1.0	INTRODUCTION AND DESCRIPTION	1
1.1	Purpose and Scope	
1.2	Relationship to Other Documents	2
1.3	Functional Overview	
1.4	Flight Management Computer Description	
1.5	Interchangeability	
1.5.1	General	
1.5.2	Interchangeability for the ARINC 702A Flight Management Computer System	
1.5.3	Generation Interchangeability Considerations	
1.6	Regulatory Approval	
1.7	Integrity and Availability	
1.8	Reliability	
1.9	Testability and Maintainability	
1.10	Flight Simulators	5
2.0	INTERCHANGEABILITY STANDARDS	7
2.1	Introduction	
2.2	Form Factor, Connectors, and Index Pin Coding	
2.3	Standard Interwiring	
2.4	Power Circuitry	
2.4.1	Primary Power Input	
2.4.2	Power Control Circuitry	
2.4.3	The AC Common Cold	
2.4.4	The Common Ground	
2.4.5	Batteries	
2.5	Standardized Signaling	9
2.5.1	General Accuracy and Operating Ranges	
2.5.2	Resolution	
2.5.3	ARINC 429 Data Bus	9
2.5.4	Standard "Open"	9
2.5.5	Standard "Ground"	
2.5.6	Standard "Applied Voltage" Output	
2.5.7	Standard Discrete Input	
2.5.8	Standard Discrete Output	
2.5.9	Ethernet Interfaces	
2.5.10	Standard Annunciators	
2.6	Environmental Conditions	
2.7	Cooling	
2.8	Weights	
2.9	Grounding and Bonding	. 12
3.0	SYSTEM DESIGN CONSIDERATIONS	. 13
3.1	System Configurations	
3.1.1	Single System Configuration	. 13
3.1.2	Single System/Dual MCDU Configuration	
3.1.3	Dual System Configuration	
3.1.4	Other Configurations	
3.2	Certification Design Considerations	
3.2.1	Partitioning Considerations	. 14
3.2.2	Operational Functional Independence	
3.2.3	Unit Identification Considerations	
3.3	System Response to Power Interrupts	. 15
3.2 3.2.1 3.2.2 3.2.3	Certification Design Considerations	. 14 . 14 . 14
ა.ა	System Response to Power Interrupts	. ′

3.4	FMC Performance	16
3.4.1	Accuracy, Integrity, and Continuity	16
3.4.2	Response Time	
3.5	Dual System Design Considerations	
4.0	FLIGHT MANAGEMENT FUNCTIONS	18
4.1	Introduction	18
4.2	Functional Initialization and Activation	
4.2.1	Navigation Sensor Initialization	
4.2.1.1	IRS Initialization	
4.2.1.2	IRS Heading Set	
4.2.1.3	GNSS Initialization	
4.2.2	Flight Plan Initialization and Activation	_
4.2.3	Performance and Predictions Initialization	
4.2.4	Lateral and Vertical Guidance Activation	
4.2.5	Use of Data Link for System Initialization	
4.3	Functional Description	
4.3.1	Navigation	
4.3.1.1	Multi-Sensor Navigation	
4.3.1.2	Navigation Modes	
4.3.1.3	RNP-Based Navigation	
4.3.1.3.1	RNP Determination	
4.3.1.3.1		
4.3.1.3.1	•	
4.3.1.3.1	·	
4.3.1.3.1		
4.3.1.3.2	Determination of Navigation System Performance	
4.3.1.3.3	Navigation Alerting and Display	
4.3.1.4	Navaid Data	
4.3.1.5	Crew Controlled Navigation Options	25
4.3.1.6	VHF Radio Tuning	
4.3.1.6.1	Automatic Station Selection	25
4.3.1.6.2	Navaid Reasonableness Determination	26
4.3.1.7	Real Time Clock	26
4.3.2	Flight Planning	26
4.3.2.1	Flight Plan States	26
4.3.2.2	Navigation Data Base	27
4.3.2.3	Supplemental and Temporary NDB Creation and Management	28
4.3.2.3.1	PBD Waypoints	28
4.3.2.3.2	PB/PB Waypoints	28
4.3.2.3.3	Along Track Fix Waypoints	29
4.3.2.3.4	Lat/Long Waypoints	
4.3.2.3.5	Lat/Long Crossing Waypoints	
4.3.2.3.6	Unnamed Airway Intersection	
4.3.2.3.7	Fix Intersection Waypoints	
4.3.2.3.8	Runway Extension Waypoints	
4.3.2.3.9	Dir-To Abeam Waypoints	
4.3.2.3.1		
4.3.2.3.1	00 71	
4.3.2.4	Lateral Flight Planning	
4.3.2.4.1	Flight Plan Construction	
4.3.2.4.2	Terminal Area Procedures	31

4.3.2.4.3	Flight Plan Editing	32
4.3.2.4.3.1	Direct/Intercept Option	32
4.3.2.4.3.2	Entry of Waypoints	32
4.3.2.4.3.3	Flight Plan Linking	32
4.3.2.4.3.4	Flight Plan Delete	32
4.3.2.4.3.5	Procedure Selection	32
4.3.2.4.3.6	Holding Patterns (HM Leg)	32
4.3.2.4.3.7	Flight Plan Editing using Data Link	33
4.3.2.4.3.8	Flight Plan Editing using a Pointing Device	
4.3.2.4.4	Flight Planning Support for ATM	
4.3.2.4.5	Missed Approach Procedures	
4.3.2.4.6	Lateral Offset Construction	33
4.3.2.4.7	Magnetic Variation	34
4.3.2.5	Vertical Flight Planning	35
4.3.2.5.1	Wind, Temperature, and Atmospheric Model	36
4.3.2.5.2	Waypoint Altitude Constraints	37
4.3.2.5.3	Waypoint Speed Constraints	
4.3.2.5.4	Temperature Compensation	
4.3.3	Lateral and Vertical Guidance	
4.3.3.1	Lateral Guidance and Path Construction	43
4.3.3.1.1	Lateral Reference Path Construction	
4.3.3.1.2	Lateral Leg Transitions	
4.3.3.1.2.1	Fly-By Turns	
4.3.3.1.2.2	Fly-Over Turns	
4.3.3.1.2.3	Fix Radius Transitions (FRT)	
4.3.3.1.3	Special Lateral Path Construction	46
4.3.3.1.4	Lateral Guidance Roll Command	
4.3.3.1.5	Lateral Guidance Output Parameters	
4.3.3.1.6	Lateral Capture Path Construction	
4.3.3.1.7	Localizer/MLS Capture	
4.3.3.1.8	Earth Reference Model	
4.3.3.2	Vertical Guidance and Trajectory Predictions	48
4.3.3.2.1	Trajectory Predictions	
4.3.3.2.1.1	Takeoff Phase Predictions	50
4.3.3.2.1.2	Climb Phase Predictions	50
4.3.3.2.1.3	Cruise Phase Predictions	
4.3.3.2.1.4	Descent Phase Path Construction and Predictions	53
4.3.3.2.1.4.1	Descent Phase Path Construction	53
4.3.3.2.1.4.2	Predictions	57
4.3.3.2.1.5	Approach Phase Path Construction and Predictions	59
4.3.3.2.1.6	Missed Approach Phase Prediction	
4.3.3.2.2	Vertical Guidance	
4.3.3.2.2.1	Climb Phase Operation	64
4.3.3.2.2.2	Cruise Phase Operation	64
4.3.3.2.2.3	Descent Phase Operation	64
4.3.3.2.2.4	Selected Altitude Compliance	65
4.3.3.2.2.5	Altimeter Barometric Correction for Terminal Area Operations	65
4.3.3.2.2.6	Altitude Constraints	65
4.3.3.2.2.7	Speed Restrictions	66
4.3.3.2.3	Estimated Time of Arrival (ETA)	70
4.3.3.2.4	Required Time of Arrival (RTA)	70
4.3.3.2.5	Time of Arrival Control (TOAC)	71

4.3.3.3	Three-Dimensional RNAV Approach	72
4.3.4	Performance Calculations Function	72
4.3.4.1	Performance Modes	72
4.3.4.1.1	Climb Mode	72
4.3.4.1.2	Cruise Mode	72
4.3.4.1.3	Descent Mode	73
4.3.4.2	Maximum and Optimum Altitudes Calculation	73
4.3.4.3	Trip Altitude Calculations	
4.3.4.4	Alternate Destinations Calculation	73
4.3.4.5	Step Climb/Descent	
4.3.4.6	Cruise Climb	
4.3.4.7	Vertical Advisory Calculations	
4.3.4.8	Thrust Limit Data Calculations	
4.3.4.9	Takeoff Reference Data	
4.3.4.10	Approach Reference Data	
4.3.4.11	Reserve Fuel Calculation	
4.3.4.12	Engine-Out Performance Calculation	
4.3.4.13	Other Predictions	
4.3.4.13.		
4.3.4.13.2		
4.3.4.13.3	3 7	
4.3.5	Printer Functions	
4.3.6	ACC Function	
4.3.7	ATS Datalink	
4.3.7.1	Future Air Navigation System 1/A (FANS 1/A)	
4.3.7.1.1	Air Traffic Services Facilities Notification (AFN)	
4.3.7.1.2 4.3.7.1.3	Controller/Pilot Data Link Communication (CPDLC)	
	Automatic Dependent Surveillance - Contract (ADS-C)	
4.3.7.2 4.3.7.2.1	Link 2000+	
4.3.7.2.1	Context Management (CM) Controller Pilot Data Link Communication (CPDLC)	
4.3.7.2.2	Baseline 2 (B2)	
4.3.7.3.1	Context Management (CM)	
4.3.7.3.1	Controller Pilot Data Link Communication (CPDLC)	01 22
4.3.7.3.3	Automatic Dependent Surveillance (ADS-C)	
4.3.8	Airport Surface Guidance	
4.3.9	Terrain and Obstacle Data	
4.3.10	Electronic Map Interfaces	
4.3.10.1	Navigation Display Interface	
4.3.10.2	Vertical Situation Display Interface	
4.3.11	CMU Interface	
4.3.12	Predictive Receiver Autonomous Integrity Monitoring (RAIM)	
4.3.13	Precision-Like Approach Guidance	
4.3.13.1	LP/LPV Approach Guidance	
4.3.13.2	FMS Landing System (FLS)	
4.3.14	Integrity Monitoring and Alerting	
4.3.14.1	Sensor Status	
4.3.14.2	System Status Alert	
4.3.14.3	Self-Test	
4.3.14.4	Failure Response	
4.4	Training Simulator Support Functions	

5.0	STANDARD INTERFACES	88
5.1	FMC Digital Data Input Ports	88
5.1.1	VOR Input Ports	88
5.1.2	DME Input Ports	88
5.1.3	ILS/MMR Input Port	
5.1.4	Air Data Input Ports	
5.1.5	IRS/AHRS Input Ports	
5.1.6	GNSS Input Ports	
5.1.7	Flight Control System Input Ports	
5.1.8	MCDU Input Ports	
5.1.9	Data Loader Input Ports (ARINC 615)	
5.1.10	Data Link Input Ports	
5.1.11	Intersystem Data Input Port	
5.1.12	Propulsion/Configuration Data Input Ports	
5.1.13	Electronic Flight Instrument System Input Ports	
5.1.14	Printer	
5.1.15	Digital Clock Input	
5.1.16	Maintenance Input	
5.1.17	WBS Input	
5.1.18	Simulator Input	
5.1.19	Pointing Device	
5.1.20	ASAS Input	
5.1.21	Reserved Ports for Growth Inputs	
5.1.21	FMC Digital Data Outputs	
5.2.1	FMC Intersystem Output.	
5.2.1	General Data Output	
5.2.3	Primary Display Data Output	
5.2.4	MCDU Output Ports	
5.2.5	Data Loader Output	
5.2.6	Data Link Output Ports	
5.2.7	Autothrottle (Reserved)	
5.2. <i>1</i> 5.2.8	Printer	
5.2.0 5.2.9	Onboard Maintenance	
5.2.3 5.2.10	Programmable Data Output	
5.2.10	Simulator	
5.2.11	Aircraft State and Intent Path Output (Trajectory Bus)	
5.2.12.1	Aircraft State Data	
5.2.12.1 5.2.12.1.		
5.2.12.1. 5.2.12.1.2		
5.2.12.1. 5.2.12.2	Trajectory Intent Data	
5.2.12.2 5.2.12.2.		
5.2.12.2. 5.2.12.2.2		
5.2.12.2.2 5.2.13	, ,	
5.2.13 5.3	Reserved Ports for Growth	
	Discrete Inputs and Outputs	
5.4	FMC/FMC Intersystem Communications	
5.5	Ethernet Interface (ARINC 646)	
6.0	CONTROL DISPLAY UNIT INTERFACE	106
6.1	General	
6.2	Standby Navigation	106
6.3	Self-Test	
6.4	MCDU Annunciators	

6.5	MCDU Alerting	107
6.6	MCDU Color and Font Usage	107
7.0	ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE	108
7.1	Introduction	108
7.2	FMC Outputs to EFI	
7.3	FMC Inputs from EFI	
7.4	EFI Design Features	
7.4.1	Map	108
7.4.2	Plan	108
7.4.3	HSI Mode	109
7.4.4	Map Scales	109
7.4.5	Map Projection	
7.4.6	Option Selection	
7.4.7	Symbol Repertoire	
7.4.8	EFI Data Conditioning	
7.4.9	Pointing Device	
7.4.10	Surface Map Mode	
7.5	FMC Design Features	
7.5.1	Flight Plans	
7.5.2	Map Display Edit Areas	
7.5.3	Pointing Device	
7.6	Interface Design	
7.6.1	General	
7.6.2	Map Data Updating	
7.6.3	Background Data Prioritizing	
7.6.4	Background Data Editing	
7.6.5	Mode Change Response	
7.6.6	Map Translation and Rotation Data	
7.6.7	Resolution	
7.6.8	Interface Data Errors	
7.6.9	FMC-to-EFI Data Transfer Protocol	
7.6.9.1 7.6.9.2	Data Block Format	
7.6.9.2 7.6.10	Data Type Word Formats	
7.6.10	EFI-to-FMC Data Transfer	
8.0	COMMUNICATIONS MANAGEMENT UNIT INTERFACE	
8.1	General	116
9.0	DATA BASE STORAGE CONSIDERATIONS	117
9.1	Introduction	
9.2	Navigation Data Base	
9.3	Airline Modifiable Information (AMI) Data Base	
9.4	Performance Data Base	
9.5	Magnetic Variation Data Base	
9.6	Terrain and Obstacle Data	
9.7	Airport Surface Map Data	
9.8	Configuration Data Base	
10.0	BUILT-IN TEST AND MAINTENANCE PROVISIONS	
10.0	General Discussion	
10.1		
10.2.1	Fault Detection and Reporting	
10.2.1	GeneralSelf-Monitoring	
10.4.4	Con Monitoring	1∠1

10.2.3		
10.2.4		·122
10.2.5		
10.3		
10.3.1		esting 122
10.3.2		Bus Interface
10.3.3	Data Loading	
10.3.4		tware123
10.3.5		Recovery 124
10.4		c Test Equipment
10.4.1		124
10.4.2	ATE Testing	
ATTACH	IMENTS	
ATTACH		FLIGHT MANAGEMENT SYSTEM
ATTACH	125 IMENT 2-1	FMC CONNECTOR POSITIONING
	127	
ATTACH		STANDARD INTERWIRING
^TT ^ C	128	NOTES ADDITIONS FIRST STANDARD INTERMIDING
АПАСП	135	NOTES APPLICABLE TO THE STANDARD INTERWIRING
ATTACH	MENT 2-4	CONNECTOR INSERT LAYOUT
ATTACH	137 IMENT 3	FLIGHT MANAGEMENT SYSTEM CONFIGURATIONS
ATT A O. I	140	
ATTACH	MENT 4 141	DATA INPUT/OUTPUT FMC OUTPUTS
ATTACH	MENT 5	ENVIRONMENTAL TEST CATEGORIES
	145	5140 (551 IN ITSD5 1 0 5
ATTACH		FMC/EFI INTERFACE
^TT ^ C	146	FMC/DATALINK INTERFACE
ATTACH	166	FMC/DATALINK INTERFACE
лттл <u>с</u> н		CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES
ATTACT	253	SODING EXAMILES OF TRASECTORY INTERVIDATATILES
APPEND	DICES	
APPEND	DIX A	REFERENCE DOCUMENTS
	254	
APPEND	OIX B	ACRONYMS
	257	
APPEND		GLOSSARY
	261	

1.0 INTRODUCTION AND DESCRIPTION

1.1 Purpose and Scope

This document sets forth the characteristics of an advanced Flight Management Computer System (FMS) specifically designed for installation in new generation aircraft. The system is also intended for retrofit in aircraft that presently use ARINC 700 series equipment. The advanced FMS is expected to provide expanded functional capability beyond that defined in ARINC Characteristic 702, and support the necessary requirements for operation in the future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) operational environment.

ARINC Report 660B, CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts identifies the attributes of the Global Navigation Satellite System (GNSS), Required Navigation Performance (RNP) based navigation, air to ground data link for communications and surveillance, and the associated crew interface control/display capabilities, all of which will be necessary for operations in an evolving Communications Navigation Surveillance/Air Traffic environment. Those concepts and the relative effects on the FMS are addressed in this document. The functional requirements defined herein also apply to a Flight Management Function (FMF) in an Integrated Modular Avionics (IMA) architecture with software partitions.

The ICAO Future Air Navigation System (FANS) Standards and Recommended Practices (SARPs) for CNS/ATM are currently evolving and are expected to continue to evolve. The requirements included in this document are intended to support Performance Based Navigation (PBN) and Trajectory-Based Operations (TBO) and be consistent with the latest versions of the following documents:

- ICAO Doc 9613: Performance-Based Navigation Manual (PBN Manual)
- RTCA DO-236: Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation (RNP MASP)
- RTCA DO-283: Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation (RNP MOPS)

This document does not specify the requirements for a Control Display Unit (CDU). While the CDU is included in the original version of ARINC Characteristic 702, the capabilities of the Multi-Purpose Control Display Unit (MCDU) are separately defined in ARINC Characteristic 739A.

This document defines the functional and interface characteristics of the FMS and assumes that the appropriate MCDU characteristics are defined separately in ARINC Characteristic 739A or elsewhere.

ARINC originated with the airlines and the ARINC Standards are created as airline requirements for system implementers. Therefore, the use of the word "should" in this document carries with it the expectation of incorporation. This is especially true in the context of fit, form, interface requirements, and crew indication requirements. In allowing for the various architectures described in this document it is expected that the functions will operate, at a system level, as described in this document.

COMMENTARY

End users should be aware that there can be possible differences in hardware and/or tailored implementation of certain functions from ARINC 702A so that the FMC may meet fit, form, and intended functional requirements for the particular airframe. Differences may

89 90

91

1.0 INTRODUCTION AND DESCRIPTION

47 48 49		be due to the various airplane architectures, system limitations, and/or specific end user needs which take precedence over complete compliance with ARINC 702A.
50	1.2	Relationship to Other Documents
51 52		This document is one of a family of ARINC Characteristics for advanced navigation equipment that includes:
53		 ARINC Characteristic 756: GNSS Navigation and Landing Unit
54		 ARINC Characteristic 760: GNSS Navigation Unit
55 56 57 58		The functional characteristics of these three systems are very similar, and consequently, significant portions of these three equipment characteristics are highly common. Users of these documents should consider this commonality issue when planning future revisions.
59 60 61 62 63 64 65 66		The vast majority of military and government specifications for equipment design and construction usually employ specification language; that is, terms such as thou shalt and thou shalt not. However, that type of language makes it difficult to describe preferences which have grown out of airline experience which designers might weigh differently. For this reason, this standard, like other ARINC Standards, represents guidance material which attempts to acquaint the manufacturer with the need for specific design practices rather than to tell them that they must meet certain requirements under all circumstances.
67 68		A complete list of documents referenced herein can be found in Appendix A. The latest versions apply.
69	1.3	Functional Overview
70 71 72 73 74 75		The FMS provides the following functions: navigation, flight planning, lateral and vertical guidance, performance optimization and prediction, air ground data link, and pilot interfaces via the Electronic Flight Information System (EFIS) and MCDU displays or, in newer architectures, a graphical Cockpit Display System (CDS). The following paragraphs provide a summary description of these characteristics, with references to their functional descriptions in later sections of this characteristic.
76 77 78 79 80		Navigation (Section 4.3.1) – The navigation function determines the position and velocity of the aircraft using input data from all appropriate sources. The outputs include position in terms of altitude, latitude and longitude, and velocity in terms of ground speed and track angle, wind, true and magnetic headings, drift angle, magnetic variation, and inertial flight path angle.
81 82 83 84 85 86 87		Flight Planning (Section 4.3.2) – This function provides the sequence of waypoints, airways, flight levels, departure procedures, and arrival procedures to fly from the origin to the destination and/or alternates. The flight plan may be entered manually on the MCDU or automatically by uplink via the air-ground data link. A navigation data base in the Flight Management Computer (FMC) contains the necessary data associated with every flight plan element identifier for the entire aircraft flight domain.
88		Lateral and Vertical Guidance (Section 4.3.3) - Lateral guidance is computed with

respect to geodesic paths defined by the flight plan, and to transitional paths

between the geodesic paths, or to preset headings or courses. Vertical guidance is computed with respect to altitude constraints, or to a vertical path defined by altitude

constraints, vertical angles, and a reference descent profile. Speed control along the desired path is provided during all phases of flight.

Trajectory Predictions (Section 4.3.3.2.1) – This function predicts distance, time, speed, altitude, and gross weight at each future waypoint in the flight plan, including computed waypoints such as top-of-climb and top-of-descent.

Performance Calculations (Section 4.3.4) – The objective of this function is to optimize the vertical and speed profiles to minimize the cost of the flight or meet some other criterion, subject to a variety of constraints.

Air-Ground Data Link – Two-way data communication can be provided to the Airline Operations Facility and to Air Traffic Services (ATS). Airline Operational Communication (AOC) data link (Section 4.3.6) is used for flight plans, weather data, takeoff speeds, preflight initializations, etc., from the airline operations facility directly into the FMC. Air Traffic Control (ATC) data link (Section 4.3.7) is used to communicate predefined ATS controller-to-pilot uplink and pilot-to-controller downlink messages.

Pilot Interface via the MCDU (Section 6.0) – In legacy architectures, the MCDU is the pilot interface to the FMS. It transmits button pushes to the FMC and displays data on the MCDU screen in response to transmissions from the FMC. The MCDU may also provide backup functions should both FMCs fail. In newer architectures, the MCDU is replaced by a graphical user interface which may be provided by a Cockpit Display System (CDS). The FMS is a User Application (UA) which requests graphical widgets to be displayed on the display and the CDS provides the FMS with actions performed on those widgets. The CDS interface is documented in ARINC 661.

COMMENTARY

Within this document, references to crew input from the MCDU and display of FMS information on the MCDU should be treated as generic references which also apply to architectures with graphical user interfaces.

Electronic Flight Instrument System (Section 7.0) - The FMC generates a variety of outputs in support of Electronic Map Displays (EMD): Primary Flight Display (PFD), Navigation Display (ND), and optionally a Vertical Situation Display (VSD). Within this document, the terms Electronic Flight Instrument System (EFIS) and Cockpit Display System (CDS) are used in reference to the display system hardware and associated interfaces; the terms EMD, PFD, ND, and VSD are used generically to refer to the various graphical display areas or windows. Based on the interface, the FMC may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC Specification 661. The requirements within this document are intended to be consistent with RTCA DO-257: *Minimum Operational Performance Standards for the Depiction of Navigational Information on Electronic Maps*.

COMMENTARY

The airlines wish to avoid the installation of equipment that becomes throw-away when additional related functionality is added. Provisions for growth need to be inherent to the initial configuration of the equipment. The equipment also needs to be designed to support the

flexibility that allows the airline to configure the system for the specific capabilities required for different aircraft types and operational needs without incurring unnecessary penalties for unused functionality. The growth and flexibility provisions must allow the system to be easily upgraded after initial installation and certification to accommodate the changes in airline and airspace operational requirements.

1.4 Flight Management Computer Description

The FMC should contain all of the components, electronic circuitry, memory, etc., incident to the functioning of the system. The unit should also contain, as a minimum, sufficient data storage for all required active engine and airplane performance data, all navigation data required to support the active flight plan and any secondary flight plan which may have been entered into the system. The FMC should be capable of storing all data required by the system. The computer should be designed such that normal and abnormal power switching transients and other primary power interruptions as defined in RTCA DO-160 do not cause essential memory contents to be lost. Provisions should be made in the design of the computer to allow for future growth of the system. Expanding the capabilities of the computer should be possible with a minimum of rework and at a minimum cost to the airline customer.

1.5 Interchangeability

1.5.1 General

One of the primary functions of an ARINC Characteristic is to designate, in addition to certain performance parameters, the interchangeability desired for aircraft equipment produced by various manufacturers.

1.5.2 Interchangeability for the ARINC 702A Flight Management Computer System

System interchangeability of the FMC with respect to the standard aircraft installation is desired regardless of the manufacturing source. The standards necessary to ensure this level of interchangeability are set forth in Section 2.0 of this Characteristic.

1.5.3 Generation Interchangeability Considerations

The advanced FMS defined by ARINC 702A represents an evolutionary development beyond the FMS originally defined by ARINC 702. Consequently, general form factors and interwiring are similar, but strict interchangeability is not the intended goal.

