the waypoints in the active flight plan.

5482 Integrity – For Navigation:

APPENDIX C GLOSSARY

5483	The ability of a system to provide timely warnings to users when the system should
5484	not be used for navigation. In RNP navigation, it refers to the measure of confidence
5485	in the estimated position expressed as a probability that the system will detect and
5486	annunciate the condition where total system error is greater than the cross-track
5487	containment limit. Ability of a system to provide timely warnings or shut itself down
5488	when it should be used for pavingtion
5488	when it shouldn't be used for navigation.

5490 5491 5492 5493	IRS – Inertial Reference System: A navigation aid that uses a computer, motion sensors (accelerometers), rotation sensors (gyroscopes), to continuously calculate the position, orientation, and velocity (direction and speed of movement) of a moving object (aircraft) without the
5494 5495	need for external references.Uses laser gyros vice an INS' accelerometers placed on gyro-stabilized platforms.
5496	LINK 2000+ – The EUROCONTROL LINK 2000+ Program:
5497	Packages a first set of en-route controller-pilot data-link-communication (CPDLC)
5498	services into a set for implementation in the European Airspace using the ATN and
5499	VDL Mode 2 (Aeronautical Telecommunication Network and VHF Digital Link).
5500	Leg
5501	A leg is a segment of the flight plan consisting of a path type (e.g., Track, Course,
5502	Heading) and a termination type (e.g., fix, altitude). In an RNP environment, a leg is
5503	typically a path over the earth terminating at a fixed waypoint.
5504	LNAV – Lateral Navigation:
5505	AFMS function of area navigation (RNAV) equipment which calculates, displays,
5506	and provides guidance to the computeda-lateral pathThe terminology for a
5507	DME/DME or GPS approach where lateral guidance is being provided along a
5508	designated course. LNAV incorporates RNP requirements, generally RNP 0.3
5509	accuracy, and all monitoring, alerting, integrity and continuity limits for the navigation
5510	system and aircraft.
5511	LP/LPV Minimum
5512	< <icao ops="" pans="">></icao>
5540	• • • • • • •
5513	Magnetic Variation
5514	The angle between the magnetic and geographic meridians at any placelocation,
5515	expressed in degrees and minutes east or west to indicate the direction of magnetic
5516	north from true north. The angle between magnetic and grid meridians is called grid
5517	magnetic angle, or grivation. Also called magnetic declination.
5518	MASPS – Minimum Aviation System Performance Standards:
5519	Standards produced by RTCA/EUROCAE High level documents produced by RTCA
5520	that establish minimum system performance characteristics.
5521	MMR – Multi-Mode Receiver:
5522	An integrated avionics unit that contains multiple functions such as ILSContains
5523	Instrument Landing System, ILS Marker Beacon, VOR, Microwave Landing
5524	SystemMLS, and GPSNSS functions.
5525	Multi-Sensor Navigation
5526	An FMS function Wwhere aircraft position is determined using data derived from two
5527	or more independent sensors, each of which is useable (i.e., meets required
5528	navigation performance including accuracy, availability and integrity) for airborne
5529	navigation.
	-