The air transport industry desires that future evolutionary equipment improvements and the inclusion of additional functions in new equipment during the next few years do not violate the interwiring and form factor standards set forth in this document. Provisions to ensure forward-looking generation interchangeability (as best can be predicted) are included in this document to guide manufacturers in future developments.

1.6 Regulatory Approval

The equipment should meet all applicable regulatory requirements. This ARINC Standard does not and cannot set forth the specific requirements that an equipment

must meet to be assured of approval. Such information must be obtained from the appropriate regulatory authority.

1.7 Integrity and Availability

Since this equipment is the primary means of navigation on most aircraft, the utmost attention should be paid to the need for integrity and availability in all phases of system design, production, and installation. This equipment should provide the system performance, design and operational integrity, and availability necessary for CNS/ATM and Required Navigation Performance (RNP) operations. Integrity should consider design assurance for reduced risk of operational excursions beyond RNP containment limits, and functional assurance via system capabilities and features consistent with CNS/ATM and RNP operations. The system production and installation processes and methods should be consistent with the required integrity and availability of the system.

1.8 Reliability

The anticipated operational use of the system demands the utmost attention to the need for reliability in all phases of system design, production, installation, and operation of the FMC. It is of paramount importance to the airlines to operate a trouble-free unit with minimum impact on scheduling and maintenance. A special emphasis should be given to total system quality, including built in testing, ramp testing, and shop testing to increase the Mean Time Between Unscheduled Removals (MTBUR). MTBUR affects airline operations despite a high MTBF.

COMMENTARY

Airlines have a heightened interest in identifying and correcting the root cause(s) of unnecessary LRU removals, many of which result in a No Fault Found (NFF) disposition. Each NFF occurrence represents an unacceptable additional and excessive cost of ownership to the airline. All efforts in the developmental process to eliminate NFF occurrences will help improve the MTBUR.

1.9 Testability and Maintainability

The total system quality should include adequate ability for the operator to test and maintain the FMS effectively. The FMS designer should confer with the user to establish goals and guidelines for testability to minimize unnecessary removals. The use of advanced Built-In Test Equipment (BITE), ramp testing equipment, and adequate documentation will help the operators improve MTBUR. For airline operations, MTBUR is at least as important, perhaps more so, than MTBF. Testability should provide for the rapid identification of the root cause(s) of repeat removals and ultimate elimination of unconfirmed faults.

For shop maintainability, the design of physical access and functional partitioning of the FMS should be such to minimize repair time. Where possible, excessive unit disassembly should not be required for internal component replacement. Full and complete documentation included in a Component Maintenance Manual will also facilitate effective maintainability.

1.10 Flight Simulators

Flight simulators are recognized as an important part of the aviation industry. Airlines depend upon simulators for flight crew and maintenance training. FMS equipment should be designed for use in flight simulators. Airlines typically desire

ARINC CHARACTERISTIC 702A - Page 6

1.0 INTRODUCTION AND DESCRIPTION

228 229 230	simulators to be available as early as possible to allow for crew training prior to introduction into revenue service. The guidelines of ARINC Report 610 : Guidance for Use of Avionics Equipment and Software in Simulators apply.
231	

2.0 INTERCHANGEABILITY STANDARDS

2.1 Introduction

This section sets forth the specific form factor, mounting provisions, interwiring, input and output interfaces, and power supply characteristics desired for the Flight Management Computer (FMC). These standards are necessary to ensure the continued independent design and development of both the equipment and the airframe installations. Manufacturers should recognize the practical advantages of developing equipment in accordance with the form factor, interwiring, and signal standards of this document.

2.2 Form Factor, Connectors, and Index Pin Coding

The FMC should comply with the dimensional standards in **ARINC Specification 600:** Air Transport Avionics Equipment Interfaces, for the 8 Modular Concept Unit (MCU) or the 4 MCU form factor. The FMC should also comply with ARINC Specification 600 with respect to weight, racking attachments, front and rear projections, and cooling.

The FMC should be provided with a low insertion force, ARINC 600 size 2 service connector. This connector should be located on the center grid of the FMC rear panel, and index code 04 should be used. The top and center inserts of the connector Top Plug (TP) and Middle Plug (MP) should each provide 150 socket-type contacts. The lower insert Bottom Plug (BP) should provide 11 pin-type contacts and spaces for two small diameter coaxial contacts. Attachment 2 to this document shows the connector arrangement and pin assignments.

If functions (not assigned pins on the service connector in Attachment 2-2 to this document) are needed to be brought to the outside world to facilitate testing, they should be assigned pins on an auxiliary connector whose type and location is selected by the equipment manufacturer. The manufacturer should refer to ARINC Specification 600 when choosing the location for this connector and note that, other than to accommodate the needs for equipment identification by the ATE described in this document, he is free to make whatever pin assignments he wishes. The airlines do not want the unassigned (future spare) pins of the service connector used for functions associated solely with ATE use.

2.3 Standard Interwiring

The standard interwiring for the FMC is set forth in Attachment 2-2. The interwiring for a given installation needs only to ensure interconnection with those sub-systems actually installed and supported on a particular aircraft type. Wiring associated with alternate sub-systems shown in Attachment 2-2 need not be installed. Equipment manufacturers are cautioned not to rely on special wires, cabling, or shielding for their particular units because they will not exist in an ARINC 702A installation.

2.4 Power Circuitry

2.4.1 Primary Power Input

The FMC should be designed to use 115 volt 400Hz single phase power from a system designed for Category (A) utilization equipment per ARINC Specification 413A.

The primary power inputs to the FMC will be protected by a circuit breaker. Installation designers should note that the FMC circuit breaker may need to be capable of handling the current drain of an ARINC 615 or 615A data loader. When

321

2.0 INTERCHANGEABILITY STANDARDS

278 such a device is used with the FMC, it may derive its power from the FMC power 279 source. 280 The equipment designer should be aware that severe switching and other transient 281 interruptions to primary power occur during normal aircraft operations. He should ensure that such interruptions do not cause the computer to lose the contents of its 282 memory or impose the need to provide an external battery to maintain operations. 283 No pilot action should be needed to cause the system to return to normal operation 284 285 following such normal power interruptions. 286 Equipment designers should take precautions to prevent anomalous operation of equipment during and after interruptions or transients in the aircraft power system. 287 288 The equipment should, as a design goal, continue normal operation while sourcing 289 current to all active guidance and flag outputs during power interruptions of up to 200 milliseconds. If the equipment shuts down during a power interruption, normal 290 291 operation should resume without the need to recycle circuit breakers or clear memories when power is restored. 292 293 System response and data retention requirements for primary power interruptions 294 longer than 200 milliseconds are discussed in Section 3.3. 295 Note: Airframe installation designers should verify that the aircraft 296 power systems satisfy the primary power interruption criteria of ARINC Specification 413A. 297 298 2.4.2 Power Control Circuitry 299 There should be no master on/off power switching within the FMC system. 300 2.4.3 The AC Common Cold 301 The wire connected to the FMC connector pin labeled 115 Vac Cold will be grounded to the same structure that provides the dc chassis ground but at a 302 303 separate ground stud. Airframe manufacturers are advised to keep AC ground wires as short as practicable in order to minimize noise pick-up and radiation. 304 2.4.4 The Common Ground 305 306 The wire connected to the FMC connector pin labeled Chassis Ground should be 307 employed as the DC ground return to aircraft structure. It is not intended as a common return for circuits carrying heavy ac currents, and equipment 308 manufacturers should design their equipment accordingly. 309 310 2.4.5 Batteries If battery devices are used in equipment designs, they should not degrade the 311 312 MTBF and MTBUR targets for the equipment and should also have a life 313 expectancy greater than the MTBF target. 314 **COMMENTARY** 315 Airline experience has shown that batteries have proven to be 316 maintenance problems in avionic equipment. Manufacturers may 317 consider the use of batteries to hold-up memory devices through power transients or long-term power outages. Batteries might also be 318 utilized to maintain real time clock circuits or for other purposes. 319 However, the airlines encourage the manufacturers to consider other 320

design solutions instead of using batteries for these functions.

322	2.5	Standardized Signaling
323 324		The desire for interchangeability necessitates standardization of the FMC input and output interface parameters.
325 326 327 328		The FMC should be capable of exchanging data in digital form and as discrete inputs and outputs. The characteristics of digital signals and discrete signals are defined herein. These standards should be used as design guidelines to assure the desired interchangeability of equipment.
329 330 331		Certain basic standards established herein are applicable to all signals. Unless otherwise specified, the signals should conform with the standards set forth in the subparagraphs below.
332	2.5.1	General Accuracy and Operating Ranges
333 334 335 336 337		The accuracies specified herein should apply under all combinations of the environmental conditions referenced in Section 2.5 of this document. Accuracy measurements should be made on the assumption that the inputs to the FMC are perfect. Accuracies are specified on the basis of 95% of observations and do not include typical reading inaccuracies of the pilot's instruments.
338	2.5.2	Resolution
339 340 341 342 343 344		For the purposes of this Characteristic, the resolution or the function threshold sensitivity is considered to be the maximum cyclic input change (double amplitude) that can occur without detectable change in the output. The specific figures set forth for threshold sensitivity of each function should be made without vibration of any kind being applied and it should be checked approaching the reading with signals from either direction.
345	2.5.3	ARINC 429 Data Bus
346 347		The FMS equipment utilizes digital signal interfaces defined by ARINC Specification 429: Digital Information Transfer System (DITS).
348 349		ARINC 429 data bus input labels are defined in Attachment 4 of the document. Material in this document is included for reference purpose only.
350		COMMENTARY
351 352 353		In the event of conflict between this document and ARINC Specification 429, the equipment designer is encouraged to contact the supplier of equipment sourcing the ARINC 429 data words.
354 355 356		ARINC 429 data bus output labels sent by the FMS are defined in Attachment 4 of this document. Material in this document is intended to be used by the FMS equipment designer.
357	2.5.4	Standard "Open"
358 359		The standard "open" signal is characterized by a resistance of 100,000 ohms or more with respect to signal common.
360		COMMENTARY
361 362 363		In many installations, a single switch is used to supply a logic input to several Line Replaceable Units (LRUs). One or more of these LRUs may utilize a pull up resistor in its input circuitry. The result is that an

open may be accompanied by the presence of +27.5 Vdc nominal.
The signal could range from 18.5 to 36 Vdc.

2.5.5 Standard "Ground"

 The standard "ground" signal may be generated by either a solid state or mechanical type switch. For mechanical switch type circuitry, a resistance of 10 ohms or less to signal common would represent the ground condition. Semiconductor circuitry would exhibit a voltage of 3.5 Vdc or less with respect to signal common in the ground condition.

2.5.6 Standard "Applied Voltage" Output

The standard "applied voltage" is defined as having a nominal value of +27.5 Vdc. This voltage should be considered to be applied when the actual voltage under the specified load conditions exceeds 18.5 Vdc (+36 Vdc maximum) and should be considered to be not applied when the voltage at the output is 3.5 Vdc or less when loaded with no less than 50,000 ohms.

2.5.7 Standard Discrete Input

A standard Discrete Input should recognize incoming signals having two possible states, open and ground. The characteristics of these two states are defined in Sections 2.5.4 and 2.5.5. The maximum current flow in the ground state should not exceed 20 milliamperes.

COMMENTARY

Some older installations use a number of voltage levels and resistances for discrete states. In addition, the assignments of valid and invalid states for the various voltage levels and resistances were sometimes interchanged, which caused additional complications. A single definition of discrete levels is being used in an attempt to standardize conditions for discrete signals. The voltage levels and resistances used are, in general, acceptable to hardware manufacturers and airlines. This definition of discrete is also being used in the other ARINC 700-series characteristics. However, there are few exceptions for special conditions.

The logic sources for the Discrete Inputs to the unit are expected to take the form of switches mounted on the airframe component (flap, landing gear, etc.) from which the input is desired. These switches will either connect the Discrete Input pins on the connector to airframe dc ground or leave an open circuit as necessary to reflect the physical condition of the related components. The unit will, in each case, be expected to provide the DC signal to be switched. Typically, this is done through a pull-up resistor. The equipment input should sense the voltage on each pin to determine the state (open or closed) of each switch.

The selection of the values of voltages and resistances is based on the assumption that the Discrete Input will utilize a ground-seeking circuit. When the circuit senses a low resistance or a voltage of less than +3.5 Vdc, current flow from the input will signify a ground state. When a voltage level between +18.5 and +36 Vdc is present or a resistance of 100,000 ohms or greater is connected to the input, little or no current should flow. The input should be in a quiescent state. The input should also utilize an internal pull-up to provide for better noise immunity when a true open is present at the input.

The probability is quite high that the sensors (switches) will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit from other equipment, especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the ground (less than +3.5 Vdc) state of each input. Also, both equipment and airframe suppliers are cautioned concerning the need for isolation to prevent sneak circuits from contaminating the logic. Typically, diode isolation is used in the avionics equipment to prevent this from happening.

2.5.8 Standard Discrete Output

A standard Discrete Output should exhibit two states, open and ground, as defined in Sections 2.5.4 and 2.5.5. The open state of each discrete is defined as a voltage greater than +18.5 Vdc (+36 Vdc max.), or a resistance of 100,000 ohms or more, from the assigned equipment connector pin to airframe dc ground. The ground state is defined as a voltage less than +3.5 Vdc (0 Vdc min.) to airframe dc ground at the assigned pin. The maximum current flow through the discrete wire in the ground state should not exceed 20 mA.

427 COMMENTARY

The probability is quite high that the switches will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the standard ground (less than +3.5 Vdc) state of each input. Avionics suppliers are alerted to the need for isolating diodes in the equipment to prevent sneak circuits from contaminating the logic.

2.5.9 Ethernet Interfaces

This document refers to two types of Ethernet buses:

- ARINC Specification 646: Ethernet Local Area Network (ELAN)
- ARINC Specification 664: Aircraft Data Network

ARINC 664 Ethernet is widely used on later model aircraft.

2.5.10 Standard Annunciators

A standard annunciator output should exhibit the same characteristics as the standard discrete output described in Section 2.5.8, except the annunciator output should be capable of sinking up to 200 mA when in the ground state.

2.6 Environmental Conditions

The FMC should meet the requirements of the latest versions of RTCA DO-160 and EUROCAE ED-14. Attachment 5 to this document tabulates the relevant environmental categories.

2.7 Cooling

The FMC may be designed to utilize, and the airframe installation should provide, cooling air in the manner described in Section 3.5 of ARINC Specification 600. The airflow rate provided to the FMC in the aircraft installation should be 44 kg per hour and the pressure drop of the coolant airflow through the equipment should be 25 ± 5

ARINC CHARACTERISTIC 702A - Page 12

2.0 INTERCHANGEABILITY STANDARDS

454 mm of water at this rate. The unit should be designed to expend the pressure drop 455 in a manner to maximize the cooling effect within the equipment. Adherence to the pressure drop standard is needed to allow interchangeability of equipment. 456 457 In addition to the above, individual aircraft installations may require operation with 458 loss of cooling air to meet Extended-Range Twin-Engine Operations (ETOPS) 459 operating requirements. **COMMENTARY** 460 461 Current ETOPS rules can require operation up to 180 minutes 462 without cooling air. 463 Equipment failures in aircraft due to inadequate thermal management 464 have plagued the airlines for many years. Section 3.5 of ARINC 465 Specification 600 provides design guidance for airframe equipment suppliers to prevent such problems in the future. Airlines regard this 466 467 material as required reading for all potential suppliers of unit and aircraft installations. 468 469 2.8 Weights 470 System manufacturers should take note of the guidance information on weights contained in ARINC Specification 600. 471 472 2.9 **Grounding and Bonding** 473 The attention of equipment and airframe manufacturers is drawn to the guidance material in Section 3.2.4 of ARINC Specification 600 and Appendix 2 of ARINC 474 Specification 404A on the subject of equipment and radio rack grounding and 475 476 bonding. 477 **COMMENTARY** 478 A perennial problem for the airlines is the location and repair of 479 airframe ground connections whose resistance has risen as the 480 airframe aged. A high resistance ground usually manifests itself as a 481 system problem that resists all usual approaches to rectification, and 482 invariably consumes a wholly unreasonable amount of time and effort 483 on the part of maintenance personnel to fix. Airframe manufacturers 484 are urged, therefore, to pay close attention to assuring the longevity of ground connections. 485

3.0 SYSTEM DESIGN CONSIDERATIONS

3.1 System Configurations

Different configurations of the ARINC 702A Flight Management Computer System, illustrated in ATTACHMENT 1 to this document, are described in this section. The FMC is expected to be capable of operating interchangeably in all configurations. In an Integrated Modular Avionics (IMA) architecture, the FMF is analogous to the FMC for the purpose of these system configurations.

3.1.1 Single System Configuration

In this configuration, the system accepts inputs from one, two, or three Inertial Reference System (IRS), Air Data/Inertial Reference System (ADIRS), or Altitude Heading Reference System (AHRS); one or two GNSS Sensors; two each Air Data System, VHF Omni-Range Navigation (VOR), and Distance Measuring Equipment (DME); and one Instrument Landing System (ILS)/Microwave Landing System (MLS) to provide the various navigation and guidance functions. An ARINC 615 and ARINC 615A (growth) data loader input is provided for both software and navigation data base loading. Also, an interface is provided for an ACARS Management Unit (MU) or an ARINC 758 Communications Management Unit (CMU).

Inputs of fuel quantity, fuel flow, and engine/airplane configuration parameters and inputs from the flight control computer (and for some installations, the thrust control computer) combined with the air data inputs are used to provide the performance and prediction functions. Initial condition inputs may be inserted manually using the MCDU, automatically from airplane sensor systems or loaded using the data link function.

The system should be capable of interfacing to a minimum of two flight control computers, two communication management units, and two navigation displays. It should support independent mode and range selection of the navigation displays.

3.1.2 Single System/Dual MCDU Configuration

In this configuration, the interface is the same as for the single system, with the addition of a second MCDU. Both MCDUs have the capability of data entry and display independently.

3.1.3 Dual System Configuration

A typical Flight Management System installation is dual, consisting of two MCDUs and two FMCs. The FMCs are linked together via the intersystem bus and both the MCDUs are connected to both FMCs. MCDU button pushes are processed for mode control and display changes. The left and right MCDUs may be operated independently; they can display different data pages and the crew can insert data using either of them to affect the FM operation. The FMCs transmit certain data to each other for comparison and validation. For example, if the computed position between the FMCs differs by more than a set threshold, a message is issued to warn the crew.

Refer to Section 3.5 for Dual System Design Considerations.

3.1.4 Other Configurations

Some installations have provided for a third MCDU since one of the MCDUs is primarily used to manage the data link activity. For this configuration, the third MCDU may be used as a hot spare that can be switched in or out as necessary.

Additionally, some installations have provided for a third FMC. This unit is usually not synchronized with the other two FMCs unless it is switched in as a replacement because of a unit failure. At this point the unit is fully synchronized by the remaining FMC and used in the dual configuration.

3.2 Certification Design Considerations

3.2.1 Partitioning Considerations

 Manufacturers should carefully consider the internal structure of software in partitioning sub-functions within an overall function. In an integrated architecture, the FMF may be a partition within a system which provides all CNS/ATM airborne functions. The flight management function itself may consist of several sub-functions such as Navigation, Flight Planning, Crew Interface, I/O, etc., which may be separate partitions. As the objectives of software partitioning are efficient design and effective functional allocation, as well as reduced software change costs and lead times, manufacturers must ensure that the software structure eliminates the need to revalidate software partitions and modules that have not been affected by a particular change.

In some configurations, the system may be a mixed criticality unit. In other words, this unit may house software of more than one RTCA DO-178B/C level. In these configurations, manufacturers must ensure that partitioning is robust enough to accommodate changes in any lower level software (i.e., less critical software) without the rigors of the more critical software validation, certification, and maintenance.

3.2.2 Operational Functional Independence

While the system makes extensive use of shared resources as a multi-function system (e.g., power supplies, processors), manufacturers may provide for some system functions to be retained during failure conditions.

COMMENTARY

Airlines strongly desire to continue to operate the system even if one or more functions or external interfaces have failed, as long as the aircraft operation is not predicated on the use of the failed sensor or function(s). Therefore, a failure condition unique to one function or sensor should not adversely impact normal operation of any other system functions.

3.2.3 Unit Identification Considerations

COMMENTARY

Avionics and airframe manufacturers are strongly encouraged to implement an FMS unit identification methodology that does not correlate the software version with the basic face plate part number of the unit. The objective is that a software revision should not result in the re-identification – part number roll – of the unit. A further objective is that a common FMS platform (i.e., a single face plate part number) could be used across multiple fleets and airframe manufacturers without re-identification of the unit, even if fleet specific software is required for each fleet type.

With this approach an individual manufacturer's part numbers are assigned and maintained for (1) the FMC hardware, (2) the FMC software, and (3) the overall unit (i.e., face plate part number). In this case, the face plate part number is referred to as the generic or system part number and is not affected by normal revisions to the FMS software (e.g., all software or data that can be loaded into the unit via a data loader will not require a re-identification of the unit).

For this scenario, the operator may stock a given FMC under its system part number. This unit could be effective across multiple fleet types, each with fleet specific software requirements. When an FMC is replaced on an aircraft, the software configuration can be verified from the MCDU. If necessary, the FMC may be loaded with the applicable certified software for that fleet via data loader or system crossload.

This scheme allows the operator to minimize sparing when a given FMC is used on multiple fleet types, even when unique software is required for each fleet. It will also enable new FMC software loads on the aircraft without requiring a revision to the FMC ID plates or the aircraft Illustrated Parts Catalog (IPC).

3.3 System Response to Power Interrupts

An appropriate period of time, usually between 5 and 10 seconds, should be selected to differentiate between inadvertent power loss and normal equipment turn on. The reason for this distinction is to provide a basis for when the system should be reinitialized.

For power outages greater than this time period, the system should automatically perform a power-up test cycle. Failure to complete this test cycle successfully should cause appropriate flight deck annunciation. The system should also reset any flight dependent data such as initial position, flight plan, performance initialization, etc., and prompt the crew for entry of this data. Configuration related data from program strapping, configuration files, or Airplane Personality Module (APM) should be read.

For power outages less than this time period the system should resume normal functions as quickly as possible. The power up test cycle should not be performed and initialization, configuration, and flight plan data should not be reset and the crew should not be prompted for data entry. The crew may be prompted to select the appropriate fly-to waypoint since flight plan points may have been passed during the power outage.

COMMENTARY

Some systems may also make a distinction of being on the ground or in the air. Typically, in-air power ups will be treated as inadvertent power outages regardless of the power outage time period. The system should be designed to protect data from a power interrupt for a period of time consistent with its intended use. Since some methods of protecting data do not ensure data validity indefinitely, data integrity should be checked before it is used after a power outage, especially if the system uses in-air status for determining normal power turn on.

3.4 FMC Performance

622

623624

625

626 627

628

629 630

631

632

633

634

635 636

637

638

639 640

641 642

643 644

645

3.4.1 Accuracy, Integrity, and Continuity

Accuracy, integrity, and continuity requirements for the Lateral Guidance function are defined by RTCA DO-236 and RTCA DO-283. RTCA DO-283 also addresses accuracy requirements for the Vertical Guidance and Trajectory Predictions functions.

The system design should comply with the aeronautical data quality and integrity requirements set forth in RTCA DO-200A and RTCA DO-201A.

The system should ensure data integrity in all operations such as:

- Dataload of program and databases into system memory
- Reading of program and databases from memory
- Input of sensor information into the system
- Entry and edit of information in the flight plan
- Navigation, performance, and guidance computations
- Output of information to the various external systems and displays

3.4.2 Response Time

Specification of precise response time standards is dependent on the detailed system operational design. This section provides general guidelines that should be considered by system designers in determining computer processing requirements and software architecture.

Unless explicitly stated otherwise, flight plan response times throughout this document are for modifications to the active flight plan. The response times listed below are from the completion of crew action until the output of data on the display.

Table 3.4.2-1 Response Time Requirements

Task Description	Max. Response Time
Direct to a Waypoint – Display of direct-to lateral path on ND	2 seconds
Lateral Guidance Output following flight plan change	3 seconds
Revise Speed or Altitude Constraint while airplane in climb or cruise –	3 seconds
Time to display target altitude and target speed for current phase	
Revise Speed or Altitude Constraint while airplane in descent (no	5 seconds
RTA) – Time to display target altitude, target speed, and vertical	
deviation for current phase	
Revise RTA target speed	30 seconds
	(15 seconds typical)
Full Flight Plan Prediction – 4D Trajectory (Note 1)	30 seconds
	(15 seconds typical)
Background data update in response to a Mode, Scale, or Option	1 second
change on the Navigation Display	
Software and Data Base Loading (Note 2)	Goal: Less than 15
	minutes
ATS Uplink Messages	Note 3
ATS Downlink Messages	Note 3

647		Notes:			
648 649 650		 4D Trajectory includes predictions of distance, altitude, airspeed, time, and fuel. The response time depends on many factors such as the number of flight plan waypoints. 			
651 652 653		 The response time depends on file size, media, and/or data loader interface. Refer to Section 10.3.3 for additional data loader requirements. 			
654 655 656 657 658		 The International Civil Aviation Organization (ICAO) CNS/ATM-1 SARPS allocate part of the total system end to end response time to the avionics. Further allocation to individual avionics subsystems (e.g., FMS, CMU, EFIS) is system architecture dependent and beyond the scope of this document. 			
659	3.5	Dual System Design Considerations			
660 661 662 663 664 665 666		Different approaches may be followed in defining the functional architecture of the dual system installation. Design considerations should include operational independence of the two MCDUs, redundancy management, system integrity, functional availability, and failure response mechanisms. The dual FMCs should exchange information so that in the event of a failure or loss of power in one FMC, the second FMC is available for engagement without additional crew input and without significant discontinuity in the outputs.			
667 668 669 670 671 672 673		In a dual synchronous configuration, one of the FMCs is designated as master and the other as slave. The master designation may be based on the FMC operational status, autopilot or flight director engagement logic, and for some installations, a source select switch. The master FMC performs tasks such as directing the slave to tune radios, determining the order of MCDU button push processing, initiating flight plan leg sequencing, and other system events. Otherwise, the FMCs operate independently.			
674 675 676 677		In another possible dual configuration, a master FMC may be designated that directs all FM operations and synchronizes its data with the spare FMC such that the spare FMC can resume FM operations should the master fail or the spare be selected as the master. Other dual system configurations may exist as well.			
678					

679

719

720

721

4.0 FLIGHT MANAGEMENT FUNCTIONS

680	4.0 FLIGHT MANAGEMENT FUNCTIONS
681	4.1 Introduction
682	This section describes the characteristics of the flight management functions.
683	4.2 Functional Initialization and Activation
684	4.2.1 Navigation Sensor Initialization
685	The system should provide for the initialization of various navigation sensors.
686	4.2.1.1 IRS Initialization
687 688 689 690 691 692 693 694 695	The system should be capable of initializing up to three ARINC 704 Inertial Reference Systems or ARINC 738 ADIRS when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the system should output on its general data buses a burst of not more than four or less than two initial position latitude/longitude pairs. This data should consist of BCD-encoded set latitude and set longitude words having the labels and data standards defined for these quantities in ARINC Specification 429. Position data can be entered as a latitude/longitude or selected from the navigation data base as an airport and optionally gate, or input from the Global Navigation Satellite System Unit (GNSSU).
696	4.2.1.2 IRS Heading Set
697 698 699 700 701 702	The system should also be optionally capable of setting the IRS magnetic heading output to the value entered by the crew at the MCDU. The system should respond to the set heading command by transmitting a burst of not more than four or less than two BCD-encoded set heading words. ARINC Specification 429 defines the applicable label and data standards. Consult ARINC Specification 704: Inertial Reference System, for further information on initialization and heading set.
703	4.2.1.3 GNSS Initialization
704 705 706 707 708 709 710	The system should be optionally capable of initializing up to two ARINC 743A GNSS Sensors when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the navigation system should output on its general data buses, current time and date and a burst of not more than four or less than two initial position of a latitude/longitude pair. This data should consist of BNR encoded current time in Universal Time Coordinated (UTC), and BCD encoded current date, set latitude, and set longitude words.
711	COMMENTARY
712 713	GNSS sensors may be indirectly connected to the navigation system through the IRS or ADIRS.
714	4.2.2 Flight Plan Initialization and Activation
715	There are various methods for constructing a flight plan such as:
716	 Pre-defined company routes
717	 Entry using FROM/TO format
718	 Menu selection of procedures and/or airways

• Individual waypoint entry

• Flight Plan Copy

• AOC Uplink

722		ATC Uplink
723		Refer to Section 4.3.2.4 for additional details regarding these methods.
724 725 726		This initialization should be performed for every desired flight plan type. Once a flight plan has been constructed, a means should be provided to allow the crew to select a flight plan as the active flight plan or route.
727	4.2.3	Performance and Predictions Initialization
728 729 730 731 732		To initialize performance and trajectory prediction computations, gross weight (or zero fuel weight and block fuel) and cruise altitude are required as a minimum. Cost index is typically required on systems which support minimum trip cost (ECON) speed profiles (See Section 4.3.4.1). Other vertical flight planning parameters may also be initialized as desired. These are discussed in Section 4.3.2.5.
733 734		The trajectory prediction function also requires a specified flight plan or routing; most of the performance functions do not.
735	4.2.4	Lateral and Vertical Guidance Activation
736 737 738 739 740 741 742 743 744 745 746 747		Lateral Guidance computations are activated by a valid position initialization and the presence of an active route. Vertical Guidance computations are activated by a valid position initialization, an active route, and crew entry of gross weight and cruise altitude (at a minimum). Coupled guidance can be selected using the Auto Flight Control System (AFCS) Control Panel. In most systems, lateral and vertical guidance are independent selections on the AFCS Control Panel. Of those systems with independent selections, lateral guidance may or may not be a prerequisite for vertical guidance. Both methods are acceptable. In some systems, vertical guidance managed speed control (i.e. guidance to the FMF vertical guidance speed target) can be engaged independent of vertical guidance managed level change control. On other systems, vertical guidance managed speed control requires managed level change control. Both methods are acceptable.
748	4.2.5	Use of Data Link for System Initialization
749 750		The data link function can also be used to provide the initialization data described in Sections 4.2.2 and 4.2.3.
751	4.3	Functional Description
752	4.3.1	Navigation
753 754		The navigation function furnishes continuous, real-time, two dimensional solutions to the crew and provides the following navigational outputs:
755		 Estimated Aircraft Position (latitude, longitude)
756		Aircraft Velocity
757		Drift Angle (optional)
758		Track Angle
759		 Magnetic Variation (optional)
760		 Wind Velocity and Direction
761		Time
762		 Required Navigation Performance (RNP)

• Estimate of Position Uncertainty (EPU) or Actual Navigation Performance (ANP) or Estimate of Position Error (EPE)

763 764

765 COMMENTARY 766 For the purpose of this document, EPU, ANP, and EPE are synonymous and refer to the statistical indication of the system's 767 768 current position estimation performance. In system architectures utilizing IRS sensors, drift angle and 769 magnetic variation may be provided directly by the IRS and are not 770 771 required to be computed by the FMS. 772 For vertical aspects, the navigation function may provide altitude, vertical speed and 773 flight path angle. Unless explicitly stated otherwise, altitude computations operate upon inputs of smoothed inertial altitude from the Inertial Reference Units (IRUs), Air 774 Data/Inertial Reference Units (ADIRUs), or Attitude and Heading Reference System 775 776 (AHRS), corrected by barometric (corrected or uncorrected) pressure altitude from the air data system. Flight path angle is derived from vertical speed and computed 777 ground speed. 778 779 4.3.1.1 Multi-Sensor Navigation 780 The navigational output data is computed using the following inputs when available: 781 Attitude and Heading o IRU or 782 783 ADIRU or 784 o GPIRU or o AHRS 785 **GNSS Receiver** 786 787 **DME Transponder** 788 VOR/LOC Receiver 789 • ILS/MLS Receiver(s) 790 Air Data Computer 791 The navigation function automatically selects the combination of available sensors 792 that provides the best solution for estimating the aircraft position and velocity. Using 793 the sensor accuracy characteristics, sensor raw data, and information about the current conditions, the best combination of position sensors (GNSS, IRU, DME, 794 795 VOR, etc.) is selected to minimize the position determination error. 796 As a minimum, the navigation function must provide for GNSS data integrated with a 797 heading/attitude sensor and air data system as some aircraft installations may not include other navigation radios. Adequate navigation availability must be a 798 799 consideration in any implementation. 800 4.3.1.2 Navigation Modes Available navigation sensor data is validated before it is used for updates to the 801 802 aircraft position. On aircraft with IRUs installed, the primary mode of operation utilizes IRS heading, attitude, position, and velocity, with IRS position and velocity 803 combined with GNSS or VHF radio data (e.g., DME, Tactical Air Navigation System 804 (TACAN), VOR, and LOC). On aircraft without IRUs the primary mode of operation 805 806 is position and velocity from available sensors with heading and attitude being 807 provided from an AHRS. The filtering algorithm should give appropriate weighting 808 based on the sensor accuracy and should provide for sensor error modeling such

809 810 811	that the navigation solution accuracy can be maintained through short term unavailability of various sensors. The navigation function should behave smoothly regardless of sensor availability or sensor transitions.
812	COMMENTARY
813 814 815	With the transition to PBN, standardized navigation sensor selection logic is not required; however, in some implementations, a navigation mode sensor hierarchy such as the following may be utilized:
816	• GNSS
817	DME/DME
818	DME/VOR
819 820 821	It may be desirable for non-IRU aircraft to correct heading/attitude sensor data based on the other available sensors to provide for a more accurate coasting mode of operation.
822 4.3. 1	.3 RNP-Based Navigation
823 824	The navigation function should satisfy the accuracy, integrity, and availability criteria set forth for aircraft systems intended to operate in RNP airspace.
825	COMMENTARY
826	The complete set of criteria is provided in RTCA DO-283.
827 828 829 830 831 832 833 834 835	The capabilities of the system should encompass position estimation, path definition, and path control and tracking, as well as computing position uncertainty. These capabilities, in addition to a means to evaluate and mitigate flight technical error, should form the basis for evaluating and determining total aircraft systems performance for RNP operations. The system should provide design, function, and operational integrity to ensure acceptable, repeatable, and error-free performance. The system should provide for clear and unambiguous indications of the navigation situation, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace.
836	COMMENTARY
837 838 839 840 841	RNP is the required navigation performance necessary for operation within a defined airspace. RNP is specified in terms of accuracy, containment integrity, containment continuity, and availability of navigation signals and equipment for a particular airspace, route or operation.
842 843	The intent of the material in this section is to provide additional insight into RNP criteria, especially system and integration considerations.
844 4.3. 1	.3.1 RNP Determination
845 846 847	The system should provide the appropriate RNP selection and entry capabilities to support determination of the applicable RNP for a flight plan path terminator (leg), procedure, or environment based upon the following, in order of priority:
848 849 850	 Manual RNP entry by the crew Leg-Based RNP value from the navigation database or ATS datalink The default RNP value

851 COMMENTARY 852 RNP flight plans will consist of a limited subset of the path 853 terminators defined in Section 4.3.2.2. These RNP routes and procedures will contain embedded information which establishes the 854 RNP values which apply to the active or next path terminator; in the 855 absence of the embedded RNP information, RNP may be determined 856 or designated by default according to the airspace or environment. 857 858 When the system is operated using the default RNP values, the 859 system will require navigation environment (i.e., oceanic, enroute, 860 terminal, approach) logic to ensure the proper transition from one RNP default value to another. 861 862 The system should output the current RNP and EPU values on the general-purpose 863 output buses. 864 4.3.1.3.1.1 Manually Entered RNP Values 865 The system should support manual entry within a range of possible RNP values 866 appropriate for the PBN operation to be flown. 867 A manually entered RNP value should supersede any pre-programmed RNP value 868 associated with a route, procedure or leg, or any default value. The manually 869 entered RNP value should be clearly distinguishable as a manually entered value. In the event of a manually entered value larger than the value being overridden, an 870 871 advisory alert or annunciation, as appropriate, should be provided to the crew. 872 When a manual entry is deleted, the system should return to the appropriate RNP 873 value based upon its priority. Unless deleted by the crew, the manual entry should 874 remain the active RNP value. 875 **COMMENTARY** 876 The annunciation and alerting requirement for manually entered RNP 877 values which exceed the active RNP value may be applied in various 878 ways. One instance is upon entry of the value; this assures pilot 879 awareness of his action relative to overriding limits applicable to the 880 route, procedure, leg, or airspace, and which form the basis for 881 separation. However, conditions such as NOTAMs or diversions due 882 to weather may be among the reasons why a manual entry is made. Once accepted, the system should also actively monitor the manual 883 entry relative to the RNP for the procedure, route, leg or default, in 884 885 the event they change to a smaller value. Advance annunciation or 886 alerting would also be advisable in this case. 4.3.1.3.1.2 Preplanned RNP Values 887 888 When an RNP Authorization Required (AR) approach procedure offers multiple lines of minima, the system should allow the flight crew to specify or pre-select the 889 desired RNP value for the final approach segment. 890 891 **COMMENTARY** 892 Some RNP-AR approaches are designed with multiple lines of minima corresponding to the respective RNP requirement. For these 893 894 approaches, ARINC 424 specifies that the least restrictive "level of 895 service" be coded in the primary record of the approach procedure. 896 Additional lines of minima are contained in the approach continuation

records. For RNP approaches designed with multiple RNP values associated with lines of minima, the flight crew may desire a more restrictive RNP value than the one coded in the NDB. The system should provide a means for the flight crew to specify or pre-select the RNP value to use on the final approach segment prior to reaching the initial approach fix.

4.3.1.3.1.3 Leg-Based RNP Values

 The system should support the definition of an RNP on a leg-by-leg basis. The Leg-Based RNP value should be initialized to the navigation database value associated with the leg upon insertion of the navigation procedure into the flight plan. Uplink of a Leg-Based RNP Value via ATS datalink should be supported as part of dynamic RNP operations. Display of uplinked Leg-Based RNP values should be provided to allow crew review and acceptance of the uplinked values and provide situational awareness in lieu of a navigation chart.

COMMENTARY

The system designer may need to consider that although an RNP value may be specified for individual leg(s) of a procedure (SID, STAR, Airway, Approach, Transition, etc.), one is not required. The procedure designer may develop procedures where the RNP value is designated leg by leg, or possibly for only selected flight legs. In this case, where nothing is specified, the system default value would apply.

On some routes and terminal procedures, restrictions along the route (e.g., terrain, airspace, environmental) may require that RNP values be placed on individual legs. These values may be other than the default values (for the respective navigation environment), and the values may decrease as the aircraft proceeds along the arrival procedure. This RNP structure is referred to as the "Scalability" element of Advanced RNP. It is assumed that published procedures which employ the scalable RNP element will retrieve the respective RNP value for each leg from the NDB. In addition to the values coded in the NDB, RNP values may be transmitted via ATS datalink for dynamic operations.

When the RNP value is provided on downpath legs, the system should provide an indication to the flight crew when the RNP performance cannot be met at the next waypoint. The indication should be provided sufficiently early such that the flight crew can take action to resolve the situation.

4.3.1.3.1.4 Stored Default Values

The system should provide the capability for stored default RNP values for the various navigation environments (e.g., oceanic, enroute, terminal, approach). These values may be established as pre-programmed values and/or loadable into the system.

The stored default RNP value for each respective navigation environment should correlate to one of the Navigation Specification values as defined in **ICAO Doc 9613**: *Performance-Based Navigation Manual*.

984

985

4.0 FLIGHT MANAGEMENT FUNCTIONS

942 COMMENTARY 943 The system design may establish the stored defaults with pre-944 programmed default values which can be overridden by loadable 945 values via a separately loadable data file. As an alternative, the 946 default values may be established by the loadable data file only. The approach taken will be influenced by the system built-in test design 947 948 for faults and response, as well as the system design integrity. 949 4.3.1.3.2 Determination of Navigation System Performance 950 Navigation system performance should be evaluated considering position estimation error, path definition error, and flight technical error, which are the key elements of 951 952 total system error. The total system error components in the cross-track and along track directions should be less than the RNP value 95% of the flying time. 953 **COMMENTARY** 954 955 The complete set of criteria for evaluating navigation system performance is provided in RTCA DO-283. It should be noted that 956 957 while all system integrators will need to evaluate their systems using 958 the same standards and criteria, the systems implementations will vary and will dictate the acceptable operating modes and systems 959 960 configurations. In one method, the system operation will be predicated on a design which relies upon comparisons of the 961 962 systems' estimate of position uncertainty versus RNP, while at the 963 same time evaluating integrity. However, this may carry with it 964 restrictions on the mode of system operation (e.g., flight director 965 mode or coupled with autopilot for RNP 1) necessary to achieve and 966 assure consistent performance. In another method, the system 967 operation will be predicated upon a real-time evaluation of all factors 968 in total system error such that mode limitations or restrictions may not 969 apply. 970 4.3.1.3.3 Navigation Alerting and Display 971 The system should provide for clear and unambiguous indications of the state of the 972 aircraft navigation system, including situational awareness information and alerts. 973 **COMMENTARY** 974 The system should provide information which allows the 975 determination that the equipment is functioning properly. In addition, 976 indications should be provided which allow the operator to determine 977 the navigation sensors in use and the actual level of navigation performance. The system should also provide annunciations and 978 alerting of unacceptable degradation in navigation performance, 979 including alerting to the flight crew when the navigation system does 980 not comply with the requirements of the RNP airspace, routes, and 981 982 procedures. Some solutions for this could include indications and 983 alerts when the system estimate of position uncertainty exceeds the

RNP value. In others, the estimate of position uncertainty and flight

technical error may have correlated indications and alerts.

986 Additional display and alerting requirements relative to manually entered RNPs and determination of navigation system performance are described in Sections 4.3.1.3.1.1 and 4.3.1.3.2.

4.3.1.4 Navaid Data

 In support of the navigation function, the system must contain an extensive navigation data base. This database typically includes the enroute, terminal, and approach procedures (including RNP values), the navigation aid ground station information, and the procedure recommended navaid information required for flight in the area in which the aircraft operates. See Section 9.2 for additional details regarding the navigation database.

4.3.1.5 Crew Controlled Navigation Options

Some sensor inputs to the navigation function should be capable of being blocked by pilot action. LOC, DME, VOR, and GNSS updating may be stopped by manual selection on the MCDU. Additionally, DME and VOR navaids may be individually blocked from the navigation solution by entering their identifiers on the MCDU or by data link. This manual blockage of individual navaids should be cleared at flight completion.

Capability may also be provided for navigation override where the operator can force the navigation position to coincide with a selected navigation sensor or reference position (e.g., takeoff runway threshold or intersection point). This position shift action aligns the system position to the selected sensor. Override of the navigation position to a manual reference point (i.e., overfly fix) is inconsistent with RNP operation.

These options are intended as backup options for use in the event that a system generated message, such as verify position, alerts the crew to a problem in the navigation that the system cannot correct itself.

A means should be provided to accommodate manual tuning by the crew of the DME/VOR radios. If a receiver is being manually tuned, the navigation function should continue to auto tune any available channels with station selection as specified for auto tuning. If insufficient channels remain for satisfactory auto-tuning, then the navigation function may utilize the manually tuned stations if appropriate.

4.3.1.6 VHF Radio Tuning

4.3.1.6.1 Automatic Station Selection

When the navigation VHF radio receivers are available for automatic tuning, the navigation function should select and tune appropriate ground radio navigation facilities and use their position fixing data to refine the current navigation position. The navaids considered to be available for selection should be those contained within a usable distance from the estimated current aircraft position. This group of navaids, combined with any additional navaids defined by crew entry, should make up the set of navaids from which the best navigation aids can be drawn.

With scanning DME installations, up to five frequencies can be allocated to tune each interrogator and, depending upon the aircraft, may be designated for multiple DME range measurements, VOR/DME position fixing, ILS/DME or procedure-specified or pilot-selected navaids. If a procedure being flown has a specified navaid associated with it, then that navaid must be tuned and used for navigation purposes.

Station selection criteria should be designed to limit station switching activity to a minimum.

4.3.1.6.2 Navaid Reasonableness Determination

DME range measurements received by the navigation function should be compared with that of the expected radio range measurement as a reasonableness test. When the comparison is outside of a reasonable tolerance, the data should be rejected and should not be used in the position computations.

4.3.1.7 Real Time Clock

The system should receive real time (UTC) clock data from the GNSS. For back up purposes, the system should utilize a GNSS-updated (or manually synchronized) on-board clock (See Section 5.1.15), or provide an internal UTC time clock capability which is synchronized with the external input or may be manually initialized. In the event of loss of the external input, the internal time clock should maintain UTC within a ±1 second accuracy over the duration of the flight.

4.3.2 Flight Planning

The flight planning capabilities provide for the assembly, modification, and selection of active and secondary flight plans. Data can be extracted from the navigation data base that contains airline-unique company flight plans, navigational aids, airways, waypoints, published departure and arrival procedures, approaches along with associated missed approach procedures, etc. The selection of flight planning data is done through the MCDU, through the data link function or optionally via a graphical user interface. Flight plan capacity should be a minimum of 150 waypoints in each flight plan. For longer range aircraft, a minimum of 200 waypoints in each flight plan is highly encouraged.

COMMENTARY

Various system implementations use different flight plan designations such as active, modified, temporary, primary, and secondary. Within this document, the following designations are used: Active, Modified, and Secondary. With respect to a flight plan, the terms Primary and Alternate are also used and refer to the series of waypoints in an active, modified, or secondary flight plan associated with the route to the primary and alternate destination respectively.

4.3.2.1 Flight Plan States

Once a route is entered or selected as the active flight plan, it becomes the basis from which all guidance and advisory data is referenced. The secondary flight plan can have the same terminus or can be completely different with no shared waypoints.

It should be possible to make modifications to the active flight plan and review the impact of those modifications without affecting the active flight plan. For crew review and evaluation, the ND should show the modified flight plan together with the unmodified active flight plan, with unique symbology to differentiate between them. Trajectory predictions should be available on the MCDU for the modified flight plan. During this modification process, all guidance and advisory data is referenced to the unmodified active flight plan.

This modification process should use a separate modified flight plan. When all the desired changes have been made, the crew must invoke the modified flight plan to replace the active flight plan. This action will replace the active flight plan and terminate the existence of the modified flight plan. All guidance and advisory data will immediately be referenced to the newly invoked flight plan.

A means should be provided to access the independent secondary flight plan and to copy this flight plan into the active flight plan when requested by the crew.

4.3.2.2 Navigation Data Base

 The Navigation Data Base (NDB) contains enroute, terminal, and airline custom defined data needed to support the flight management functions. It should be packed in a format to efficiently use available memory and to provide rapid access to the data. The format of the source data for the navigation data base is defined in ARINC 424. The supplier of the data, packing format, and maintenance of the data is to be specified by the supplier.

Section 9.2 of this document provides a more complete description of the content of the navigation data base.

Each navigation data base is valid for a specific effectivity period and is updated typically on a 28-day cycle. The effectivity dates for a set of data are displayed for reference on the system's configuration definition page. The navigation data base effectivity period should be compared automatically with the current date and discrepancies annunciated.

The system should be capable of defining a flight path based on standard ARINC 424 path terminators as shown below:

1098	AF		DME Arc to a Fix
1099	CA		Course to an Altitude
1100	CD		Course to a Distance
1101	CF	*	Course to a Fix
1102	CI		Course to an Intercept
1103	CR		Course to Intercept a Radial
1104	DF	*	Direct to a Fix
1105	FA	*	Course from Fix to Altitude
1106	FC		Course from Fix to Distance
1107	FD		Course from Fix to DME Distance
1108	FM		Course from Fix to Manual Term
1109	HA	*	Hold to an Altitude
1110	HF	*	Hold, Terminate at Fix after 1 Circuit
1111	HM	*	Hold, Manual Termination
1112	IF	*	Initial Fix
1113	PI		Procedure Turn
1114	RF	*	Constant Radius to a Fix
1115	TF	*	Track to Fix
1116	VA		Heading to Altitude
1117	VD		Heading to Distance

ARINC CHARACTERISTIC 702A - Page 28

4.0 FLIGHT MANAGEMENT FUNCTIONS

1118 1119 1120	VI Heading to Intercept next leg VM Heading to Manual Termination VR Heading to Intercept Radial						
1121	COMMENTARY						
1122 1123 1124 1125 1126	Even though it is expected that in the future only a limited set of these terminator types will be used, as defined (*) above and as specified in RTCA DO-236 and RTCA DO-283, the advanced system should continue to support this list as long as procedures exist that use these terminator types.						
1127	4.3.2.3 Supplemental and Temporary NDB Creation and Management						
1128 1129	Besides waypoints and navaids contained in the data base, new waypoints that can be used in flight plan construction may be created in a number of ways.						
1130	The system should support creation of new waypoints in the following ways:						
1131	 Point Bearing/Distance (PBD) 						
1132	 Point Bearing/Point Bearing (PB/PB) 						
1133	Along Track Fix						
1134	 Latitude/Longitude 						
1135	The system may support creation of new waypoints in the following ways:						
1136	Latitude/Longitude Crossing						
1137	 Unnamed Airway Intersection 						
1138	Fix Intersection						
1139	Runway Extension						
1140	 Direct-To Abeam Waypoint(s) 						
1141	FIR/SUA Intersection						
1142	 Point Bearing/Point Distance (PB/PD) 						
1143 1144	When these waypoints are created, they should be stored in the temporary navigation database.						
1145 1146 1147 1148 1149 1150 1151	Optional capability may be provided to allow waypoints, navaids, and airports to be directly created by the crew (or data link function) using a supplemental navigation data base facility. The supplemental NDB is retained indefinitely (until deleted). The temporary data base is retained until flight complete (deleted automatically after touchdown). A supplemental and temporary navigation data base summary facility is provided for the crew to inspect, review, and select the current contents of these data bases.						
1152	4.3.2.3.1 PBD Waypoints						
1153 1154	The system should support creation of a waypoint at an entered bearing and distance from a specified waypoint, navaid or airport.						
1155	4.3.2.3.2 PB/PB Waypoints						
1156 1157	The system should support creation of a waypoint at the intersection of entered bearings from two specified waypoints, navaids, and/or airports.						