APPENDIX C GLOSSARY

5530	MOPS – Minimum Operational Performance Standards:
5531	Standards produced by RTCA/EUROCAE that describe typical equipment
5532	applications and operational goals and establish the basis for required performance.
5533	Definitions and assumptions essential to proper understanding are included as well
5534	as installed equipment tests and operational performance characteristics for
5535	equipment installations. MOPS are often used by certification authorities the FAA as
5536	a basis for certification and system approval.
5537	Nautical Mile (Nm)
5538	The length equal to 1,852 meters exactly.
5539	Navigation Performance Accuracy
5540	Total navigation accuracy based on the combination of the navigation sensor error,
5541	airborne receiver error, path definition error and flight technical error. Also called
5542	system use accuracy. This performance accuracy is the uncertainty of the horizontal
5543	total system error.
5544	NextGen
5545	U.S. next generation air traffic control infrastructure modernization program.
5546	NOTAM – Notice to Air Men
5547	A notice containing information concerning the establishment, condition or change in
5548	any aeronautical facility, service, procedure or hazard, the timely knowledge of
5549	which is essential to personnel concerned with flight operations.
5550	Offset Distance
5551	The lateral distance, measured in nautical miles left or right, that the offset track
5552	center line is offset from the host track centerline.
5553	Offset Track/Route
5554	The track or route that describes a flight path that is offset from the host track as
5555	defined by the waypoints in the active flight plan. The offset track/route is defined by
5556	the offset forence point computed by the point argument
5557 5558 5559 5560 5561 5562	the offset reference point computed by the navigation system. Offset Reference Point The computed offset reference point is located on the line that bisects the track angle between route segments. The location of the offset reference point for each waypoint of the host track/route is computed by the navigation system so that it lies on the intersection of the lines drawn parallel to the host track/route at the desired offset distance and the line that bisects the track change angle.
5563 5564 5565 5566 5567 5568 5568 5569	Parallel Offset A lateral path defined by one or more offset reference points computed by the navigation system to form a <u>pathroute</u> parallel to the <u>reference flight planhost route</u> . The magnitude of the offset is defined by the offset distance. The parallel offset path is defined by one or more offset reference points computed by the navigation system that comprise the active flight plan. The magnitude of the offset is defined by the offset distance.

APPENDIX C GLOSSARY

5570Path Definition Error5571The difference bet

 The difference between the defined path and the desired path at a specific point and time.

5573 Path Steering Error (PSE)

This error is determined by the difference between the defined path and the estimated position. The PSE includes both FTE and display error. (e.g., CDI centering error).

PBN – Performance Based Navigation:

PBN is aA navigation concept based on the use of Area Navigation (RNAV) systems that defines required performance in terms of accuracy, integrity, continuity and availability. The defined performance includes descriptions of how this capability is to be achieved in terms of aircraft and crew requirements. The general capabilities are defined in International Civil Aviation Organization (ICAO) Doc 9613, Performance Based Navigation Manual Implementation Guidance for National Airspace System (NAS) through Federal Aviation Administration Advisory Circulars (ACs).

Position Estimation Error

The difference between true position and estimated position

Position Uncertainty

A measure that bounds the magnitude of an unknown position estimation error at a specific confidence level (e.g., 95%)

P-RAIM – Predictive RAIM:

Determines RAIM availability for the ETA at any location, typically the destination airport. While enroute to the destination, predictive RAIM is automatically revised as the receiver continually calculates a new ETA. It's critical to understand that just because the receiver predicts RAIM will be available at the destination, it doesn't *guarantee* there will be sufficient satellite coverage on arrival, only that the receiver expects to have sufficient coverage to calculate RAIM. It's possible, for example, that a satellite could go unhealthy while enroute. Signals from satellites low on the horizon could be masked by terrain (the receiver's RAIM function has no way of knowing about terrain masking). P-RAIM does not have to reside in the GPS receiver. It can be provided by FAA Flight Service (US NAS only) and other ground-based RAIM algorithms.

RAIM – Receiver Autonomous Integrity Monitoring:

A technology developed to assess the integrity of global positioning system (GPS) signals in a GPS receiver system.RAIM is a two-step process. First, the receiver has to determine if five or more working satellites are above the horizon and in the proper geometry to make RAIM available. Second, it must determine if the RAIM algorithm indicates a potential navigation error, based upon the range solutions from those satellites. In other words, when the receiver indicates a "RAIM-not-available" alarm, it's saying, "there may/may not be something wrong with the GPS navigation solution, but I do not have enough satellite information to know for sure." If it indicates a "RAIM error" alarm, it is saying, "I have enough satellites and