1158 4.3.2.3.3 Along Track Fix Waypoints 1159 The system should support creation of a waypoint at an Along Track Distance from an existing flight plan waypoint. The waypoint that is created is located at the 1160 distance entered and along the flight plan from the waypoint used as the fix. A 1161 positive distance results in a waypoint after the fix point in the flight plan while a 1162 negative distance results in a waypoint before the fix point. The system may prevent 1163 entry or limit the distance when the entered distance exceeds the leg distance. 1164 4.3.2.3.4 Latitude/Longitude Waypoints 1165 1166 The system may support creation of a waypoint via entry of the latitude/longitude coordinates of the desired waypoint. 1167 1168 4.3.2.3.5 Latitude/Longitude Crossing Waypoints The system may support creation of one or more waypoints via entry of a latitude or 1169 longitude. In this case, one or more waypoints will be created where the flight plan 1170 crosses that latitude or longitude. 1171 The system may support creation of one or more waypoints via entry of a latitude or 1172 longitude increment. In this case, one or more waypoints will be created where the 1173 flight plan crosses the specified increments of latitude or longitude. 1174 4.3.2.3.6 Unnamed Airway Intersection Waypoints 1175 1176 The system may support creation of a waypoint at the computed intersection point 1177 of two airways. 1178 4.3.2.3.7 Fix Intersection Waypoints 1179 The system may support creation of one or more waypoints via entries on a Fix 1180 Reference page. Reference information includes creation of abeam waypoints and creation of waypoints where the intersections of a specified radial or distance from a 1181 1182 specified fix intersects the current flight plan is computed. 4.3.2.3.8 Runway Extension Waypoints 1183 1184 The system may support creation of runway extension waypoints via entry of a distance from the destination runway threshold. The new waypoint will be located 1185 that distance from the runway threshold along the reciprocal of the runway center 1186 1187 line. 4.3.2.3.9 Direct-To Abeam Waypoints 1188 1189 The system may provide a means to retain intervening waypoint information (e.g. 1190 speed/altitude constraints, waypoint wind/temperature information) when a direct-to is performed. When a direct-to with abeam waypoints is performed, new intervening 1191 waypoints will be created at the abeam point of the original waypoint on the direct to 1192 path. Any waypoint information associated with the original waypoint will be 1193 1194 transferred to the new waypoints. 1195 **COMMENTARY** 1196 Care should be exercised in the implementation of the abeam 1197 waypoint function since other effects such as inappropriate course changes in the direct-to path and inclusion of abeam points in some 1198 1199 data link waypoint lists may be undesirable.

1200	4.3.2.3.10 FIR/SUA Intersection Waypoin	its	
1201 1202 1203			ints at the intersection of Flight pecial Use Areas (SUA) stored in the
1204	4.3.2.3.11 Point Bearing/Point Distance		
1205 1206 1207		ecified waypoir	point(s) at the intersection(s) of an nt, navaid, or airport and an entered navaid, or airport.
1208	4.3.2.3.12 Suggested Waypoint Naming C	Convention	
1209 1210	Flight plan waypoints created plan identifiers in accordance		ve capabilities should be given flight ving conventions:
1211	Place/Bearing/Distan	ce	wptnn
1212	Place-Bearing/Place-	Bearing	wptnn
1213	Along Track Waypoir	nt	wptnn
1214	Latitude/Longitude		wxxyzzz or xxwzzzy
1215	Crossing Fix		wxx or yzzz
1216	Airway Intercept		Xawy
1217	Dir-To Abeam Waypo		wptnn
1218	Radial or abeam inte	rcept	wptnn RXrw
1219 1220	Runway extension FIR/SUA intersection		FIRnn or SUAnn
1221 1222	content as follows:	cnaracters use	d, and lower case indicates variable
1223	nn	FMS-determin	ned sequence number
1224	awy	Full identifier	of airway following the intersection
1225	wpt	First 3 charac	ters of the base waypoint identifier
1226	W	N or S, as app	oropriate
1227	у	E or W, as ap	propriate
1228	xx	Degrees of la	titude
1229	ZZZ	Degrees of lo	ngitude
1230	rw	Two-digit nom	ninal runway heading
1231		COMME	NTARY
1232 1233 1234	system designer sho	uld choose nan	o resolve duplicate waypoints, the ning conventions or methods that ne Navigation Database.
1235	4.3.2.4 Lateral Flight Planning		
1236	4.3.2.4.1 Flight Plan Construction		
1237	Flight plans can be construc	ted in a variety	of ways:
1238	Terminal Area pro	ocedures	

1239	 Airways
1240	 Pre-stored company routes
1241	Waypoints
1242	 Navaids
1243	 Runways
1244	 Supplemental/Temporary waypoints
1245	 Combinations thereof
1246 1247 1248	These selections may be strung together by menu selection from the NDB or by specific edit actions. Flight plans can also be constructed and edited through the data link function.
1249	4.3.2.4.2 Terminal Area Procedures
1250	The following navigation database procedure types should be supported:
1251	 Standard Instrument Departure (SID)
1252	Engine-Out SID
1253	 Standard Terminal Arrival Route (STAR)
1254	RNAV Approach
1255	RNP Approach
1256	GPS (GNSS) Approach
1257	ILS/LOC Approach
1258	MLS Approach
1259	GLS (GBAS) Approach
1260 1261	The following navigation database approach procedure types may be supported based on individual system or customer requirements:
1262	 RNP Authorization Required (RNP-AR)
1263	 RNAV Approach with LP/LPV (SBAS)
1264	 RNP Approach with LP/LPV (SBAS)
1265	• VOR
1266	Non-Directional Beacon
1267	 Localizer Directional Aid (LDA)
1268	 Instrument Guidance System (IGS)
1269	RNAV Visual Approach
1270	Circling Approach
1271	COMMENTARY
1272 1273	Visual Prescribed Track (VPT) and Visual Guided Approach (VGA) are examples of RNAV Visual Approach procedures.
1274	The following navigation database departure procedure types may be supported
1275	based on individual system or customer requirements:
1276	 RNP Authorization Required (RNP-AR)
1277	

1316 1317

4.0 FLIGHT MANAGEMENT FUNCTIONS

1278 4.3.2.4.3 Flight Plan Editing 1279 The flight planning function offers various ways to modify the flight plan at the crew's discretion. These are described in the following sections. 1280 1281 4.3.2.4.3.1 Direct/Intercept Option 1282 The direct/intercept feature allows the crew to select any fixed waypoint as the 1283 active waypoint and for the intercept option, to select the desired course into this waypoint. If the direct-to option is selected, the waypoint becomes the active 1284 waypoint and the flight plan that results goes direct from the current aircraft position 1285 1286 to that waypoint. Any waypoints in the flight plan before that waypoint are deleted from the flight plan. Whenever the intercept option is selected on a given fixed 1287 1288 waypoint, either the direct-to course or an entered course can be selected as the 1289 course to that waypoint. 4.3.2.4.3.2 Entry of Waypoints 1290 1291 Waypoints may be entered at any point in the flight plan provided that it results in a valid leg combination. Refer to ARINC 424 for valid leg combinations. These 1292 1293 waypoints may be from the navigation data base, supplemental data base, or temporary data base. It is possible that more than one waypoint uses the same 1294 identifier. Therefore, a means must be provided to display a sorted list (based on 1295 1296 distance from the aircraft) of the coordinates for all selections and allow the crew to make the choice. 1297 1298 4.3.2.4.3.3 Flight Plan Linking 1299 A means should be provided to select portions of the flight plan and re-link that 1300 portion with another portion of the flight plan. 4.3.2.4.3.4 Flight Plan Delete 1301 1302 A means should be provided to allow the use of a delete function to remove 1303 unwanted portions of a flight plan. 1304 4.3.2.4.3.5 Procedure Selection 1305 Selecting procedures from the data base will replace a previous procedure 1306 selection, retaining the active waypoint if it was part of the previous procedure 1307 selection and optionally retaining constraints previously sent by ATC on waypoints 1308 part of the selected procedure. 4.3.2.4.3.6 Holding Patterns (HM Leg) 1309 A means should be provided to create a holding pattern at the aircraft present 1310 position or at a selected waypoint. At a minimum, the following parameters for a 1311 holding pattern should be editable: inbound course, turn direction, leg time/length. 1312 1313 COMMENTARY HM legs may also be created via insertion of a navigation database 1314 procedure into the flight plan. HF and HA legs can only be created via 1315

insertion of a navigation database procedure into the flight plan.

1318	4.3.2.4.3.	7 Flight Plan Editing using Data Link
1319 1320 1321 1322		A means should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. A means to review and to accept or reject the data link action must be provided.
1323	4.3.2.4.3.	8 Flight Plan Editing using a Pointing Device
1324		[Deleted by Supplement 5]
1325	4.3.2.4.4	Flight Planning Support for ATM
1326		[Deleted by Supplement 5]
1327	4.3.2.4.5	Missed Approach
1328 1329 1330 1331 1332 1333 1334		The flight planning function also allows a missed approach to be included in the flight plan. The missed approach typically originates from the navigation database where the missed approach is part of a published approach procedure. Waypoints may be added beyond the MAP and are considered part of the missed approach. Lateral and Vertical guidance to the missed approach path will be available upon activation of the missed approach. The system should support continuous Lateral Guidance throughout the transition to missed approach.
1335	4.3.2.4.6	Lateral Offset Construction
1336 1337 1338 1339 1340		The flight planning function should support the creation of a parallel offset path via specification of a direction (left or right of path) and distance. For the offset distance, the system should support a maximum value of at least 20 NM with a resolution of 0.1 NM for at least the first 10 NM. Multiple pre-planned parallel offsets may be supported but are not required.

1342	COMMENTARY
1343 1344 1345 1346 1347 1348 1349 1350	RTCA DO-236 and RTCA DO-283 require the system to support a resolution of 0.1 NM. The above requirement ensures that the manual entry of a parallel offset will support the 0.1 NM resolution. However, it should be noted that at the time of publication of this characteristic, some datalink systems industry standards do not currently support such resolution. For instance, RTCA DO-258A, which specifies the FANS 1/A+ Interoperability Requirements, currently supports only a 1 NM resolution.
1351 1352	The system should allow initiation of the parallel offset at the current aircraft position or at a specified downpath waypoint.
1353 1354	The system should allow termination of the parallel offset immediately when commanded by the crew, at a specified downpath waypoint, or automatically:
1355 1356 1357	 At the first fix of an instrument approach procedure (IAF, IF or FAF); or When a leg type other than TF, CF, DF, RF is encountered; or When the offset path is not flyable (i.e. when a combination of ground
1358 1359 1360	speed, track change geometry and waypoint proximity forces course reversals); orWhen reaching a lateral discontinuity
1361 1362 1363	When transitioning to and from the offset path, a 30-degree intercept angle should be used by default. Entry or selection of another intercept angle may be optionally provided.
1364 1365	The system should provide the capability to offset predefined curved paths such as Fixed Radius Transitions (FRT) and optionally, RF legs.
1366 1367 1368 1369 1370 1371	When executing a parallel offset, all performance requirements and constraints of the original route (host route) should be applicable to the offset route. Guidance parameters (e.g., cross-track deviation, distance-to-go) should be referenced to the offset path and offset waypoints. The system should provide a means for display of both the parallel offset path and the original path. Display of the transition paths between the original path and the parallel path is highly recommended.
1372	Refer to RTCA DO-236 and RTCA DO-283 for additional lateral offset requirements
1373	4.3.2.4.7 Magnetic Variation
1374 1375 1376 1377 1378	The system should have the capability of assigning a magnetic variation (MagVar) at any fix/location when operations are conducted relative to Magnetic North. The MagVar value may be retrieved from the NDB, or in the absence of an NDB-specified value, computed using an internal magnetic reference.
1379	COMMENTARY
1380 1381 1382	RTCA DO-283 provides requirements for the treatment of MagVar on terminal procedures, airports, leg types, enroute areas and an internal set of magnetic variation tables.
1383 1384 1385	ARINC 424 specifies NDB requirements for MagVar on certain leg types. Additionally, ARINC 424-19 introduced the concept of a Procedure Design MagVar (PDMV) which attempts to relieve the

1386 1387 1388		confusion on which MagVar value to use (when the various options conflict) by coding an appropriate MagVar value on the respective instrument procedure or individual procedure legs.
1389 1390		The system should incorporate a hierarchy to determine the use of MagVar sources in the following order (note that 1, 2, and 3 will be coded in the NDB):
1391 1392 1393		 If the leg is part of a navigation database terminal area procedure, the MagVar to be used is the PDMV for the procedure or individual procedure legs, when available.
1394 1395 1396 1397		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination exists, the MagVar to be used is the recommended VHF navaid magnetic declination.
1398 1399 1400 1401		 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination does not exist, the MagVar to be used is the MagVar for the airport.
1402 1403		 If the leg is not part of a procedure and the terminating fix is a VOR, the MagVar to be used is the station declination of the VOR.
1404 1405 1406		If the leg is not part of a procedure and the terminating fix is not a navaid, the MagVar to be used is defined by the system using an internal model (See Section 9.5).
1407 1408 1409 1410 1411 1412 1413		The system should have a means to accept an input or entry from the crew of the selected heading reference (Magnetic or True). For a given leg, when a heading reference has not been assigned in the navigation database, the leg bearing should be displayed in the selected heading reference; when a heading reference has been assigned, the leg bearing should be displayed in the assigned reference. The system should provide an indication to the crew when the selected heading reference differs from the (assigned) reference of the active leg.
1414		COMMENTARY
1415 1416 1417 1418		Considerations to provide the crew with a timely reminder in advance of a potential heading discrepancy are encouraged. Considerations which allow the crew to specify the reference of bearing entries are also encouraged.
1419		Refer to RTCA DO-283 for additional requirements and considerations.
1420	4.3.2.5	Vertical Flight Planning
1421 1422 1423 1424		Vertical flight planning consists of entry and deletion of altitude and speed constraints at waypoints (Section 4.3.2.5.2 and 4.3.2.5.3) as well as other parameters listed below which are used by the Vertical Guidance, Trajectory Predictions, and Performance Calculations functions.
1425 1426		The system should provide for entry and modification of the following performance parameters:
1427		 Zero Fuel Weight (or Gross Weight)

Block Fuel

Cost IndexCruise Altitude

1428

1429

ARINC CHARACTERISTIC 702A - Page 36

4.0 FLIGHT MANAGEMENT FUNCTIONS

1431	 Climb Mode (Section 4.3.4.1.1)
1432	 Cruise Mode (Section 4.3.4.1.2)
1433	 Descent Mode (Section 4.3.4.1.3)
1434	Hold Pattern Speed
1435	Airport Speed Limit
1436	Thrust Reduction Altitude/Height
1437	Climb Acceleration Altitude/Height
1438	 RTA Waypoint, Time, and Tolerance (Section 4.3.3.2.4 & 4.3.3.2.5)
1439	 Climb and Descent Winds and Temperatures (Section 4.3.2.5.1)
1440	 Cruise Wind at Waypoint (Section 4.3.2.5.1)
1441	Transition Altitude/Level
1442	Destination QNH
1443	 Takeoff Derate(s)
1444	Climb Derate
1445	All of these parameters should be considered in the trajectory predictions and
1446	performance function computations.
1447	The system may provide for entry and modification of the following parameters:
1448	Maneuver Margin
1449	Min Cruise Time
1450	 Min Rate of Climb (All-Engine – Max Climb thrust rating)
1451	 Min Rate of Climb (All-Engine – Max Cruise thrust rating)
1452	 Min Rate of Climb (Engine-Out – Max Continuous thrust rating)
1453	Idle Factor
1454	Drag Factor
1455	Fuel Flow Factor
1456	Anti-Ice Bands
1457	Tropopause Altitude
1458	Minimum Step Climb Size
1459	 Preplanned Cruise Altitude Step(s)
1460	 Optimal Cruise Altitude Step(s)
1461	 Cruise-Climb Block Altitude (Drift-Up Cruise)
1462	 Preplanned Cruise Speed Changes
1463	 Multiple Cruise Winds at Waypoints (Section 4.3.2.5.1)
1464	 Cruise Temperature at Waypoints (Section 4.3.2.5.1)
1465 1466	When supported, these parameters should be considered in the trajectory predictions and performance function computations.
1467	4.3.2.5.1 Wind, Temperature, and Atmospheric Model
1468 1469	Wind and temperature may be entered via the MCDU or data link. The wind model for the climb phase should be a set of wind magnitudes and bearings that are

1470 entered for different altitudes. The value at any altitude is then computed from these 1471 values and merged with the current sensed wind. 1472 The temperature model for the climb phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values 1473 1474 and merged with the current sensed temperature. 1475 Wind models for use in the cruise phase should allow for the entry of one or more 1476 winds (altitude, magnitude, and bearing) at a waypoint. Systems should merge these entries with current winds obtained from sensor data in a method which gives 1477 a heavier weighting to sensed winds close to the aircraft. 1478 1479 Temperature models for use in the cruise phase may allow for entry of a 1480 temperature and altitude at a waypoint or an ISA deviation at a waypoint. As a 1481 minimum, the system should allow for entry of a single cruise temperature or ISA deviation value that applies throughout cruise. Systems should merge these entries 1482 1483 with current temperature (ISA deviation) obtained from sensor data in a method which gives a heavier weighting to sensed values close to the aircraft. 1484 1485 The wind model used for the descent phase should be a set of wind magnitudes and 1486 bearings entered for different altitudes. The value at any altitude should then be computed from these values, and merged with the current sensed wind. 1487 1488 The temperature model for the descent phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these 1489 values and merged with the current sensed temperature. 1490 1491 Temperature should be based on the International Standard Atmosphere (ISA) with 1492 an offset (\triangle ISA) obtained from pilot entries or the actual sensed temperature. Likewise, the tropopause altitude (altitude at which constant temperature begins) 1493 may be crew enterable (with 36,089 ft. as default). 1494 4.3.2.5.2 Waypoint Altitude Constraints 1495 The system should allow insertion of AT, AT or ABOVE, AT or BELOW, and 1496 WINDOW (i.e., both an AT or ABOVE and AT or BELOW) altitude constraints at 1497 waypoints in the flight plan. Waypoint altitude constraints may be inserted directly 1498 1499 via crew entry or datalink, or indirectly via selection of a procedure in the navigation database. The system should allow for entry and modification of WINDOW altitude 1500 1501 constraints. 1502 **COMMENTARY** 1503 Historically, crew entry and modification of WINDOW altitude 1504 constraints was not possible on some systems. On such systems, WINDOW constraints could only be inserted via selection of a 1505 navigation database procedure. Per RTCA DO-283, the system is 1506 1507 required to support crew entry of each type of altitude constraint. The system should avoid automatic deletion of altitude constraints above cruise 1508 altitude. 1509 **COMMENTARY** 1510 1511 Upon cruise altitude modification or procedure insertion, some systems will automatically delete altitude constraints that are above 1512 cruise altitude. This design has led to airline and ATC complaints as it 1513 1514 is susceptible to order of operation and situational awareness issues.

ARINC CHARACTERISTIC 702A - Page 38

4.0 FLIGHT MANAGEMENT FUNCTIONS

System designs where altitude constraints are retained and ignored and/or where altitude constraints are retained and the cruise altitude modified are preferable.

The system should designate altitude constraints as either CLIMB constraints or DESCENT constraints. The system should designate an altitude constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. The system should designate an altitude constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate additional rules to designate an altitude constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.

The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4.3.2.5.2-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4.3.2.5.2-1 below.

Table 4.3.2.5.2-1 Altitude Constraint Applicability

Altitude Constraint	Altitude Constraint Phase/Applicability	
Туре	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT or ABOVE	Do not go below AT and AFTER	Do not go below PRIOR to and AT
AT	Do not exceed PRIOR to, cross AT Do not go below AFTER	Do not go below PRIOR to, cross AT, Do not exceed AFTER
WINDOW	Do not exceed upper bound PRIOR to and AT Do not go below lower bound AT and AFTER	Do not exceed upper bound AT and AFTER Do not go below lower bound PRIOR to and AT

COMMENTARY COMMENTARY

PRIOR to, AFTER, and AT in Table 4.3.2.5.2-1 refer to sequence of the waypoint with the altitude constraint.

The descent path is typically constructed using a series of straight line segments. For waypoints with a descent AT constraint, the descent path will typically cross at the specified altitude. When flown using the Vertical Guidance function, some systems may cross above or below the altitude constraint value due to a vertical fly-by transition. RTCA DO-283 defines the acceptable altitude deviation for a vertical fly-by transition.

Upon procedure selection, most systems combine common waypoints between departure, arrival, and/or approach segments. In rare situations, the altitude constraint coded in one procedure differs from the altitude constraint coded in the other procedure (e.g., STAR and APPROACH). When this occurs, systems may use different logic to meld the altitude constraints; however, the system should ensure the altitude constraint on the common waypoint always originates from one of the currently selected navigation procedures (provided the crew did not modify the altitude constraint).

The system should provide a means to initiate a vertical direct-to, without affecting the lateral flight plan definition, to a vertically constrained fix in descent, by deleting any altitude constraints prior to the vertical direct-to fix. The system should inhibit deletion of altitude constraints on waypoints which are part of the final approach (i.e., FAF, MAP/RW, and step-down fixes) via a vertical direct-to.

COMMENTARY

This allows the aircraft to proceed from present altitude direct-to a specified altitude in the flight plan. When in climb, systems may optionally provide a means to delete all altitude constraints between the aircraft and a vertically constrained fix.

4.3.2.5.3 Waypoint Speed Constraints

 The system should allow insertion of AT, AT or ABOVE, and AT or BELOW speed constraints at waypoints in the flight plan. Waypoint speed constraints may be inserted directly via crew entry or datalink, or indirectly via selection of a procedure in the navigation database.

The system should designate speed constraints as either CLIMB constraints or DESCENT constraints. The system should designate a speed constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. The system should designate a speed constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate additional rules to designate a speed constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.

The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4.3.2.5.3-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4.3.2.5.3-1 below.

Table 4.3.2.5.3-1 Speed Constraint Applicability

Speed Constraint	Speed Constraint Phase/Applicability	
Туре	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT or ABOVE	Do not go below AT and AFTER	Do not go below PRIOR to and AT
AT	Do not exceed PRIOR to, cross AT, do not go below AFTER	Do not go below PRIOR to, cross AT, do not exceed AFTER

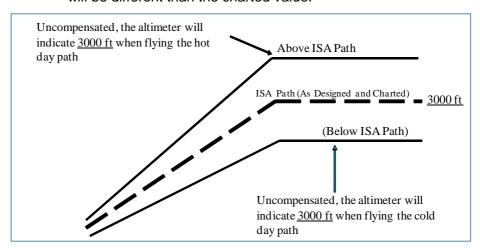
1577 COMMENTARY

PRIOR to, AFTER, and AT in refer to sequence of the waypoint with the speed constraint.

In accordance with Table 4.3.2.5.3-1, the system should apply ABOVE climb speed constraints after sequence of the speed constraint waypoint until transition to the climb MACH or transition to cruise flight phase. The system should apply ABOVE descent speed constraints upon transition to the descent CAS (from the cruise flight phase or descent MACH) until sequence of the speed constraint waypoint.

BELOW constraints may be applied in cruise flight phase in accordance with Table 4.3.2.5.3-1. This is recommended for missed approach and low(er) cruise altitude scenarios where procedural waypoint speed constraints may operationally be encountered while in cruise.

Upon procedure selection, most systems combine common waypoints between departure, arrival, and/or approach segments. In rare situations, the speed constraint coded in one procedure differs from the speed constraint coded in the other procedure (e.g., STAR and APPROACH). When this occurs, systems may use different logic to select or meld the speed constraints; however, the system should ensure the speed constraint on the common waypoint always originates from one of the currently selected navigation procedures (provided the crew did not modify the speed constraint).


4.3.2.5.4 Temperature Compensation

For Baro-VNAV approach operations, unless compensated for temperature, the system can only be used within the temperature limitations published on approach procedure charts (if any). For systems intended to support baro-VNAV approach operations outside published temperature limits, the system must correct for the effects of temperature on the barometric altitude upon crew entry of a destination temperature. Systems providing automatic temperature compensation to the baro-VNAV guidance must comply with RTCA DO-283 Appendix H.

COMMENTARY

The barometric altimeter indication is influenced by temperature variations. During cold temperature operations (below ISA), the airplane's true altitude is lower than the indicated altitude. Similarly, during hot temperature operations (above ISA), the airplane's true altitude is higher than the indicated altitude. This results in an aircraft flying a vertical path angle shallower than (or steeper than for hot temperature) the designed vertical path angle (or gradient) without an indication in the flight deck.

Temperature compensation corrects altitude constraints and vertical angles to those intended by the procedure designer. When the aircraft flies the compensated altitudes, the aircraft is actually flying the intended descent/approach path. However, the indicated altitude will be different than the charted value.

Figure 4.3.2-1 Temperature Effects on Altimetry

The system should use a flight crew-entered temperature and standard temperature lapse rate to compute altitude and flight path angle corrections accounting for the bias in the barometric altimetry system indications caused by deviations from ISA at the aerodrome's field elevation. The temperature compensation method used should be within 10% of the "accurate method" as described in RTCA DO-283. These corrections should be applied, at a minimum, to the altitudes and flight path angles contained in any approach procedure selected from the navigation database from the initial approach fix (IAF) through the missed approach procedure up to and including the missed approach holding point (MAHP), and including altitude-terminated legs in the missed approach segment. For all approach types (including SBAS, GLS, ILS, MLS) temperature compensation should be applied to all segments where vertical guidance is dependent on barometric altimetry, including the FAF altitude.

When temperature compensation has been applied, altitudes that are manually entered into a procedure by the flight crew should not be temperature compensated. The system should clearly differentiate the display of temperature compensated altitudes from uncompensated altitudes.

Since the MDA/DA is not an assigned altitude, this procedural altitude is eligible for temperature compensation. When the system loads the uncompensated MDA/DA from the database or the flight crew enters it, the system should provide a means to determine and display the temperature compensated MDA/DA.