5613	there is something wrong with one of them and the GPS navigation solution in	
5614	general." Flight in some civil airspace requires RAIM and FDE (see also FDE).	
5615	RNAV – Area Navigation:Area Navigation (RNAV)	
5616	A method of navigation which permits aircraft operation on any desired flight path	
5617	within the coverage of station-referenced navigation aids or within the limits of the	
5618	capability of self-contained aids, or a combination of these. Note that the desired	
5619	path can be designated by any point(s) in a common reference coordinate system.	
5620	RNAV – Area Navigation:	
5621	Rather than fly established airways from one ground navigation aid to another (that	
5622	possibly results in an inefficient "zigzag" route), RNAV ability allows a flight to go	
5623	directly from departure to destination using virtual waypoints in space ("ghost"	
5624	NAVAIDs, as it were).	
5625	RNP – Required Navigation Performance:	
5626	Prescribes the RNAV system performance necessary for operation in a specified	
5627	airspace, based on its required accuracy (RNP value). The basic accuracy	
5628	requirement for RNP-X airspace is for the aircraft to remain within X nautical miles	
5629	of the cleared position for 95% of the time in RNP airspace. Note that there are	
5630	additional requirements, beyond accuracy, applied to a particular RNP type.	
5631	RNP Airspace	
5632	Generic term referring to airspace, route(s), leg(s), where minimum navigation	
5633	performance requirements (RNP) have been established and aircraft must meet or	
5634	exceed that performance to fly in that airspace.	
5635	RNP-AR – RNP Authorization Required	
5636	Special authorization to conduct RNP approaches/missed approaches designated	
5637	as such. Operators can be authorized for any subset of these characteristics: (1)	
5638	ability to fly a published arc (also referred to as a RF leg); (2) reduced lateral	
5639	obstacle evaluation area on the missed approach (also referred to as a missed	
5640	approach requiring RNP less than 1.0). RNP AR is designated for approaches	
5641	where the final approach segment procedure requires RNP values less than 0.3	
5642	NM.	
5643	RTA	
5644	Control mode that modulates the VNAV speed target <>such that the aircraft will	
5645	be controlled to arrive at any specified waypoint in the primary flight plan at a	
5646	specified arrival time (RTA).	
5647		Formatted: Glossary Term
5648	RNP-RNAV – RNP Area Navigation:	
5649	A method of area navigation that includes the concept of navigation performance	
5650	(RNP), area navigation (RNAV) and the elements of containment integrity and	
5651	containment continuity.	
5652	SARPS – Standards and Recommended Practices:	

5653 5654 5655	Produced by ICAO, they become the international standards for member states. As the name implies, they are only "recommended" practices. It is up to each member states to decide how/if to implement them.	
5656 5657 5658 5659 5660 5661 5662	SBAS – Satellite Based Augmentation System: A complex infrastructure of ground-based monitors and control centers that augments the satellite-based position measurement system to meet accuracy, availability, and integrity requirements for navigation systems. Examples of SBAS systems include WAAS (U.S.), EGNOS (Europe), and MSAS (Japan)The WAAS in the US, the EGNOS in the Europe, and the MSAS in Japan are examples of an SBAS.	
5663 5664 5665 5666	Scalable RNP Advanced RNP concept that which allows assignment of atypical RNP values to the legs of a procedure such that the RNP scales from one typical RNP value (RNP 2) to another typical RNP value (RNP 1).	
5667 5668 5669 5670	SESAR – Single European Sky ATM Research: European next generation air traffic control infrastructure modernization program. SESAR aims at developing the new generation ATM system capable of ensuring the safety and fluidity of air transport worldwide over the next 30 years.	
5671 5672 5673 5674 5675	TAWS – Terrain Awareness Warning System: Generic term for systems, including EGPWS (see also EGPWS), that provide situational awareness relative to Controlled Flight Into Terrain (CFIT) and protection by providing three functions : Forward-Looking Terrain-Avoidance (FLTA), Premature Decent Alert (PDA) and Ground Proximity Warning (GPW).	
5676 5677 5678 5679 5680 5681 5682 5683 5683 5684	TOAC – Time of Arrival Control: Performance-based RTA operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs based on entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models. The TOAC function provides the temporal or speed control that enables 4 dimensional (4D) navigation to be accomplished. This function supports the spacing and metering associated with air traffic management and will be used for NextGen and SESAR operations.	
5685 5686 5687 5688	Total System Error The difference between true position and desired position. This error is equal to the vector sum of the Path Steering Error (PSE), Path Definition Error (PDE) and Position Estimation Error (PEE).	
5689 5690 5691	Track The projection on the earth's surface of the path of an aircraft, the direction of which is usually expressed in degrees from north (true, magnetic or grid).	
5692	Transition Altitude	

APPENDIX C GLOSSARY

5693 5694	The altitude at or below which the vertical position of an aircraft is controlled by reference to altitudes.	
5695 5696	Transition Level The lowest flight level available for use above the transition altitude.	
5697 5598 5599 5700 5701 5702 5703 5704 5705 5706 5706 5707 5708 5709 5710	VNAV – Vertical Navigation: FMS function which calculates, displays, and provides guidance to the vertical flight ← plan and/or computed vertical path.A capabilityfunction that allows the aircraft to fly a computed vertical altitude and speed profile which associates lateral waypoints with given altitude/speed constraints through the control of FMS, Autopilot and Auto- throttle. The vertical/speed profile can be either entered by the pilot or generated by the FMS. VNAV is not currently a required RNP/RNAV capability; however, ATM upgrades, such as NextGen, will include VNAV requirements. VNAV altitude can be based on either the aircraft's barometric altimetry system (BARO VNAV) or on GPS. Without differential augmentation (LAAS/WAAS), BARO VNAV will be the primary method of VNAV altitude determination. Since BARO VNAV is affected by nonstandard temperature effects and requires an accurate local altimeter setting, use of BARO VNAV is prohibited on RNAV instrument approach procedures below VNAV DA(H).	(Formatted:
5711 5712 5713 5714	Vertical Flight Technical Error The accuracy with which the aircraft is controlled as measured by the indicated aircraft position with respect to the indicated vertical command or desired vertical position. It does not include blunder errors	
5715 5716 5717	Vertical Path Definition Error The vertical difference between the defined path and the desired path at a specific point and time	
5718 5719 5720	Vertical Path Steering Error The distance from the estimated vertical position to the defined path. It includes both FTE and display error (e.g., vertical deviation centering error).	
5721 5722 5723 5724 5725	Vertical Total System Error The difference between true vertical position and desired vertical position. This error is equal to the vector sum of the vertical path steering error, path definition error, and altimetry system error. Barometric altitude correction setting error is not included.	
5726 5727 5728 5729 5730 5731 5732	VGA – Visual Guidance Approach (or RNAV Visual Procedure) A charted RNAV approach procedure requiring visual conditions to continue the approach after a published position known as the Visual Guided Approach Decision Point (VGADP). It is typically established for environmental or noise considerations or when necessary to improve safety and efficiency. Such approach procedures depict prominent landmarks, terrain features, tracks, waypoints and recommended altitudes to specific runways	Formatted: Formatted: Formatted: Formatted: Formatted: Formatted:
5733	VPT – Visual Maneuvering with Prescribed Track	Formatted:

Formatted: Glossary Description

Formatted: Font: 11 pt

5734 5735 5736 5737	a runway. Following the VGADB, the prescribed track is flown while maintaining	Font color: Auto Font color: Auto Font color: Auto
5738 5739 5740	Waypoint A predetermined geographical position used for route definition and/or progress reporting purposes that is defined by latitude/longitude.	
5741 5742 5743 5744	WGS-84 – World Geodetic System 1984: Developed by the US for world mapping, WGS 84 is an earth fixed global reference frame. It is the ICAO standard.	Glossary Description