When temperature compensation adjusts the vertical path, the system should ensure that the path construction precludes the insertion of a climb segment in the descent path. This will typically apply when transitioning from a path segment based upon uncompensated fix altitudes to a path segment whose altitudes have been compensated for temperature. When temperature compensation results in an altitude conflict, the system should provide an annunciation suitable to prompt flight crew action.

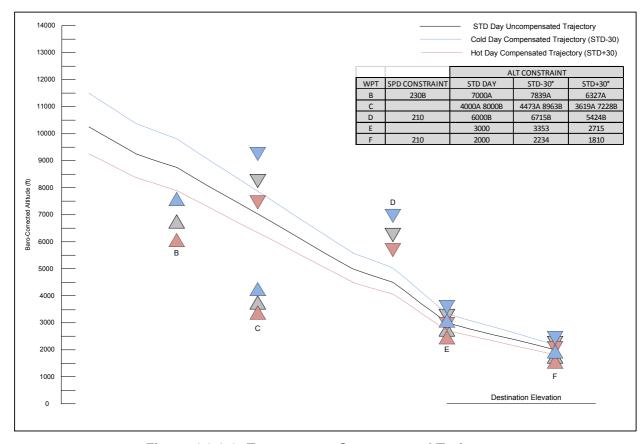


Figure 4.3.2-2: Temperature-Compensated Trajectory

When an interface has not provisioned for output of both a compensated and uncompensated altitude constraint value, the compensated altitude constraint value should be output.

COMMENTARY

The ACARS, ATS, Intent Bus, ADS-C Extended Projected Profile (EPP), and EFIS interfaces are all examples of interfaces that output altitude constraint information.

4.3.3 Lateral and Vertical Guidance

The system should provide fully automatic, performance optimized, guidance along two, three, or four-dimensional paths, defined by the sequence of waypoints specified in the active flight plan. Lateral guidance requires an active flight plan. Vertical guidance requires, as a minimum, an input of gross weight, cost index, and cruise altitude. ATC constraints may be entered along the flight plan which in turn will constrain the lateral and vertical flight paths. Guidance commands should be generated and available to drive the Flight Control Computers.

The integrated FMS should provide a means for the crew to easily override the current guidance commands (without amending the flight plan) for rapid response to tactical situations. Some of the intervention overrides are:

- Altitude target
- Speed target

1671	Course/Heading target
1672	Vertical Speed target
1673 1674 1675	This temporary override should replace the applicable guidance output until the override is terminated at which point the internally generated guidance commands should resume.
1676	COMMENTARY
1677 1678 1679	Different autoflight system implementations may allocate these intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AFCS functions.
1680	4.3.3.1 Lateral Guidance and Path Construction
1681 1682 1683 1684 1685 1686 1687 1688	The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a lateral reference path. For the active plan, the lateral guidance function generates a roll command based on the above data to guide the aircraft to geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures.
1689 1690 1691 1692	The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to a waypoint to accommodate modified ATC clearances.
1693 1694 1695	When the system will be used in polar areas (north of 85N or south of 85S), the system should support, at a minimum, lateral guidance along a geodesic track between two points without geographical restrictions.
1696	COMMENTARY
1697 1698 1699	Flying a specified course/heading, holding pattern, parallel offset or desired track change larger than 45 degrees is assumed not to be required in polar areas.
1700	4.3.3.1.1 Lateral Reference Path Construction
1701 1702 1703 1704 1705 1706	The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. Proper construction for all ARINC 424 defined waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.
1707	COMMENTARY
1708 1709 1710 1711	Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the reference path for these leg types.
1712	4.3.3.1.2 Lateral Leg Transitions
1713 1714	Leg transitions should provide for a continuous path between legs and generally should be determined by the course change between the legs, the type of next leg,

ARINC CHARACTERISTIC 702A - Page 44

1757 1758

4.0 FLIGHT MANAGEMENT FUNCTIONS

1715 waypoint overfly requirement, bank angle limitations, and the predicted speeds for 1716 the transition. Leg transition paths must be constructed within the airspace limitations specified in RTCA DO-283 for operation within RNP airspace. 1717 When a lateral path transition cannot be constructed per the leg definition, the 1718 1719 system should provide an indication to the crew. **COMMENTARY** 1720 1721 Examples of indications provided to the crew when a lateral path transition cannot be constructed per the leg definition include, but are 1722 1723 not limited to, the following: display of a discontinuous lateral path on the ND (i.e., gap, overlap), display of a scratchpad message, or 1724 display of text associated with the leg on the MCDU. 1725 1726 There are three categories of turns recognized in RTCA DO-283: 1727 1. Fly-by turns- Subdivided into 2 categories, high altitude (≥FL195) and low 1728 altitude (<FL195) 2. Fly-over turns 1729 3. Fixed radius transitions 1730 1731 **COMMENTARY** 1732 RTCA DO-283 assumes that course changes at a fly-by fix will not exceed 120 degrees for low altitude operation (<FL195) and 70 1733 1734 degrees for high altitude operation (≥FL195). While this assumption is reasonable for a database-defined procedure and enroute definitions, 1735 flight crew modifications to the route may make this assumption 1736 1737 impractical due to factors such as aircraft performance, course, change, and leg length. 1738 1739 4.3.3.1.2.1 Fly-By Turns 1740 RTCA DO-283 provides the requirements for the fly-by leg transition. This relates 1741 the radius of the turn to the ground speed and bank angle. It provides a theoretical 1742 transition area within which the aircraft should remain throughout the turn. Remaining within the transition area is dependent upon the course change 1743 1744 assumptions noted above and the area may not apply if the course change is exceeded. In such exceedance cases, the path to be flown should be displayed to 1745 the flight crew. For normal fly-by transitions (i.e., course changes less than 135 1746 1747 degrees), the fix should sequence at the lateral bisector. **COMMENTARY** 1748 1749 When situations are encountered outside RTCA DO-283 1750 assumptions noted above, the following guidelines are offered: For fly-by turns with track changes less than 135 degrees, a circular 1751 transition path should be constructed tangential to the current and the 1752 next legs. The leg transition should occur at the bisector. For track 1753 1754 changes greater than 135 degrees, a circular path should be 1755 constructed to be tangential to the current leg and a line normal to the current leg emanating from the waypoint. This path should be 1756

extended to provide a 40- to 50-degree intercept to the next leg. See

Figure 4.3.3-1 below.

The fly-by leg transition reduces track miles while also enhancing ride quality. However, enroute air traffic controllers have noted that some aircraft begin the turn initiation earlier than expected and in some cases, have conflicted with other traffic. The criteria specified in RTCA DO-283 are minimum requirements and can result in a generous theoretical transition area. It is recommended that equipment manufacturers give ample consideration to airspace consumption when selecting nominal bank angles.

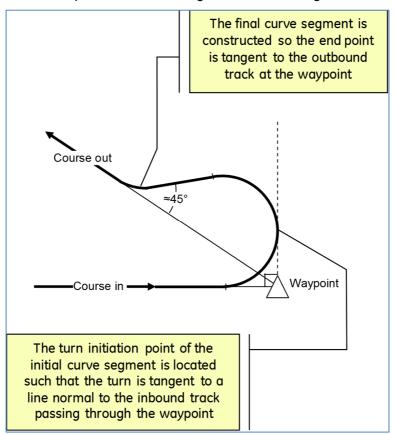


Figure 4.3.3-1 Fly-By Turn > 135 Degrees

4.3.3.1.2.2 Fly-Over Turns

When a fly-over waypoint is specified, the leg transition should occur at the waypoint prior to transitioning to the next leg. For fly-over waypoints, the next leg type should define the transition path. When the fly-over waypoint is sequenced, the lateral guidance function should command an intercept to capture the next leg. The intercept should be based upon aircraft performance and geometry parameters such as ground speed, leg length, and bank angle limitations.

COMMENTARY

RTCA DO-283 discourages the use of fly-over waypoints since the path is not repeatable and RNP containment cannot be assured. If fly-over transitions are used, for example at the missed approach point, the leg following the fly-over fix is assumed not to have the

1819 1820

1821 1822

1823

1824

1825

RTCA DO-236.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1782 requirements of RNP applied to it. It is recognized, however, that 1783 some terminal area operations may require the use of fly-over waypoints followed by a defined leg to the next waypoint. 1784 4.3.3.1.2.3 Fix Radius Transitions (FRT) 1785 1786 The FRT is intended to define a fixed radius transition path between airway legs in 1787 the enroute sector when parallel routes are closely spaced at the transition waypoint 1788 and the fly-by turn is not compatible with separation criteria. RTCA DO-283 specifies the geometry and method of computing the fixed turn radius. The FRT is defined in 1789 terms of the track change, turn radius, and lead distance. For those enroute airways 1790 using an FRT, the turn radius is coded in the ARINC 424 navigation database for 1791 the respective airway where the FRT is specified. An FRT may also be provided via 1792 1793 ATS datalink. **COMMENTARY** 1794 1795 ICAO Doc 9613: Performance-Based Navigation Manual, lists two possible radii, 22.5 NM for high altitude routes (≥FL 195) and 15 NM 1796 1797 for low altitude routes. Although these radii are suggested and the 1798 actual radii coded in the navigation database could vary, it is expected that airspace designers will abide by these guidelines so 1799 1800 that aircraft bank angle limitations in current systems will be respected. 1801 4.3.3.1.3 Special Lateral Path Construction 1802 1803 All procedural paths such as hold patterns (HM & HA), procedure turns (PI), and procedure holds (HF) should be continuous paths that allow accurate reference 1804 1805 paths to be constructed for the complete flight plan. 1806 It is recommended that holding patterns be implemented in accordance with ICAO Doc 8168 Vol 1: Aircraft Operations - Flight Procedures which covers conventional 1807 and RNAV holding patterns. Implementation of RNP hold patterns as defined in 1808 RTCA DO-283 is optional. 1809 **COMMENTARY** 1810 RNP hold patterns were removed from ICAO Doc 8168 Vol 1 1811 because analysis revealed that one of the hold pattern entries and 1812 1813 other associated guidance resulted in aircraft maneuvering that may 1814 exceed conventional airspace protection. 1815 Holding Pattern Entry: 1816 For hold pattern entries, these paths contain all the geodesic and curved segments 1817 of the entry (including transition from the prior leg) and should be displayed on the 1818 ND upon transition to the hold speed. Entries into a conventional hold incorporate

an overfly of the entry fix. Entries into an RNAV hold may incorporate an overfly of

maneuvers specified in RTCA DO-283. After the entry is complete, subsequent path

airplane. RNP hold entry paths must conform to the airspace limitations specified in

the entry fix or, alternatively, may incorporate a fly-by transition at the entry fix to reduce airspace consumption. Entries into an RNP hold must comply with the entry

updates should account for changes in airspeed, wind speeds and altitude of the

1826		COMMENTARY
1827 1828 1829 1830		RNAV and RNP improvements include a fly-by entry into the hold to minimize the necessary protected airspace on the non-holding side of the holding pattern. RNP hold entry maneuvers are consistent with the RNP value provided for the procedure.
1831		Holding Pattern Exit:
1832 1833 1834 1835 1836 1837 1838 1839		For holding pattern exits which require a sequence of the hold fix, the lateral path should be updated to include the appropriate fly-by or overfly transition to the following leg. Unless otherwise specified, a fly-by transition must be used for an RNP hold exit and the paths must conform to the airspace limitations specified in RTCA DO-236 for hold exits. For other holding pattern exits (e.g., a direct-to) the lateral path should be updated accordingly, without a return to the hold fix, and should comply with airspace limitations specified in RNP MASPS for those types of maneuvers.
1840 1841		Similar path construction and path prediction techniques are used when procedure turns and procedure holds are part of the flight plan.
1842	4.3.3.1.4	Lateral Guidance Roll Command
1843 1844 1845 1846 1847		Based on the aircraft current state provided by the navigation function and the stored reference path, lateral guidance should compute a roll steering command that is both magnitude and rate limited. This roll command is computed to capture and track the geodesic and curved path segments that comprise the reference path as displayed on the ND.
1848	4.3.3.1.5	Lateral Guidance Output Parameters
1849 1850		Lateral guidance should compute and output the following parameters related to the active flight plan:
1851		Roll command
1852		 Distance to go (active waypoint)
1853		 Bearing to go (active waypoint)
1854		Desired Track
1855		Cross track error
1856		Track angle error
1857	4.3.3.1.6	Lateral Capture Path Construction
1858 1859 1860 1861		At engagement, a capture path may be constructed that guides the airplane to the active leg. This capture path should capture the active guidance leg such that smooth path acquisition occurs without excessive roll activity or turns in the wrong direction.
1862	4.3.3.1.7	Localizer/MLS Capture
1863		[Deleted by Supplement 5]
1864	4.3.3.1.8	Earth Reference Model
1865 1866 1867		A WGS-84 based earth model is the standard reference earth model. If geodesic path definition based on WGS-84 (or equivalent) is not employed (e.g., spherical earth model), any differences between the selected earth reference model and the

WGS-84 earth model must be included as part as the path definition error. Refer to RTCA DO-236 and/or RTCA DO-283 for additional details.

4.3.3.2 Vertical Guidance and Trajectory Predictions

4.3.3.2.1 Trajectory Predictions

1870

1871

1872

1873

1874

1875 1876

1877

1878

1879

1880 1881

1882 1883

1884

1885 1886

1887 1888

1889

1890

1891

1892

1893

1894 1895

1896

1897

1898 1899

1900 1901

19021903

1904 1905

1906

1907

1908 1909

1910

1911

1912

The Trajectory Predictions function computes and stores a 4D trajectory which represents a prediction of the aircraft state (e.g., distance, altitude, airspeed, fuel, time) at various points in the flight plan which is used for display and downlink. Trajectory Predictions also computes a reference descent and approach trajectory which is used by Vertical Guidance for control in descent and approach.

The system should compute a complete aircraft trajectory prediction along the specified lateral route. When in preflight and a destination exists in the flight plan, the trajectory should include a takeoff segment, a climb segment, a cruise segment which may include cruise altitude changes (cruise steps), a descent segment, and an approach segment to the destination. When enroute, the trajectory should include segments for the remaining phases of flight. The trajectory may include predictions of the missed approach when included in the flight plan. The trajectory should be continuous from the departure airport (or present position if enroute) to the destination airport. The takeoff, climb, and cruise segments should be a prediction (i.e. model) of how lateral guidance and vertical guidance will guide the aircraft from present position along the specified route toward the cruise altitude. The descent and approach segments should be defined in two parts: (a) a reference descent and approach path that defines a Top of Descent location as well as reference altitudes and airspeeds for all points between Top of Descent and the destination and (b) a prediction of how VNAV will guide the aircraft to acquire and track this descent and approach reference path (both altitude and airspeed) once the aircraft is in descent or approach.

COMMENTARY

The descent/approach may be thought of as two separate trajectories, one which is a reference and defines *path* altitudes and speeds (i.e., where the aircraft should be) and one which is a prediction based on the aircraft present position and defines *predicted* altitudes and speeds (i.e., where the aircraft will be if prediction assumptions are valid). It should be noted that some systems display the predicted descent altitudes and speeds while others display the reference path altitudes and speeds.

The system should compute a vertical trajectory for the following flight plans:

- Active
- Modified
- Secondary

For each point in the vertical trajectory predictions, the following data should be computed, stored, and made available to other functions:

- Predicted Altitude
- Predicted Speed
- Estimated Time of Arrival (ETA) or Estimated Time Enroute (ETE)
- Predicted Fuel Remaining

1913	Refer to Section 4.3.3.2.3 for accuracy requirements related to the ETA.
1914	In addition, for each point between Top of Descent and the destination (inclusive),
1915	the following data should be computed, stored, and made available to other
1916	functions:
1917	Reference Path Altitude
1918	Reference Path Speed
1919	The vertical trajectory predictions should include points at each:
1920	 lateral sequence point of each waypoint in the primary flight plan
1921	 speed change point (start and end of an acceleration/deceleration)
1922	 CAS/MACH Crossover Altitude
1923	Top of Climb
1924	Start of Climb
1925	Start of Descent
1926	End of Descent
1927	Top of Descent
1928	Level-Off Start
1929	Level-Off End
1930	 Descent Path Intercept Point (when off-path in descent)
1931	COMMENTARY
1932 1933 1934 1935 1936	The above points are the minimum required to support display and datalink requirements including ADS-C Extended Projected Profile. Additional points may be necessary to support specific capabilities or to obtain a desired accuracy via linear interpolation at any arbitrary point in the vertical trajectory.
1937	The vertical trajectory predictions should be based on the following inputs:
1938	 Lateral flight plan elements (Section 4.3.2.4)
1939	 Vertical flight plan elements (Section 4.3.2.5
1940	 Measured and forecast winds/temperatures (Section 4.3.2.5.1)
1941 1942	 Lateral path including curved transitions between legs, holding pattern entries and lateral offsets (Section 4.3.3.1)
1943	 Models of the airframe lift and drag characteristics
1944 1945	 Models of airframe speed and altitude limitations (e.g., stall, buffet, VMO, MMO)
1946	 Models of the engine thrust and fuel flow characteristics
1947	Aircraft weight and center of gravity
1948	 Crew selected and preselected guidance modes
1949 1950 1951	The vertical trajectory predictions should be updated when an edit is made to a flight plan element or other input into vertical trajectory predictions. Refer to Section 3.4.2 for specific response time requirements related to these modifications.
1952 1953	The vertical trajectory predictions should be updated on a periodic basis to account for tactical interventions as well as wind, temperature, and other modeling errors.

4.0 FLIGHT MANAGEMENT FUNCTIONS

The vertical trajectory should be integrated with the lateral trajectory such that the climb rate and lateral leg distances used to compute the vertical trajectory account for smooth (curved) transitions between lateral legs.

COMMENTARY

The above requirement is not intended to preclude assumptions in the vertical trajectory when lateral discontinuities and manually terminated legs (i.e. HM, VM, and FM legs) are encountered in the flight plan. In these situations, the lateral trajectory is ill-defined and the vertical and lateral trajectory assumptions may differ in order to provide a more reasonable prediction of destination time and fuel. Users of 3D/4D trajectory information should keep these scenarios in mind when using the trajectory information and designing interfaces.

The vertical predictions should comply with all waypoint altitude and speed constraints as specified in Sections 4.3.2.5.2 and 4.3.2.5.3. When this is not possible due to aircraft performance or a conflict in the constraints, appropriate indications should be provided to inform the crew of the specific issue. As with vertical guidance, vertical trajectory predictions should prevent a descending maneuver in a climbing segment in order to satisfy a climb altitude constraint. Likewise, it should prevent an ascending maneuver in a descending segment in order to satisfy a descent altitude constraint. Similarly, vertical predictions should produce a speed profile that is monotonic during a single phase of flight in the presence of speed constraints. The predicted speed profile should remain within the operating envelope of the specific aircraft. It should take into account aircraft/engine performance, flap configuration changes, selected speed schedules, and speed constraints/limits. The trajectory predictions and associated advisories should be consistent with vertical guidance when the vertical guidance function is engaged.

Refer to RTCA DO-283 for specific VNAV performance and operational requirements.

4.3.3.2.1.1 Takeoff Phase Predictions

The takeoff phase may be constructed based on a simple model or more complex first principle models using takeoff thrust, flap setting and other vertical flight plan parameters including derated takeoff off thrust, thrust reduction height/altitude and acceleration height/altitude. The takeoff model should support the overall accuracy requirements and system level advisories.

Refer to Climb Phase Predictions for an example of a typical takeoff segment.

4.3.3.2.1.2 Climb Phase Predictions

The climb phase is typically predicted based on climb thrust, which may be a derated and/or noise abatement climb thrust, and a speed schedule for optimized operations. When waypoint altitude constraints are encountered as part of the vertical flight plan, these constraints take precedence over the optimal climb profile. AT or BELOW and AT altitude constraints apply as a maximum altitude before the associated waypoint. AT or ABOVE and AT altitude constraints apply as a minimum altitude after the associated waypoint. Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as maximum or minimum speed limit. AT or BELOW and AT waypoint speed constraints apply as a maximum speed limit before the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a minimum speed limit after the associated waypoint until climb mach is

ARINC CHARACTERISTIC 702A - Page 51

4.0 FLIGHT MANAGEMENT FUNCTIONS

2001 2002	achieved or cruise altitude is captured. Altitude associated speed limits are referenced to calibrated airspeed and apply below the specified altitude.
2003	

Figure 4.3.3-2 depicts an example of a climb phase prediction.

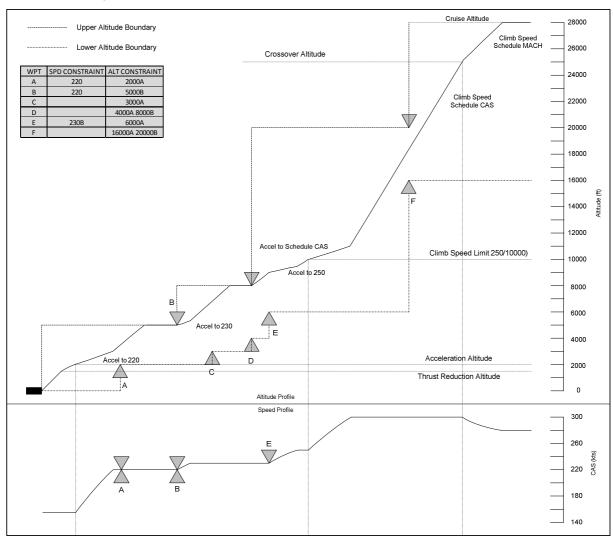


Figure 4.3.3-2 Climb Phase Prediction Example COMMENTARY

In this example, the predicted climb profile, which is based on the selected climb thrust limits and climb speeds, meets all the ABOVE altitude constraints. However, factors such as aircraft characteristics and actual wind conditions may cause an ABOVE altitude constraint violation. If an ABOVE altitude constraint cannot be satisfied with the selected thrust limits and climb speeds, the crew should be informed of the situation prior to committing to the procedure so a different thrust/speed climb can be attempted. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of departure procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during a departure so the aircraft can perform a Continuous Climb Departure (CCD) for fuel/time efficient climb operation.

4.3.3.2.1.3 Cruise Phase Predictions

The cruise phase is typically predicted based on an optimal speed profile at a specified cruise altitude. When a step climb is active or the aircraft is in cruise below the cruise altitude, the system should predict a climb to cruise altitude assuming engagement of the vertical guidance function. Likewise, when a step descent is active or the aircraft is in cruise above the cruise altitude, the system should predict a descent to cruise altitude assuming engagement of the vertical guidance function. The system may provide for one or more preplanned and/or optimal cruise steps. Preplanned cruise steps may be a climb/descent at a specified waypoint or an optimal step where the system determines the optimal location and/or altitude to change cruise altitude. Similarly, the system may provide for a drift up cruise capability ("cruise/climb mode" in ARINC 660B) which allows the system to perform a drift up maneuver within a specified altitude block to better achieve optimal operation as fuel is burned off and aircraft weight decreases. When present, these preplanned maneuvers should be reflected in the cruise predictions.

The cruise speed is based on the selected cruise performance mode. When an active RTA exists in the flight plan, the cruise speed profile should reflect the speeds that will be flown in an attempt to achieve the RTA. Similar to preplanned cruise steps, the system may provide for one or more preplanned cruise speed or performance mode changes (e.g., constant Mach segments). When present, these preplanned cruise speed changes should be reflected in the cruise predictions.

The system should provide an indication when a destination exists in the flight plan and predictions determine the cruise altitude is unachievable due to aircraft performance limitations and/or insufficient route distance.

4.3.3.2.1.4 Descent Phase Path Construction and Predictions

For the descent phase, the system should construct a reference descent path that vertical guidance can use as a target path. During the descent phase, tactical situations may divert the aircraft from the descent reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).

4.3.3.2.1.4.1 Descent Phase Path Construction

The descent path should be constructed based on idle or near idle thrust and a speed schedule for optimized operations. When altitude constraints are encountered in the vertical flight plan and the idle path does not satisfy one or more constraints, the constraints take precedence over the optimal descent profile and a geometric descent path constructed. The resultant vertical trajectory should be flyable by the aircraft. When this is not possible, appropriate indications should be provided. A series of altitude constraints form a geometric boundary that the descent path must stay within beyond the first constrained waypoint, excluding small excursions for idle path decelerations (see Figure 4.3.3-4). Waypoint speed constraints are referenced to calibrated airspeed and apply as a maximum or minimum speed limit. AT or BELOW and AT waypoint speed constraints apply as a maximum speed limit after the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a minimum speed limit before the associated waypoint but do not apply to the descent Mach and/or extend into the cruise phase. Altitude associated speed restrictions are referenced to calibrated airspeed and apply below the specified altitude. To honor these constraints, the vertical path must anticipate the altitude/speed constraint prior to reaching the associated waypoint/altitude.

When conflicts exist between different types of constraints or the aircraft performance cannot satisfy all constraints, the descent path construction should give priority to one constraint over another as follows:

- 1. Altitude constraints
- 2. Vertical angle (FPA) constraints
- 3. Speed constraints
- 4. Time constraints (RTA)

COMMENTARY

A conflict between an altitude constraint and an FPA constraint can only exist for an ABOVE altitude constraint. In the case of a BELOW constraint, a level segment should be inserted to satisfy both constraints (see Figure 4.3.3-11). An altitude constraint should never cause construction of the vertical path for the leg to be shallower than the FPA constraint. The above requirement does not preclude insertion of a vertical discontinuity (see Figure 4.3.3-3) as a means to ensure some measure of speed control and/or minimum deceleration capability.

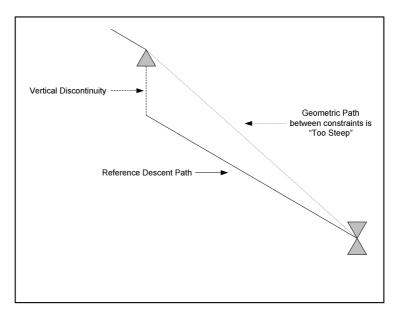


Figure 4.3.3-3 Vertical Discontinuity Example

Figure 4.3.3-4 depicts an example of a descent path construction.

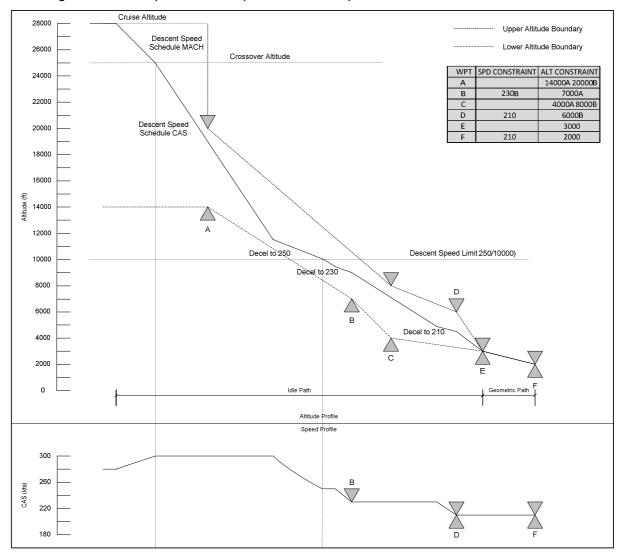


Figure 4.3.3-4 Descent Path Construction Example #1

COMMENTARY

In this example, the descent path fits within the constraint boundaries. There may be procedures or conditions where the descent path follows a boundary. In some cases, factors such as aircraft characteristics and meteorological conditions may dictate if a descent path is flyable (per the rules) for a given aircraft on a given day. When a continuous, flyable descent path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of arrival procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during an arrival so the aircraft can perform a Continuous Descent Operation (CDO) for fuel/time efficient descent operation.

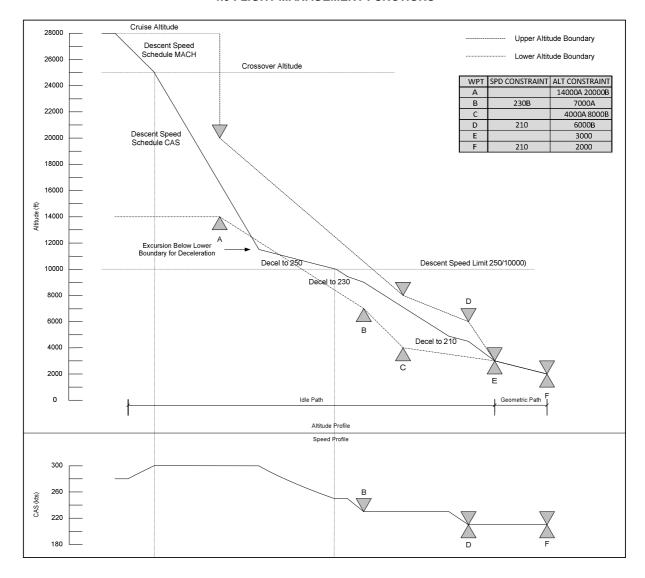
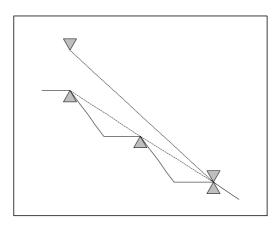
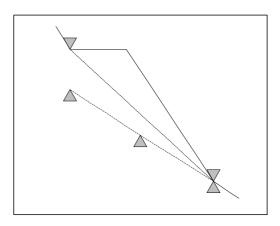



Figure 4.3.3-5 Descent Path Construction Example #2

COMMENTARY


In this example, a shallow idle deceleration segment is constructed to facilitate a short, efficient deceleration to the descent speed limit. Per RTCA DO-283, to facilitate decelerations within curvilinear (idle) paths, small excursions below the lower altitude boundary are allowed and expected when an idle path is constructed to satisfy a series of AT or BELOW, AT or ABOVE, and WINDOW constraints. Excursions below the lower altitude boundary for step-down or diveand-drive descent path strategies (Figure 4.3.3-6) or above the upper altitude boundary for stay-high descent path strategies (Figure 4.3.3-7) are prohibited.

2120

2121 Figure 4.3.3-6 Step-Down Idle Descent (Prohibited)

2122

21232124

Figure 4.3.3-7 Stay-High Idle Descent (Prohibited)

The descent path is typically constructed using a series of straight line segments which comply with the altitude boundary rules as described above. When the descent path is flown using the Vertical Guidance function, systems may cross above or below the altitude constraint value due to a vertical fly-by transition. RTCA DO-283 defines the acceptable altitude deviation for a vertical fly-by transition.

213121322133

2130

When the crew initiates a vertical direct-to to a vertically constrained fix in descent, the system should construct a geometric descent path from the aircraft position to the vertically constrained fix.

21342135

COMMENTARY

2136 2137 The above requirement is not intended to take precedence over normal geometric path construction rules. In other words, the system is not required to build an unflyable descent path nor one that violates a vertical angle constraint.

21382139

4.3.3.2.1.4.2 Descent Phase Predictions

2141 2142 2143

2140

During the descent phase, situations may arise which divert the aircraft from the desired reference path/speed profile. These include: not being cleared to descend at the predicted top of descent, being instructed to descend prior to the top of descent, unforecasted meteorological conditions and flight plan edits. The system should

provide vertical predictions (altitude, speed, time, and fuel) that model how vertical guidance will attempt to capture and track the descent reference path. These predictions should be available for display and datalink in order to support situational awareness and advisories to the crew. When descent predictions determine that a constraint will be violated, appropriate indications should be given to the crew.

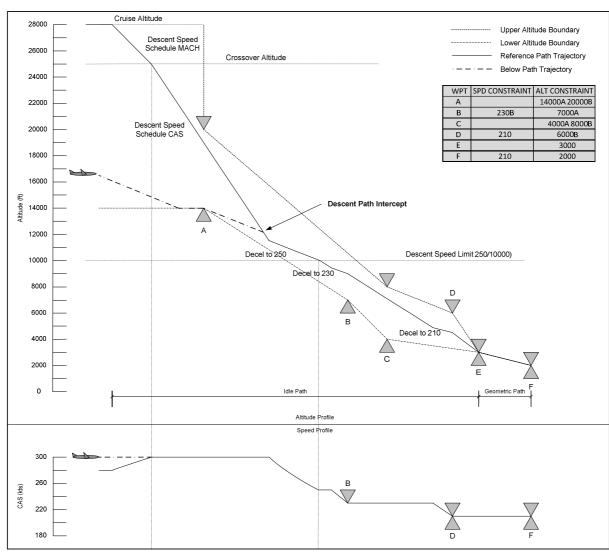


Figure 4.3.3-8 Below-Path Descent Prediction Example COMMENTARY

In this descent scenario, predictions model the vertical guidance below-path descent control strategy. A level-off is performed at 14000 feet to honor the ABOVE altitude constraint at WPT A. Upon sequence of WPT A, a partial power descent resumes until intercept of the descent reference path.

2150

2144

2145

2146 2147

2148

2149

21512152

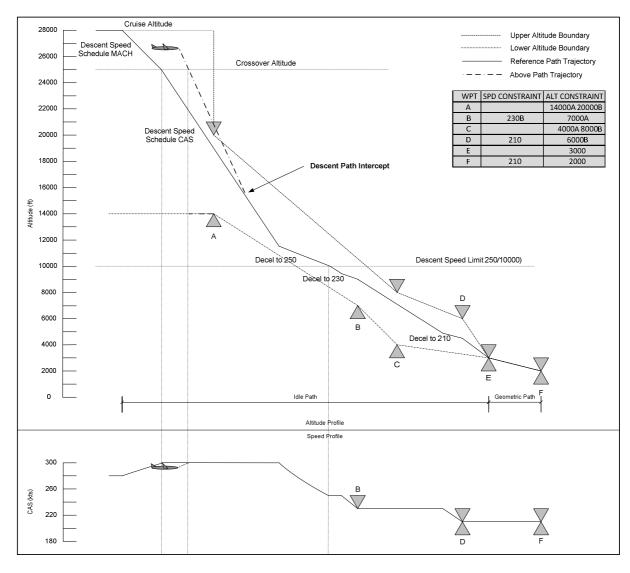


Figure 4.3.3-9 Above-Path Descent Prediction Example COMMENTARY

In this descent scenario, predictions assume vertical guidance will attempt to recapture the descent reference path by descending steeper than the planned descent rate. The above-path descent predictions predict the aircraft will cross WPT A at 19000 feet and violate the 18000 BELOW constraint.

4.3.3.2.1.5 Approach Phase Path Construction and Predictions

Similar to descent phase, the system should construct an approach path for use by vertical guidance as a reference or target path. As with takeoff, the approach path may be constructed using a simple model or more complex first principle models using idle thrust, aeroconfiguration setting, and other vertical flight plan parameters. The approach model should support the overall accuracy requirements and system level advisories.

During approach phase, tactical situations may divert the aircraft from the reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).

The vertical approach path consists of two portions: an initial approach path followed by a final approach path. In the initial approach path, the aircraft decelerates from a flaps-up target speed toward a configured landing speed. The initial approach path terminates upon reaching the start of the final approach path. The final approach path extends from the final approach capture point (intercept of final approach vertical angle) to the destination and is typically constructed at a constant landing configuration speed and vertical angle.

The final approach path should be constructed based on the vertical angle coded on the destination runway, Missed Approach Decision Point (MAP), or Final End Point (FEP). In the case of a MAP beyond the Landing Threshold Point (LTP), the system may compute the FEP and associated angle or may obtain the FEP and angle from the navigation database. A final approach path which ends at a FEP coded in the navigation database is illustrated in Figure 4.3.3-10 below. Refer to ARINC 424 for additional details on non-precision approach codings. For the final approach, the system should not construct a vertical path shallower than the specified vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). A few typical final approach path geometries are illustrated in Figure 4.3.3-11 and Figure 4.3.3-12 below.

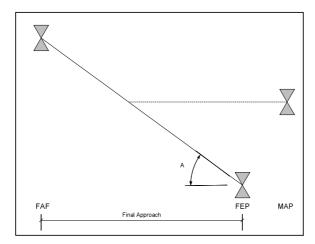


Figure 4.3.3-10 MAP Beyond Landing Threshold Point

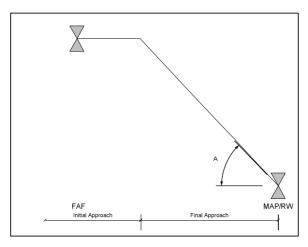


Figure 4.3.3-11 Typical Final Approach #1

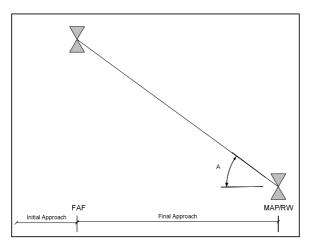


Figure 4.3.3-12 Typical Final Approach #2

In the presence of vertical angle constraint, the initial approach path for the vertical angle leg should be constructed using the vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). In the absence of a vertical angle constraint, the initial approach path may be constructed as a stepdown or "dive and drive" approach in accordance with VFR flight rules as shown in Figure 4.3.3-13. However, it is preferable the initial approach path be constructed as a "Continuous Descent Approach" (CDA) path as shown in Figure 4.3.3-14 and Figure 4.3.3-15. A CDA path is a more stabilized and fuel-efficient approach path and generally safer. It aligns with industry recommendations and trends. In either case, when a continuous, flyable approach path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew.

4.0 FLIGHT MANAGEMENT FUNCTIONS

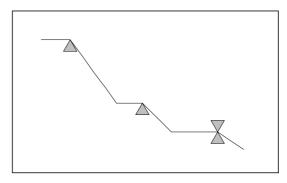


Figure 4.3.3-13 Step-Down Initial Approach

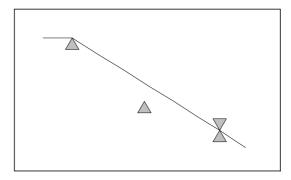


Figure 4.3.3-14 Continuous Descent Approach #1

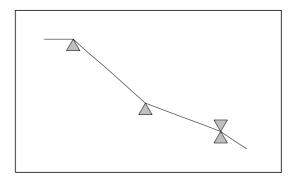


Figure 4.3.3-15 Continuous Descent Approach #2

4.3.3.2.1.6 Missed Approach Phase Prediction

The system may provide a missed approach prediction aligned with the lateral missed approach path. If a vertical trajectory is predicted it should be based on go around thrust limits and flap placard speeds and is predicted much like the climb profile. Typically, the prediction starts at the missed approach point or when the crew initiates the missed approach and terminates at an altitude constraint defined in the missed approach procedure. Any remaining descent path altitude and speed constraints are ignored.

2236 COMMENTARY 2237 Typically, the missed approach speed is limited by flap configuration. When the aircraft is in a clean configuration, it is recommended that 2238 the speed target should be a minimum flaps-up maneuver speed or 2239 2240 low altitude best hold speed. 2241 4.3.3.2.2 Vertical Guidance 2242 The Vertical Guidance function defines vertical guidance targets and, when in 2243 descent, reference parameters to be used by the autopilot and autothrottle to fly the 2244 vertical flight plan. 2245 When vertical guidance is engaged, depending on the autopilot interface, the 2246 vertical guidance function should request or select a control mode for the elevator 2247 and throttle and generate altitude, airspeed, thrust, vertical speed, pitch targets, and/or load factors in accordance with the requested and selected control mode(s). 2248 2249 An alternative design may provide vertical segment(s) and/or capture trajectory as part of vertical parameters. 2250 2251 Depending on the autopilot interface, these targets and parameters are used by 2252 control laws in either the FMS or the autopilot to generate pitch and thrust 2253 commands. 2254 In addition, Vertical Guidance is responsible for automatically updating the phase of flight and providing vertical situational awareness in the form of vertical deviation 2255 2256 and advisory messages. 2257 When the autopilot interface is a target interface, the system should provide the 2258 requested elevator control mode to the autopilot and provide targets for the both the requested and selected (i.e. engaged) elevator control mode. With this interface, 2259 vertical guidance requests and targets are analogous to the crew mode and target 2260 2261 selections on the AFCS Control Panel. 2262 When the autopilot interface is a pitch command, the system should compute a pitch 2263 command in accordance with the selected internal control mode. With this interface, 2264 vertical guidance always computes a pitch command whether the internal control mode is speed on elevator, vertical speed, altitude hold, or (descent) path on 2265 elevator. When the autopilot interface is a pitch command, the system should also 2266 perform the mode transition and path capture of the vertical guidance altitude target. 2267 2268 The system should provide a requested autothrottle control mode along with an 2269 EPR/N1 command (if appropriate). 2270 The vertical guidance function should provide for auto switching of the flight phase during a flight. This flight phase should be used as the basis for altitude, speed, and 2271 2272 thrust target selection and should be made available to the AFCS. At a minimum, the system should provide logic for the automatic transition between flight phases of 2273 preflight, climb, cruise, and descent. 2274 **COMMENTARY** 2275 2276 The logic discussed above is general and applies to a minimum set of 2277 flight phases. In general, systems will provide additional flight phases to facilitate specific functionality defined for a particular aspect of the 2278 2279 aircraft's operation. Some of the additional phases which should be considered are Takeoff, Approach, Go-Around, and Done. The 2280 specific logic for the transition between phases is implementation 2281

dependent since the conditions are generally application specific and are a function of the flight control system modes, aircraft dynamics and performance characteristics and aircraft operations.

4.3.3.2.2.1 Climb Phase Operation

The system should provide for guidance to the selected performance mode speed schedule applied to the climb trajectory and should provide the appropriate speed target and thrust command (or target) required to achieve the associated trajectory. In addition, an altitude command (or target) for the next target altitude (level off) in the vertical trajectory should be provided. The target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude. The profiles are constrained by the altitude selected by the pilot on the AFCS Control Panel, cruise altitude, and waypoint altitude constraints.

4.3.3.2.2.2 Cruise Phase Operation

The system should provide for guidance to the selected performance mode speed/schedule applied to the cruise phase of the flight and should provide the appropriate speed target and altitude command (or target). The target altitude should be the cruise altitude or step altitude. Entry of a higher or lower cruise altitude results in a step climb or step descent respectively, with guidance commands consistent with the selected operation.

The system may also provide vertical guidance for a drift-up cruise climb mode when ATC has provided a block altitude clearance.

4.3.3.2.2.3 Descent Phase Operation

The system should provide for guidance to the selected performance mode speed schedule applied to the descent trajectory and should provide, through the use of both a path and speed (airmass) mode of control, the appropriate speed target, thrust command (or target), pitch command, or vertical speed command (or target) required to achieve the associated trajectory. In addition, an altitude command (or target) for the next target altitude in the vertical trajectory should be provided. The target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude.

When tracking the descent path, a pitch command (or target) or vertical speed command (or target) should be computed to allow capture and track of the reference descent path. Overspeed protection in the form of vertical mode reversion logic should be provided to enable guidance to switch from path control to speed control if conditions are such that both path and speed cannot be maintained. Annunciation (e.g., additional drag required) may also be provided prior to mode reversion for predicted overspeed or speed/altitude constraint violations.

When the crew causes a transition to descent flight phase prior to reaching the planned Top of Descent point, the system should default to its below-path descent control strategy. Systems typically command a shallow rate of descent until the reference descent path is intersected, at which time the originally planned descent profile is resumed.

The system should switch the speed target to the approach speed at a point that is either, constructed in the trajectory and displayed to the crew, or as a result of the crew selection of an approach configuration. Once targeted, the approach speed

should be limited to the speed related to the current configuration of the aircraft, switching to the landing speed when landing configuration is selected.

Vertical deviation information based on the difference between the reference descent/approach path and the actual aircraft altitude should be provided throughout the descent/approach phase of flight. Vertical advisories which inform the crew of upcoming target speed, target altitude, and/or mode changes should also be provided (See Section 4.3.4.7).

4.3.3.2.2.4 Selected Altitude Compliance

 Since altitude clearances are difficult to pre-plan using flight plan altitude constraints, a crew selected altitude, usually provided by the flight controls panel, should be used as a tactical altitude limiter by the flight management function. The aircraft, under vertical guidance control, should not be allowed to ascend through the selected altitude during a climb, or descend through the selected altitude during a descent. During approach operations, this general rule may be suspended to allow the crew to pre-select the altitude clearance to arm a missed approach. The selected altitude may also be used to arm an automatic transition to descent or to enable step climbs and descents during cruise phase operations.

4.3.3.2.2.5 Altimeter Barometric Correction for Terminal Area Operations

Generally, altimeter barometric settings are utilized during terminal area operations to account for the local pressure deviation in the air data system, making the barometric altitude a more accurate ground reference

Moreover, the local altitude reference may be either Altimeter sub-scale setting to obtain elevation when on the ground (QNH) or atmospheric pressure at runway (QFE) based (sea level equals zero for QNH, runway elevation equals zero for QFE). Vertical guidance should accept an indication of which reference is being used and apply the appropriate adjustments.

4.3.3.2.2.6 Altitude Constraints

The Vertical Guidance function should prevent the aircraft, when in takeoff or climb and under vertical guidance control, from ascending through the upper bound of a climb AT, AT or BELOW, or WINDOW altitude constraint. Likewise, it should prevent the aircraft, when in descent or approach and under vertical guidance control, from descending through the lower bound of a descent AT, AT or ABOVE, or WINDOW altitude constraint. Aside from altitude captures, it should be a basic philosophy that the Vertical Guidance function should never descend in takeoff or climb flight phase in order to satisfy an altitude constraint; likewise, it should never ascend in descent or approach in order to satisfy an altitude constraint.

Refer to 4.3.2.5.2 for the definition of climb and descent altitude constraints.

COMMENTARY

In takeoff or climb, upon engagement or insertion of a flight plan with an altitude constraint below the aircraft, the Vertical Guidance function may find the aircraft is in violation to (i.e. above) a subsequent BELOW climb altitude constraint. The Vertical Guidance behavior in this situation differs between systems. Some systems will prevent engagement of Vertical Guidance into an altitude constraint violation while others allow engagement into a violation. Some systems prevent engagement into a violation and also disengage

4.0 FLIGHT MANAGEMENT FUNCTIONS

when a violation occurs while the Vertical Guidance function is engaged. On those systems where Vertical Guidance can engage or be engaged in a violation condition, some will provide an indication and level-off to minimize the violation of the altitude constraint whereas others will provide an indication and maintain a climbing attitude. An analogous situation exists in descent for ABOVE altitude constraints.

When under vertical guidance control and in violation to an ABOVE constraint, it is highly recommended that the Vertical Guidance function level-off to minimize the violation of the altitude constraint as the constraint may exist for obstacle clearance.

When below-path and under vertical guidance control and flying a lateral leg with a procedural vertical angle, it is highly recommended that the Vertical Guidance function level-off as the vertical angle may exist for obstacle clearance.

Refer to 4.3.3.2.1 for more details regarding use of altitude constraints in the descent path construction and trajectory predictions.

4.3.3.2.2.7 Speed Restrictions

The system should honor altitude-based speed limits such as airport speed limits (e.g., 250/10000) and ICAO limits for procedure legs. For airport speed limits and other limits which apply to a region or block of airspace, the aircraft airspeed should remain AT or BELOW the speed limit while the aircraft is below the specified altitude. For ICAO limits, the aircraft should remain AT or BELOW the speed limit while the aircraft is both flying the procedure leg and below the specified altitude.

In the case of descent AT and AT or BELOW restrictions, sufficient deceleration distance should be provided in order to cross the speed restriction at or below the restriction speed. Once the descent speed restriction has been sequenced, it should be latched such that the descent target speed does not exceed the restriction speed unless the crew deletes the latched speed restriction or the aircraft transitions back to climb flight phase.

Refer to 4.3.2.5.3 for the definition of climb and descent waypoint speed constraints and their applicability in various flight phases.

In general, the system should compute the target speed at any given point in the flight plan as the speed schedule limited to the lowest AT/BELOW of applicable speed restrictions. This target speed should always be limited to the speed envelope (e.g., VMO, MMO, stall, buffet, and placard limits) of the aircraft for the given or assumed aerodynamic configuration. The Vertical Guidance function of the system should accelerate or decelerate as necessary to capture and track the limited target speed.

COMMENTARY

Historically, all speed constraints in the navigation database and entered by the crew were treated as AT or BELOW speed constraints by the FMS. Indeed, most of the optimizations performed by the FMS were accomplished using speed schedules optimized for some criteria (e.g., fuel, time, cost, maximum angle/rate); the philosophy of the FMS was to reach the optimum speed with speed restrictions preventing it from doing so. RTCA DO-283 requires support for an AT and AT or ABOVE speed constraint capability, and the ARINC 424

 source now includes a speed descriptor field with each waypoint speed constraint. While RTCA DO-283 defines a minimal set of requirements, it does not provide guidance in terms of what takes precedence when an ABOVE speed constraint conflicts with the speed schedule and other speed constraints and limits. To ensure a measure of interoperability as this capability is incorporated into flight management systems, the following requirements and guidance are offered.

When in conflict, the system should always give priority to altitude-based speed limits over waypoint-based speed constraints.

COMMENTARY

Altitude-based limits are AT or BELOW speed limits which may be lower than a preceding AT or ABOVE climb waypoint speed constraints and/or subsequent AT or ABOVE descent waypoint speed constraint. In such cases, the altitude-based limit(s) should take priority. Airport speed limits are in place to ensure safety with slower moving VFR traffic while ICAO limits ensure aircraft remain within the designated airspace.

When in conflict, the system should give priority to BELOW speed constraints over ABOVE speed constraints.

COMMENTARY

In descent, a deceleration point should occur prior to an ABOVE speed constraint if necessary in order to ensure a safe, continuous deceleration to the landing speed. Moreover, altitude-based limits are BELOW speed constraints that are associated with airspace limitations and thus should take precedence.

The figures below illustrate various conflicts and the speed profiles that result given the rules in this section.

For the descent scenario illustrated in Figure 4.3.3-19, an alternative is to insert a speed discontinuity into the theoretical descent path (at AAA) and provide appropriate indications to the crew. This is deemed less preferable as it may lead to unrealistic deceleration assumptions which are only apparent once the ABOVE speed constraint is sequenced. Moreover, in the absence of special considerations, insertion of a speed discontinuity creates an inherent ETA error and may cause poor guidance behavior as the reference path speed profile is often used as a reference for advisories and mode reversion logic.

2455

24562457

2458

24592460

4.0 FLIGHT MANAGEMENT FUNCTIONS

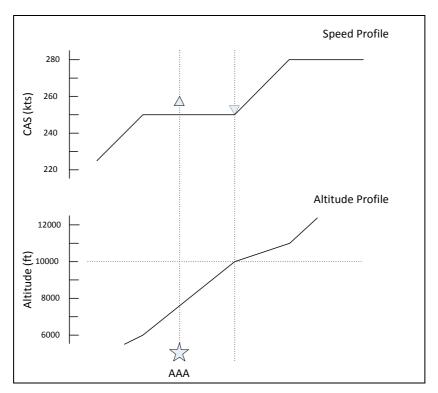


Figure 4.3.3-16 250/10000 takes priority over 260A at AAA (climb)

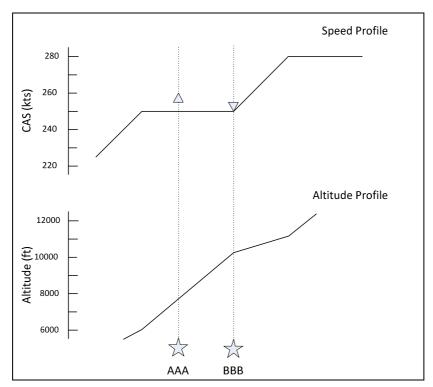


Figure 4.3.3-17 250B at BBB takes priority over 260A at AAA (climb)

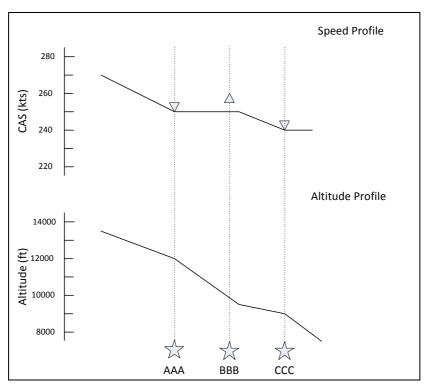


Figure 4.3.3-18 250B at AAA takes priority over 260A at BBB (descent)

24612462

2463

2464

2465

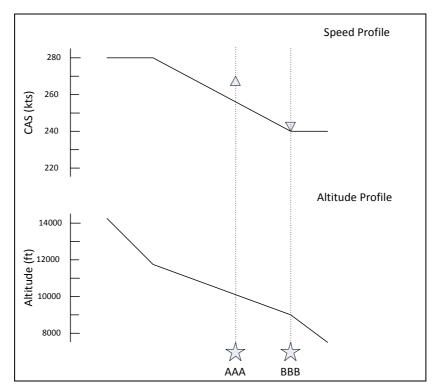


Figure 4.3.3-19 Decel to 240B AT BBB takes priority over 270A at AAA (descent)

4.0 FLIGHT MANAGEMENT FUNCTIONS

In general, in the absence of edits and tactical speed interventions, the system should produce a speed profile that is monotonic during a single phase of flight. For takeoff and climb, the speed target should continuously increase until reaching the climb speed schedule. For descent and approach, the speed target should continuously decrease from the descent speed schedule until reaching the landing speed. As such, the system should compute a climb speed schedule which is the maximum of the mode-based climb speed and the highest ABOVE climb speed constraint; the system should compute a descent speed schedule which is the maximum of the mode-based descent speed and the highest ABOVE descent speed constraint. This limitation should be applied to both the speed schedule CAS and MACH (when applicable).

COMMENTARY

Without the MACH limitation, a higher ABOVE speed constraint will produce a lower crossover altitude at which point the ABOVE speed constraint will cease to apply. For this reason, it is suggested that the MACH equivalent of the ABOVE speed constraint evaluated at 25000 feet be used as the lower limit MACH value. This ensures that ABOVE speeds are maintained until at least 25000 feet for most aircraft.

It is assumed that ABOVE speed constraints would not be applied when in performance modes designed to maximize climb rate or angle.

The system should not apply ABOVE speed constraints to hold speed schedules.

Refer to 4.3.3.2.1 for more details regarding use of speed restrictions in the descent path construction and trajectory predictions.

4.3.3.2.3 Estimated Time of Arrival (ETA)

The system should be capable of providing an ETA for every flight plan fix in the primary flight plan. For modifications to the active flight plan, each flight plan fix ETA should be available within 30 seconds (15 seconds typical) of the completion of entries required to perform the calculations.

The accuracy of the ETA should be within \pm 1% of the time of flight remaining to the fix, or \pm 10 seconds, whichever is greater, for the entered conditions.

COMMENTARY

It is understood that additional data is required (e.g., forecast wind and temperature) to improve the operational accuracy of the predicted ETA. Refer to DO-283 for further details.

4.3.3.2.4 Required Time of Arrival (RTA)

The system should provide a control mode such that the aircraft will be controlled to arrive at any specified waypoint in the primary flight plan at a specified arrival time (RTA). The system should support a resolution of 1 second for entry and display of the RTA time. Accuracy of this function should be ±30 seconds at enroute fixes and and ±10 seconds at descent fixes. If the RTA is predicted to be unachievable, an indication of this condition should be provided to the crew. The condition should be continually reassessed until such time as the RTA is achievable. All RTA

	4.0 FLIGHT MANAGEMENT FUNCTIONS
2510 2511	calculations should respect the speed envelope as well as all flight plan constraints. The RTA control band should be designed to limit throttle activity to a minimum.
2512 2513 2514	The RTA function should accommodate ATS data link consistent with industry standards (e.g., RTCA DO-258, RTCA DO-350) including constraint types AT, AT or BEFORE, and AT or AFTER.
2515 2516 2517	Systems may provide predictions of the earliest and latest arrival times for the candidate RTA waypoint and/or active RTA waypoint. Consideration of fuel reserves in the prediction of RTA feasibility may be provided.
2518 2519 2520 2521	While in preflight, the system may compute a recommended takeoff time which allows an RTA to be achieved using the crew entered cost index or planned speed schedules. While in preflight, the system may also compute the earliest and latest takeoff times which allow an RTA to be achieved.
2522	4.3.3.2.5 Time of Arrival Control (TOAC)
2523	COMMENTARY
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535	As detailed in RTCA DO-236 and RTCA DO-283, the TOAC function is a performance-based operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs. The accuracy requirement is dependent upon current and accurate performance data inputs and uncertainty models. TOAC is intended to support/enable future advanced air traffic management (ATM) operations such as time-based trajectory operations (4DTBO) by providing a performance-based time management capability. The requirement for a performance-based time function that enhances predictability, similar in concept to performance requirements of RNP, is a new model upon which to enable future air traffic sequencing and flow management.
2536 2537 2538 2539 2540	The equipment should provide a Time of Arrival Control function which supports a specified arrival time (RTA) at a fix within the range of achievable ETAs. The range of achievable ETAs at the specified fix is computed by the system based upon entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models.
2541 2542	The TOAC function should be operational in both enroute and descent phases of flight.
2543	COMMENTARY
2544	Additionally, it is expected that procedure designs will implement

Additionally, it is expected that procedure designs will implement speed and altitude constraints (when required) that are compatible with a time-based system such as TOAC by not overly constraining the path. For example, a speed-constrained descent and a time-constrained descent may not be compatible except under specific conditions.

The system should be capable of providing the range of achievable ETAs for at least one fix in the primary flight plan for display in the flight deck and communication to the traffic management facility. For fixes after an RTA constrained fix, the range of achievable ETAs should be based on the ETA at the RTA fix.

When the RTA is selected from within the range of achievable ETAs computed by the system, the total time error (TTE), in the presence of the uncertainty model

4.0 FLIGHT MANAGEMENT FUNCTIONS

2556 2557	described in RTCA DO-283, should be less than or equal to the required accuracy in 95 percent of the attempts.
2558 2559	The equipment should control to the accuracy requirement while also considering the adverse flight deck effects of large speed and thrust fluctuations.
2560	COMMENTARY
2561 2562 2563 2564	It is expected that the essential information such as current and accurate wind and temperature forecasts are provided and used by the system such that the performance requirements for the TOAC function can be met.
2565	RTCA DO-283 specifies the functional requirements of a TOAC function.
2566	4.3.3.3 Three-Dimensional RNAV Approach
2567	[Deleted by Supplement 5]
2568	4.3.4 Performance Calculations Function
2569 2570 2571	The performance function should use information from the flight plan and the performance data base (See Section 9.4) to generate performance related data for display on the MCDU.
2572	4.3.4.1 Performance Modes
2573 2574 2575 2576 2577	One performance mode that should be common to all flight phases is the economy speed mode which should calculate the associated speeds and speed schedules which minimize the total cost of operating the airplane on a given flight. This mode should use a Cost Index, which is the ratio of time-related costs (crew salaries, maintenance, etc.) to fuel cost.
2578	This is expressed as:
2579 2580 2581	Cost Index (CI) = Time Cost Fuel Cost
2582 2583 2584 2585	Typical Cost Index entries vary from zero to 999, with the minimum trip fuel cost occurring with the Cost Index set to zero. Cost Index values above zero result in increased trip speeds and varying aircraft vertical trajectories. At the proper Cost Index, the increased fuel cost will be offset by the reduced time cost.
2586	4.3.4.1.1 Climb Mode
2587	Speed modes supported may include:
2588	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation
2589	 Pilot-entered CAS/Mach – Manual selection (or pre-selection)
2590	 Maximum angle climb – Maximum climb rate with respect to distance
2591	 Maximum rate of climb – Maximum climb rate with respect to time
2592 2593	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
2594	4.3.4.1.2 Cruise Mode
2595	Speed modes supported may include:

- Economy CAS or Mach (based on Cost Index) Lowest cost of operation
 Pilot-entered CAS or Mach Manual selection (or pre-selection)
 - Maximum endurance Maximum time endurance
 - Long Range Cruise Maximum range
 - Required Time of Arrival (RTA) Variable speed to meet a time constraint

4.3.4.1.3 Descent Mode

Speed modes supported may include:

- Economy CAS/Mach (based on Cost Index) Lowest cost of operation
- Pilot-entered CAS/Mach Manual selection (or pre-selection)
- Maximum descent rate Maximum descent rate with respect to time
- Required Time of Arrival (RTA) Variable speed to meet a time constraint

4.3.4.2 Maximum and Optimum Altitudes Calculation

The performance function should compute both optimum and maximum altitude for the aircraft/engine type, weight, atmospheric conditions, bleed air settings, and the other vertical flight planning parameters. The optimum altitude algorithm should compute the most cost effective operational altitude and the maximum altitude algorithm should compute the highest attainable altitude (up to maximum certified altitude) while satisfying maneuver margin and minimum climb rate(s) criterion. Optimum altitude should be limited by maximum altitude. Consideration should be given in the algorithm design to eliminate the sensitivity and therefore possible erratic behavior that can occur because of the flatness of the performance characteristics. Maximum altitude for engine out should also be computed.

4.3.4.3 Trip Altitude Calculations

The performance function should compute a recommended cruise altitude for a specified route. This altitude may be different from the optimum altitude in that for short trips the optimum altitude may not be achievable because of the trip distance. This algorithm searches for the altitude that satisfies the climb and descent while preserving a minimum cruise time specified by the crew or airline policy. Some designs may elect to integrate this computation as part of the optimum altitude algorithm. All the vertical flight planning parameters should be considered in this algorithm.

4.3.4.4 Alternate Destinations Calculation

The performance function should perform alternate destination calculations. The computations should be based on the selected flight plan routing to the alternate destination, typically either a direct route from current position to the alternate destination or a route that proceeds to the current destination and assumes execution of a missed approach at the destination followed by a direct to the alternate destination. Distances, fuel, and ETA, and optionally best trip cruise altitude should be computed for each alternate destination and made available for display. Available holding time at present position, given the current fuel state versus the fuel required to fly to the alternate destination, may also be computed.

2679

2680

2681

4.0 FLIGHT MANAGEMENT FUNCTIONS

2640 Besides the alternate destination prediction, this function should provide for the 2641 retrieval of the airports nearest the aircraft at crew request. 2642 4.3.4.5 Step Climb/Descent 2643 The performance function should include a prediction of the optimum point(s) at which a step climb/descent maneuver may be initiated to provide for more cost-2644 2645 effective operation. This algorithm should consider all the vertical flight planning parameters as well as entered wind data. The time and distance to the optimum 2646 step point to the specified step altitude should be made available for display. Also, 2647 the percent savings/penalty for the step climb or descent versus the current flight 2648 plan may be computed and displayed. 2649 2650 4.3.4.6 Drift-Up Cruise Climb The performance function may compute an optimum or drift-up cruise climb 2651 quidance which tracks the optimum altitude. This algorithm should take into account 2652 2653 fuel burn (weight decrease) and the predicted wind altitude profile. 4.3.4.7 Vertical Advisory Calculations 2654 The performance function should provide advisories of distance and time (ETA or 2655 ETE) to the next waypoint altitude and/or speed target change. This information is 2656 based on the stored trajectory prediction and the current state of the aircraft. It 2657 should also provide advisories of distance and time to vertical points which do not 2658 correspond to waypoints. These points include: 2659 2660 Top of Climb (T/C) Top of Descent (T/D) 2661 Start of Climb (S/C) 2662 2663 Start of Descent (S/D) 2664 Level-Off Start 2665 Level-Off End Bottom of Descent (B/D) 2666 2667 End of Descent (E/D) 2668 **Descent Path Intercept Deceleration or Target Speed Change Point** 2669 2670 At a minimum, the performance function should compute distances to the top of climb (T/C) and top of descent (T/D) points for display on the MCDU. 2671 These vertical points should be displayed on the ND and VSD; the advisory 2672 distances and times displayed on the MCDU should be consistent with the location 2673 on the ND and VSD. 2674 4.3.4.8 Thrust Limit Data Calculations 2675 The thrust limits for takeoff, climb, cruise, go around, and continuous modes of 2676 operation should be computed (if applicable for the installation) for the current 2677 2678 atmospheric conditions and type of engine/aircraft and bleed settings. Moreover,

derates for takeoff and climb thrust should be available for selection as well as

selected temperature derates for takeoff thrust. The crew can manually select the

thrust limit mode that is output as the current thrust limit or an auto mode can be

2682 2683		selected that makes the choice based on logic between the flight control computer and the FMC.
2684		COMMENTARY
2685 2686 2687 2688		In some designs, the thrust limit function is performed by a Thrust Control Computer (TCC). For these designs, the thrust limit computation in the FMC is only required for the purpose of trajectory predictions and support of other performance calculations.
2689	4.3.4.9 Take	off Reference Data
2690 2691 2692 2693 2694 2695		The performance function should provide for the entry of V1, VR, and V2 speeds. Computation of V-speeds for selected flap setting and runway, weight, CG, and atmospheric conditions may be implemented for the purpose of selection and/or reasonableness checks. The entered or selected V-speeds should be output for display on the flight instruments. Flap/slat retraction speeds may optionally be computed and displayed for reference.
2696	4.3.4.10 App	roach Reference Data
2697 2698 2699 2700 2701 2702 2703		Landing configuration selection should be provided for each configuration appropriate for the operation of the specific aircraft. The crew should be allowed to select the desired approach configuration and the state of that selection should be made available for output to other systems. Selection of an approach configuration should also result in the computation of a landing speed based on a manually entered wind correction for the destination runway. In addition, approach configuration speeds should be computed and displayed for reference.
2704	4.3.4.11 Rese	erve Fuel Calculation
2705 2706 2707 2708 2709 2710 2711		When the system supports a default reserve fuel, the default reserve fuel should be computed based on the estimated fuel burn for the given flight plan, the entered or measured total fuel quantity, and additional entered parameters such as assumed fuel flow percent error. Manual entry of a reserve fuel quantity should be provided and should override the default value (if any). The system should provide an indication to the crew when the predicted fuel at destination is below the reserve fuel.
2712	4.3.4.12 Engi	ne-Out Performance Calculation
2713 2714		Systems should provide engine-out performance predictions for the case of the loss of at least one engine. These predictions may include:
2715		Climb at engine-out climb speed
2716		Cruise at engine-out cruise speed
2717		 Driftdown to engine-out maximum altitude at driftdown speed
2718		 Use of maximum continuous thrust
2719 2720		 Two-engine-out predictions when applicable on three and four engine aircraft
2721	4.3.4.13 Othe	er Predictions
2722 2723 2724		A number of other predictions and computed performance parameters can be provided by flight management systems. The following are a few of these optional functions:

2725	4.3.4.	13.1	Maximum Range Computation
2726 2727 2728			Capability to compute the maximum range of the aircraft based on the entered/measured fuel quantity and the specified reserves should be provided. Both range to reserves and range to empty may be displayed as appropriate.
2729	4.3.4.	13.2	Maximum Endurance Computation
2730 2731 2732			The maximum endurance time of the aircraft can be computed based on the entered/measured fuel quantity and the specified reserves. Both endurance time to reserves and time to empty can be provided.
2733	4.3.4.	13.3	Descent Energy Circles
2734 2735 2736 2737 2738			For a selected fix point and associated altitude constraint, the distance required to descend from current altitude to the constraint altitude can be computed for both clean and full drag aircraft configurations. This data can be available for display on both the MCDU and as range circles centered on the specified fix on the navigation display.
2739	4.3.4.	13.4 Ed	qual-Time Point (ETP)
2740 2741 2742 2743 2744 2745 2746 2747			The system may support an Equal-Time Point computation. Given two reference airports (or waypoints), the system should compute a location which represents a point along the flight plan which is equal in terms of time to each of the reference airports. The system should default the reference airports to the departure and destination airports. At a minimum, the system should allow optional entry of the reference airports and an average wind vector for the reference airport. The system should make the time and distance to the ETP available for display on the MCDU. The ETP location should also be displayed on the navigation display.
2748	4.3.5	Printe	er Functions
2749 2750			Capability may be provided to print various data such as data link messages, flight plans, and maintenance information.
2751	4.3.6	AOC	Function
2752 2753 2754			The system should provide for a data link interface with Airline Operations Communication. This interface should allow for uplink and crew controlled insertion of parameters that are enterable through the MCDU. This should include:
2755			 User preferred flight plans defined by the airline dispatch office
2756			 Wind and Temperature entries at multiple altitudes (Section 4.3.2.5.1)
2757			 Waypoints where automatic position reports are required
2758			Performance initialization data
2759			 Navigation data base amendments
2760 2761			Likewise, this interface should provide for the downlink of entered and computed data, including flight plan requests and waypoint reports.
2762			Refer to Section 8.0 and ATTACHMENT 7 for interface details.
2763	4.3.7	ATS I	Datalink
2764 2765			Air Navigation Service Providers (ANSPs) are implementing, or have plans to implement, Air Traffic Services Datalink functions using existing and future data link

systems whose requirements are defined according to the RTCA DO-264/ED-78 safety and performance requirements process. These include:

- FANS 1/A+ Interoperability and Accommodation (RTCA DO-258 FANS Interoperability, RTCA DO-305 Accommodation in Domestic Airspace, and RTCA DO-306 Oceanic Safety and Performance Requirements)
- Link 2000+ (subset of Baseline 1, RTCA DO-280/290/EUROCONTROL spec-0116)
- Baseline 2 (RTCA DO-350 through RTCA DO-353/ED-229)

The FMS system should support these datalink systems. FANS 1/A was originally utilized primarily in trans-oceanic ATC environments (mandated in the North Atlantic) but is being expanded into US and European domestic airspace. Link 2000+ is the datalink system in Europe. Baseline 2 is applicable to domestic airspace in North America and will eventually replace Link 2000+ in domestic European airspace. Some aircraft avionics implementations have elected to support multiple ATS datalink systems (oceanic and domestic).

All these ATS datalink systems provide the capability to establish a direct message exchange between the pilots and controllers, using datalink messages instead of voice and may provide other functions such as downlink of position reports and aircraft state and intent information.

The datalink communication architecture on the aircraft has evolved with variation in the allocation of the datalink sub-functions to physical units.

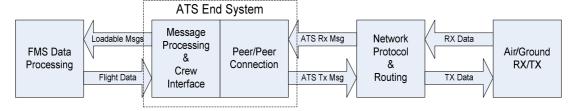


Figure 4.3.7-1 Functional Breakdown of ATS Datalink Airborne Architecture

Some system integrators have chosen to allocate the ATS end system into the FMS, some have chosen to allocate the ATS end system to a different unit and establish a significant data interface with the FMS to support the various datalink functions. Some implementations have a minimal interface with the FMS and depend on the crew to manually support the data needs of the datalink function. The following sections describe all the potential FMS requirements for the datalink functions without regard to the functional allocation of the specific airborne architecture.

It is imperative for stakeholders to understand the specific airborne architecture and which requirements are applicable in their particular architecture.

4.3.7.1 Future Air Navigation System 1/A (FANS 1/A)

The ATS applications used in FANS 1/A are Air Traffic Services Facilities Notification (AFN), Automatic Dependent Surveillance-contract (ADS-C), Controller

4.0 FLIGHT MANAGEMENT FUNCTIONS

2804 2805	Pilot Data Link Communication (CPDLC) as defined in RTCA DO-258/DO 290 and ARINC 622. These applications enable the following ATS services:
2806	Data Link Initiation (DLIC)
2807	ATC Communications Management (ACM)
2808	Clearance Request and Delivery (CRD)
2809	ATC Microphone Check (AMC)
2810	 Pre-Departure Clearance (PDC)
2811	 Information Exchange and Reporting (IER)
2812	 Position Reporting (PR)
2813	In Trail Procedure (ITP)
2814	4.3.7.1.1 Air Traffic Services Facilities Notification (AFN)
2815 2816 2817 2818 2819 2820	The AFN logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use, along with the current position as required by the ground system. In response, the ground provides an application name and version number for each application that the ground supports. AFN enables and precedes the use of CPDLC, ADS-C and associated services.
2821	COMMENTARY
2822 2823 2824 2825 2826 2827 2828	While AFN typically precedes ADS-C, it is not mandatory. As stated in ICAO Doc 10037: Global Operational Datalink (GOLD) Manual, it may be operationally desirable for an ATSU to set up an ADS-C connection without a preceding logon. When this is done, correlation with the flight plan can be achieved by requesting the optional flight identification group and checking this against the aircraft registration in the flight plan.
2829 2830 2831 2832 2833 2834	To support auto transfer from one center to the next, the contact function provides a method for the ATS ground system to request that the aircraft system initiate the logon function with the next ATS ground system. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The AFN logon messages and sequence are detailed in RTCA DO-258 and ARINC 622.
2835 2836	For architecture with dual datalink systems (dual stack), the AFN function should support the auto transfer from one datalink system to another datalink system.
2837	4.3.7.1.2 Controller Pilot Data Link Communication (CPDLC)
2838 2839	The CPDLC specific messages supported should be those defined by ICAO Doc 4444: PANS-ATM and RTCA DO-258/ED-100 to enable the following services:
2840	 ATC Communications Management (ACM)
2841	Clearance Request and Delivery (CRD)
2842	ATC Microphone Check (AMC)
2843	Pre-Departure Clearance (PDC)
2844	Information Exchange and Reporting (IER)

• Position Reporting (PR)

2845

These messages include some which are loadable and others which are display only. The pilot has the capability to respond to messages, request clearances and report information. An uplink "free text" capability is also provided to exchange information not conforming to defined formats and to append information explaining error reasons. A downlink "free text" capability is provided to append information explaining error reasons. The FMS exchanges these messages with the communication management function which provides for the capability to receive and send these messages over the data link network. The FMS should provide the capability to interface with the network protocol and integrity checking as defined by ARINC 622. These data link messages will be identified with an Imbedded Message Identifier (IMI) of ATx and Message Format Identifier (MFI) of AA/BA to distinguish them from AOC messages and take priority over any other pending data link messages.

Interpretation of the message is based on the CPDLC application defined by RTCA DO-258/290 message element number. Upon receipt of an ATC uplink, the system should annunciate an alerting level message in the primary field of view and set an output discrete that will be used to control an aural warning. The system should also provide for a crew interface that details these messages for crew review along with the appropriate prompts for crew responses such as accept, reject, standby, or response data that may be required.

As a minimum, the FMC functions should provide the capability to load the following (loadable) message types:

- Cross position BEFORE, AT, or AFTER time
- Route Clearances

 For all load functions, the changes should be displayed for review by the flight crew. The changes should be initiated and activated by the flight crew.

4.3.7.1.3 Automatic Dependent Surveillance - Contract (ADS-C)

This function should provide for uplink messages to establish the following:

- Periodic Contract
- On Demand Contract
- Event Contract
- Cancel Contract
- Cancel All Contracts

It should also provide Acknowledgment, Negative Acknowledgment, Noncompliance Notification, and data downlink messages as defined in RTCA DO-258.

This function should support at least 5 connections (four typically used for ATC and another for AOC). Each connection is associated with the ATC center address and may have any contract type.

The ADS-C contracts should be established automatically by the contract protocol defined in RTCA DO-258 without the need for crew intervention. A Periodic Contract can specify the data groups as well as the report interval and an Event Contract can specify report downlink triggers that are desired. Periodic and On Demand Contract requests can specify the data groups to be transmitted:

4.0 FLIGHT MANAGEMENT FUNCTIONS

2890	Basic ADS-C
2891	Flight ID
2892	Airframe ID
2893	Air vector
2894	Ground vector
2895	Aircraft Intent
2896	Projected profile
2897	MET data
2898 2899 2900	All time stamps associated with data groups should be based on the UTC received from the GNSS. UTC based on aircraft clocks should only be used in case of GNSS outage or failure.
2901	4.3.7.2 Link 2000+
2902 2903 2904 2905	The ATN applications used in Baseline 1 Link 2000+ are subsets of context management (CM), and Controller Pilot Data Link Communication (CPDLC), as defined in RTCA DO-280/290, EUROCONTROL spec-0116. These applications support the following ATS Services:
2906	Data Link Initiation (DLIC)
2907	 ATC Communications Management (ACM)
2908	Air Traffic Clearance (ACL)
2909	ATC Microphone Check (AMC)
2910	4.3.7.2.1 Context Management (CM)
2911 2912 2913 2914 2915 2916	The Baseline 1 Link 2000+ CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.
2917 2918 2919 2920 2921 2922 2923 2924	To support auto transfer from one center to the next, the Link 2000+ CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in the Baseline 1 ATN Interoperability RTCA DO-280.
2925 2926	For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.
2927	4.3.7.2.2 Controller Pilot Data Link Communication (CPDLC)
2928 2929 2930 2931	The Link 2000+ CPDLC is a subset of the ATN Baseline 1 CPDLC as defined in RTCA DO-280/290/ EUROCONTROL spec-0116. The ATN Baseline 1 Link 2000+ controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in RTCA DO-280/

2932 290/EUROCONTROL spec-0116. This function provides messages for the 2933 following: 2934 ATC Communication Management (ACM) 2935 Air Traffic Clearance (ACL) 2936 • ATC Microphone Check (AMC) The ATN Baseline 1 Link 2000+ CPDLC message elements encompass level 2937 2938 assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for 2939 2940 information. The pilot has the capability to respond to messages, request clearances and report information. An uplink "free text" capability is also provided to exchange 2941 information not conforming to defined formats and to append information explaining 2942 error reasons. A downlink "free text" capability is provided to append information 2943 2944 explaining error reasons. 2945 The Baseline 1 transfer of data authority function provides the capability for the 2946 current data authority (CDA) to designate another air traffic service unit (ATSU) as the next data authority (NDA). A CPDLC connection can be established by the NDA 2947 at a time before becoming the CDA. This capability is intended to prevent a loss of 2948 communication that would occur if the NDA were prevented from actually setting up 2949 2950 a connection with an aircraft system element until it became the CDA. 2951 4.3.7.3 Baseline 2 (B2) The ATS applications used in Baseline 2 are Context Management (CM), Automatic 2952 2953 Dependent Surveillance-Contract (ADS-C) and Controller Pilot Data Link Communication (CPDLC) as defined in RTCA DO-350 through DO-353 and ED-2954 2955 229. These applications support the following ATM functions: Data Link Initiation (DLIC) 2956 ATC Communications Management (ACM) 2957 Clearance Request and Delivery (CRD) 2958 ATC Microphone Check (AMC) 2959 2960 Departure Clearance (DCL) 2961 Data Link Taxi (D-TAXI) In Trail Procedure (ITP) 2962 2963 Advanced Interval Management (A-IM) Oceanic Clearance Delivery (OCL) 2964 Information Exchange and Reporting (IER) 2965 2966 Position Reporting (PR) 2967 4-Dimensional Trajectory Data Link (4DTRAD) 2968 Dynamic Required Navigation Performance (DRNP) 2969 4.3.7.3.1 Context Management (CM) The CM logon function can only be aircraft initiated. The aircraft system uses the 2970 logon function to provide an application name, address, and version number for

each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In

2971 2972

2973

4.0 FLIGHT MANAGEMENT FUNCTIONS

response, the ground provides an application name and version number for each ground-only initiated requested application.

To support auto transfer from one center to the next, CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in RTCA DO-350 and ED-229.

For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.

4.3.7.3.2 Controller Pilot Data Link Communication (CPDLC)

The ATN Baseline 2 controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in RTCA DO-350 and ED-229. This function provides messages for the following:

- General information exchange
- Clearance delivery, request, and response
- Departure Clearance
- Taxi Instructions
- Separation Assurance
- Route modification
- Advanced Interval Management
- 4D Trajectory Based Operation
- Dynamic RNP

The aircraft system should allow the flight crew to view the message with no more than a single action and allow the flight crew to access the list/queue of unread messages with no more than a single action. The aircraft system should provide an indication of the receipt of a message.

The aircraft data link system should provide the flight crew with the capability to load designated CPDLC uplink messages into the FMS to avoid hazards associated with human entry errors and/or increased workload. The following clearance messages are examples of messages prone to these hazards:

- A clearance that will require the creation, in the resulting flight plan, of more than one waypoint unless the route is described by a procedure name that can be loaded from the navigation database,
- A clearance that will require the creation, in the resulting flight plan, of one waypoint specified by place-bearing-distance or latitude/longitude with a resolution smaller than whole degrees.

The aircraft data link system will provide the flight crew with assistance to create CPDLC downlink messages to avoid any safety implications (i.e., human entry errors and/or significant increased workload). The following downlink messages are prone to these hazards:

 request messages which contain more than one waypoint
 report messages of the present aircraft position or containing one (or more) waypoint(s) from the FMS active flight plan.
4.3.7.3.3 Automatic Dependent Surveillance (ADS-C)
The ADS-C application provides automatic reports from an aircraft system to an ATSU as detailed in RTCA DO-350. The ATSU is capable of requesting the aircraft system to provide the ADS-C reports to the ATSU system in three ways:
On demand
On a periodic basis
When triggered by an event
Only one contract of a given type is permitted at one time per ATSU. When the ATSU sends a contract request to an aircraft system for a periodic or event contract, and either of these two contracts already exists with that aircraft, then the new contract will override the previous contract for that type. Acceptance of an event or periodic contract request implicitly cancels an existing respective event or periodic contract. Since the demand contract is satisfied by sending a single report, any number of demand contracts may be sequentially established with a given aircraft. The ATSU is capable to cancel either a single contract or all contracts in operation that it has established with an aircraft. The ATSU specifies either which contract(s) to cancel by identifying the contract type(s), or specifying to cancel all contracts. The aircraft system acknowledges the cancellation and ceases sending the ADS-C reports for the cancelled contract(s). The aircraft system is capable of providing ADS-C reports to support contract requests. The ADS-C report content and the conditions under which the report is sent vary depending on the type of contract request and the conditions specified in the request. The aircraft system is capable of supporting contract requests with at least five ground systems simultaneously. In addition, when in emergency mode, the aircraft system provides an emergency/urgency indication as part of each downlink ADS-C messages including the ADS-C report.
Periodic and On-Demand Contract requests can specify the data groups to be transmitted:
Basic ADS-C
Air vector
Ground vector
projected profile
MET data
RTA status data
Extended projected profile
Planned final approach speed
RNP status
COMMENTARY
The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to

The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the predicted reference path altitude.

3059

3060

4.0 FLIGHT MANAGEMENT FUNCTIONS

3061	4.3.8	Airport Surface Guidance
3062		[Deleted by Supplement 5]
3063	4.3.9	Terrain and Obstacle Data
3064		[Deleted by Supplement 5]
3065	4.3.10	Electronic Map Interfaces
3066	4.3.10	.1 Navigation Display Interface
3067 3068 3069 3070 3071 3072		The system should support an interface with a Navigation Display (ND) in order to provide lateral situational awareness (e.g., aircraft position, lateral trajectory, nearby navaids, etc). RTCA DO-257 defines requirements for the ND Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661.
3073 3074 3075		In addition to the map background data and the aircraft position, the system should supply a number of other dynamic data items that contribute to lateral situational awareness. These may include:
3076 3077		 Current Wind (either cross wind and headwind components or magnitude and bearing)
3078		 Time and distance to go to the next waypoint
3079		Current Ground speed
3080		 Vertical deviation when guiding to the descent path
3081		 Trend vector showing current rate and direction of turn
3082 3083		The system should support independent ND displays such that each pilot may select different ND map ranges, modes, or options.
3084	4.3.10	.2 Vertical Situation Display Interface
3085 3086 3087 3088 3089 3090		The system may support an interface with a Vertical Situation Display (VSD) to provide vertical situational awareness (e.g., vertical aircraft position, AFCS Control Panel Altitude, altitude constraints, descent reference path, vertical trajectory predictions, terrain). RTCA DO-257 defines requirements for the VSD. Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The CDS interface is in ARINC 661.
3091 3092 3093		In addition to the map background data, vertical aircraft position, and AFCS Control Panel Altitude, the system should supply a number of other dynamic data items that contribute to vertical situational awareness. These may include:
3094		Current Vertical speed
3095		 Vertical deviation when guiding to the descent path
3096		 Trend vector showing current flight path angle
3097 3098		The system should support independent VSD displays such that each pilot may select different VSD map ranges, modes, or options.
3099	4.3.11	CMU Interface
3100 3101		The system should provide for an interface with a CMU for the purpose of supporting all data link functionality described in this characteristic. The standard

interface between the CMU and the flight management function, detailing the interface data and formats, may be found in Section 8.0 of this characteristic.

Message formats for AOC communications are defined in ATTACHMENT 7.

4.3.12 Predictive Receiver Autonomous Integrity Monitoring (RAIM)

Optional capability may be provided for the FMS to transmit the selected destination latitude, longitude, and ETA to the GNSS when a flight plan has been activated and predicted. The purpose of this capability is for the prediction of the availability of GNSS satellite coverage for the approach phase of the flight. The GNSS should respond to whether adequate satellite coverage is anticipated. If not, the system should immediately alert the crew. Interface requirements for this capability are defined in ARINC Characteristic 743A, Appendix C.

4.3.13 Precision-Like Approach Guidance

With the advent of advanced navigation sensors and airborne systems, two methods have been developed that allow non-precision approaches to be flown like an ILS, MLS, or GLS precision approach: Localizer Performance with Vertical Guidance (LPV) and FMS Landing System (FLS)

LP/LPV is similar to GLS. Both LP/LPV and GLS are satellite-based operations using an augmented GNSS solution. In a GLS approach, a ground station transmits both (a) corrections to a GNSS signal, and (b) a Final Approach Segment (FAS) Data Block which defines the localizer and glideslope beams. When tuned to the GLS channel number, a receiver onboard the aircraft receives those signals and computes precision approach-like deviations for use by the autoflight and display systems. In an LP/LPV approach, a receiver onboard the aircraft receives corrections to the GNSS signal from a satellite-based system (SBAS) rather than a ground-based system (GBAS); it typically receives the FAS Data Block from the onboard Flight Management System.

For any non-precision approach, some Flight Management Systems support an FLS guidance mode where the onboard FMS navigation solution may be used to provide the autoflight and display systems with precision approach-like deviations.

4.3.13.1 LP/LPV Approach Guidance

On some installations, the system supports LP/LPV approach capability when used in conjunction with an ARINC 743B GNSS Landing System Sensor Unit (GLSSU) (RTCA DO-229 Delta-4 SBAS receiver) or an ARINC 755 Multi-Mode Receiver (MMR) supporting the GLS function. The GLSSU (or MMR) provides the lateral and vertical deviations (ILS look-alike) and guidance during the final approach segment.

On those installations, upon crew selection of the desired LP/LPV approach, the system should extract the Final Approach Segment (FAS) data block from its navigation database and transmit it to the GLSSU/MMR. The protocol to exchange the FAS data block is described in ARINC 743B Appendix D and ARINC755 Appendix A. The Final Approach Segment (FAS) data block includes a 32-bit Cyclic Redundancy Check (CRC) value ensuring the integrity of the data from the time of the original packet generation.

Upon crew activation of a new approach where the previously selected Final Approach Segment is no longer applicable, the system should invalidate the previously sent Final Approach Segment Data Message (FASDM).

3190

4.0 FLIGHT MANAGEMENT FUNCTIONS

3147 4.3.13.2 FMS Landing System (FLS) 3148 The system may support a virtual ILS guidance capability which can be used to fly a non-precision final approach segment. This capability is referred to as FMS Landing 3149 System (FLS). 3150 3151 When an FLS capability is provided and the crew has selected a non-precision 3152 approach, the system should provide a means for the crew to select or de-select 3153 FLS guidance for the final approach. When FLS is selected and lateral guidance is not already being provided by a ground-based localizer (if allowed), the system 3154 should compute a virtual localizer path. When FLS is selected, the system should 3155 compute a virtual glideslope path. For the virtual glideslope path, the anchor point 3156 should be located such that the aircraft can maintain a constant vertical angle to the 3157 3158 landing threshold point (LTP), even in cases where the MAP is not located at the runway or there is a curved lateral path to the runway. When FLS guidance is 3159 3160 selected, the system should interface to the autoflight and/or display systems to allow the virtual localizer and/or glideslope to be flown. When the system cannot 3161 support FLS guidance for the selected non-precision approach, the system should 3162 prohibit selection of FLS guidance and/or provide an indication to the crew. 3163 FLS guidance must comply with the Temperature Compensation Requirements in 3164 3165 Section 4.3.2.5.4. 4.3.14 Integrity Monitoring and Alerting 3166 3167 4.3.14.1 Sensor Status 3168 Sensor warning inputs will be implemented as specified in ARINC Specification 429. Section 2.1, in that validity status is contained within the digital word format. 3169 3170 In all cases of sensor input failure, suitable sensor failure warning and degraded status annunciation should be provided. 3171 3172 4.3.14.2 System Status Alert 3173 Any change of status that results in reduced system operational capability or 3174 availability should be annunciated to the pilot on, or adjacent to, primary flight instruments. Additional data (e.g., A429 label, parity error, rate failure, etc) for use in 3175 diagnosing the status change should be logged to the BITE and/or data collection 3176 system. Means should be provided to cancel the annunciation. 3177 **COMMENTARY** 3178 3179 The system status alert is designed only to attract the attention of the pilot to the fact that something has happened either within the system 3180 3181 or to one of the sensors that has degraded or will degrade the 3182 operational viability of the system. It will be necessary for the pilot to 3183 look for further signs to determine the actual problem and whether or 3184 not he can correct it. System integrity monitoring and failure warning discrete outputs are described in 3185 3186 Section 5.3 of this Characteristic. All other such alerts and warnings are included in 3187 the transmitted digital word as specified in ARINC Specification 429, Section 2.1. 4.3.14.3 Self-Test 3188 3189 The FMC should be designed to perform automatic self-tests of its internal

operation, and reasonableness tests on input data during normal operation. The

3191 3192		FMC will generate digital output bus signals which will include malfunction codes to indicate the FMC's assessment of its health, and the status of its interfaces.
3193	4.3.1	14.4 Failure Response
3194 3195 3196 3197 3198		The system should monitor its own health and processing for integrity. When an error is detected, the system should record the failure in a nonvolatile BITE log and attempt to recover from or correct the error if possible. If an attempted fault recovery is unsuccessful, the system should prevent further processing in the affected partition.
3199		COMMENTARY
3200 3201 3202		The airlines desire a high degree of fault tolerance in the FMS. System recovery logic for intermittent faults should be designed to minimize visible flight deck effects and loss of system availability.
3203	4.4	Training Simulator Support Functions
3204 3205		FMS requirements for simulator support functions are defined in the latest version of ARINC Report 610.
3206		

3207	5.0 S	TANDARD INTERFACES
3208	5.1	FMC Digital Data Input Ports
3209 3210 3211 3212 3213		This section describes the digital interfaces to the FMC. It is unlikely that all of these inputs will be employed in a given installation. Those not used in a particular aircraft type need not be implemented in the FMC. However, hardware, software, and computer cycle time capacity should be available to allow all of them to be activated when needed.
3214		COMMENTARY
3215 3216 3217		Data signaling for inputs and outputs to the FMC should be in the ARINC 429 low-speed rates, except where otherwise specified. The data signals are defined in Attachment 4 of this document.
3218 3219 3220		Providing for FMC interchangeability across different aircraft types in a user's fleet may generate the need for the computer to offer more input capacity than needed on any one of those types.
3221	5.1.1	VOR Input Ports
3222 3223		Two ARINC 429 input ports are provided to receive data from dual ARINC 711 VOR receivers.
3224	5.1.2	DME Input Ports
3225 3226		Two ARINC 429 input ports are provided to receive data from dual ARINC 709 DME interrogators.
3227	5.1.3	ILS/MMR Input Port
3228 3229		One ARINC 429 input port will receive data from an ARINC 710 ILS receiver or an ARINC 755 Multi-Mode Landing System Receiver (MMR).
3230		COMMENTARY
3231 3232		These ports are used to support LP/LPV approaches when interfacing to an ARINC 755 MMR
3233	5.1.4	Air Data Input Ports
3234 3235		Two ARINC 429 input ports will receive data from dual ARINC 706 Air Data Systems or ARINC 738 Air Data Inertial Reference Unit (ADIRU).
3236	5.1.5	IRS/AHRS Input Ports
3237 3238		Three ARINC 429 input ports will receive data from ARINC 704 IRS, ARINC 705 AHRS or ARINC 738 ADIRU systems. These are ARINC 429 high-speed inputs.
3239	5.1.6	GNSS Input Ports
3240 3241 3242 3243		Two ARINC 429 input ports should receive data from an ARINC 743A GNSS Sensor. These may be ARINC 429 high-speed or low-speed inputs. The ARINC 743A GNSS Sensor is capable of providing ARINC 429 data in high-speed or low-speed format.
3244		COMMENTARY
3245 3246		These ports are used to support LP/LPV approaches when interfacing to an ARINC 743B GLSSU or an ARINC 755 MMR

3241	3.1. 7	Fight Control System input Forts
3248 3249		One ARINC 429 input port will receive data from an ARINC 701 Flight Control System glare shield controller.
3250	5.1.8	MCDU Input Ports
3251 3252 3253		Two ARINC 429 input ports are provided to receive data from one or two MCDUs. One of these ports is designated the "on-side" port and the other is designated the "off-side" port (see Attachment 2 of this document).
3254	5.1.9	Data Loader Input Ports (ARINC 615)
3255 3256 3257 3258		One ARINC 429 input port is dedicated to receiving data to update bulk storage integral to the FMC. This port is intended for an interface with a loading device of the type described in ARINC Report 615. The characteristics of the digital data transmission on this bus are defined to the extent necessary in that document.
3259	5.1.10	Data Link Input Ports
3260 3261		The FMC should provide two ARINC 429 high-speed input ports to receive data from up to two ARINC 758 CMUs.
3262 3263 3264		The FMC should provide two ARINC 429 low-speed input ports to receive data from up to two ARINC 724B ACARS Management Units or to support existing ACARS functionality integrated into the ARINC 758 CMU.
3265		COMMENTARY
3266 3267		Dual ACARS low-speed inputs can be accommodated by using a software selectable speed input for at least one of the CMU inputs.
3268	5.1.11	Intersystem Data Input Port
3269 3270		One ARINC 429 input port provides the intersystem comparison data received from a second FMC.
3271		COMMENTARY
3272 3273		As an alternative to ARINC 429, a faster intersystem data bus may be necessary. Refer also to Sections 5.2.1 and 5.4.
3274	5.1.12	Propulsion/Configuration Data Input Ports
3275 3276		Six ARINC 429 input ports are provided for engine and fuel flow and quantity parameters and data received from the Thrust Control Computer (TCC).
3277		COMMENTARY
3278 3279 3280 3281		It is intended that four of these ports should be assigned for receiving individual engine and fuel flow data from up to four engines or fuel systems. The remaining two ports would normally receive other data such as thrust limit, fuel quantity, and TCC data.
3282	5.1.13	Electronic Flight Instrument System Input Ports
3283 3284 3285 3286		Two ARINC 429 input ports are provided for data from an Electronic Flight Instrument system. This interface may provide interface capability to the Cursor Control Device (CCD). This capability may be provided by a separate input as defined in Section 5.1.19.

3287	5.1.14 Pri	nter
3288 3289		One ARINC 429 input port is provided for data from an ARINC 740 or ARINC 744 airborne printer.
3290	5.1.15 Dig	gital Clock Input
3291 3292 3293		One ARINC 429 input port is provided for data from a digital clock. The clock input may be provided from a GNSS source, in which case the GNSS input is utilized per Section 5.1.6. In this case a dedicated clock input port is not required.
3294	5.1.16 Ma	intenance Input
3295 3296		One ARINC 429 low-speed input port is provided for interface to an ARINC 604 or 624 maintenance system.
3297	5.1.17 WE	3S Input
3298 3299		One ARINC 429 input port is reserved for input of data from an ARINC 737 On-Board Weight and Balance System (WBS).
3300	5.1.18 Sir	mulator Input
3301 3302 3303		A serial digital input is required to support ARINC 610 simulator functions. As a manufacturer option, this input may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.
3304	5.1.19 Po	inting Device
3305 3306		Two high-speed ARINC 429 input ports are reserved for input from dual cockpit pointing devices.
3307		COMMENTARY
3308 3309 3310		These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.
3311	5.1.20 AS	AS Input
3312 3313		One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system.
3314	5.1.21 Re	served Ports for Growth Inputs
3315 3316		Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs.
3317	5.2 FMC	Digital Data Outputs
3318 3319		Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data.
3319		and other subsystems requiring rivio data.
3320	5.2.1 FM	IC Intersystem Output
	5.2.1 FM	
3320 3321 3322	5.2.1 FM	The FMC should provide an output bus which can be used for intersystem communication from one FMC to another. Section 5.4 of this document provides

3327 3328		data bus may be used. Any alternative data bus should meet the same EMI requirements of ARINC 429.
3329	5.2.2	General Data Output
3330 3331 3332 3333 3334		Two ARINC 429 outputs provide data to flight instruments, to radio receivers or frequency management unit for tuning, to the Thrust Control Computer System, Flight Control Computer System, and other users. They may also provide initialization data to the IRS. Optionally, they may include the FAS data block to an ARINC 743B GLSSU or ARINC 755 MMR.
3335		COMMENTARY
3336 3337		The amount of data to be carried may require the use of ARINC 429 high-speed buses.
3338	5.2.3	Primary Display Data Output
3339 3340		Two ARINC 429 high-speed outputs are dedicated to supplying data for the Electronic Flight Instrument systems.
3341		COMMENTARY
3342 3343 3344		The specialized design of the FMC/EFI interface makes these outputs unsuitable for supplying other displays such as digital electromechanical instruments. The general data outputs should be used for these purposes. See Section 7.0 of this document.
3345	5.2.4	MCDU Output Ports
3346 3347		Two ARINC 429 outputs provide the means for the FMC to supply data to the MCDUs for the system.
3348	5.2.5	Data Loader Output
3349		One ARINC 429 output is provided for interface to an ARINC 615 data loader.
3350	5.2.6	Data Link Output Ports
3351 3352		One ARINC 429 high-speed output is provided for connection to an ARINC 758 CMU.
3353 3354 3355		One ARINC 429 low-speed output is provided for connection to an ARINC 724B ACARS Management Unit, or to support existing ACARS functionality integrated into the ARINC 758 CMU.
3356	5.2.7	Autothrottle (Reserved)
3357 3358		One ARINC 429 output is reserved to supply data to an Electronic Engine Control (EEC) computer.
3359	5.2.8	Printer
3360 3361		One ARINC 429 high-speed output is reserved for the output of data to an ARINC 740 or ARINC 744 printer.
3362	5.2.9	Onboard Maintenance
3363 3364		One ARINC 429 output is reserved for the output of data to an ARINC 604 or 624 onboard maintenance system.
3365	5.2.10	Programmable Data Output
3366		One ARINC 429 high-speed output is provided to support flight test data collection.

5.2.11 Simulator

 A serial digital output is required to support ARINC 610 simulator functions. As a manufacturer option, this output may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.

5.2.12 Aircraft State and Intent Path Output (Trajectory Bus)

The FMC should include an ARINC 429 high-speed bus to provide Position Velocity Time (PVT) and intent data from the FMC. This data may be used for surveillance applications such as ADS-B, Terrain Awareness and Warning System (TAWS), Terrain/Obstacle avoidance, and other situational awareness systems. The interface definition is comprised of present aircraft state data that is broadcast at a half second (2 Hz) update rate. The FMS should comply with the requirements of RTCA DO-229C that specifies that the data defining the position shall be output prior to 200 milliseconds after the time of applicability.

Additionally, trajectory intent data for the active flight plan, modified flight plan, or other specified flight plan, assumed to be flown in FM managed mode, is transmitted as a block data transfer. This data may be used for all types of ATM applications.

As an option, the Aircraft State and Trajectory output may be provided by an ARINC 664 Ethernet interface. The intention is that the same data items are provided; only the transfer mechanism(s) is different. The Ethernet Aircraft State is specified in Section 5.2.12.1.2 and the Ethernet Trajectory output is specified in Section 5.2.12.2.2. There are no pin assignments in this Characteristic for an ARINC 664 Ethernet bus. These interfaces may be aircraft specific.

The list of ARINC 429 data words used for the broadcast data is included in ARINC Specification 429: Digital Information Transfer System (DITS).

5.2.12.1 Aircraft State Data

The aircraft state data from the FMS should include the parameters in Table 5-1 or Table 5-2. Trajectory intent status data should be included as an FMC output based on determination if the aircraft is following its FMC specified flight plan. Separate discrete bits (label 270 bits 27, 28, 29) are provided to the user to aid in the interpretation of trajectory data. These discrete bits indicate whether the airplane is being flown to the vertical, lateral, and speed/time targets for the trajectory provided with the appropriate automation engaged, as necessary.

This list of data represents information that is expected to be made available on the Trajectory intent data bus from the FMC to support multiple functions. It is not intended to specify what should be transmitted from the airplane.

5.2.12.1.1 ARINC 429 Aircraft State

Table 5-1 ARINC 429 Intent Aircraft State Labels

Label	Parameter	Update Rate
102	FMS Selected Altitude	0.5 sec
103	FMS Selected Airspeed	0.5 sec
106	FMS Selected Mach	0.5 sec
114	FMS Desired Track	0.5 sec
116	Cross Track Distance	0.5 sec
117	Vertical Deviation	0.5 sec

Label	Parameter	Update Rate
135	Current Vertical Path Perf Limit (Vert RNP)	0.5 sec
136	Current Vertical Path Perf (Vert ANP ⁽¹⁾)	0.5 sec
150	UTC	0.5 sec
167	Estimated Position Uncertainty (or ANP)	0.5 sec
171	Current RNP	0.5 sec
176	Distance to Destination	0.5 sec
233-237	Flight ID	0.5 sec
310	Present Position Latitude	0.5 sec
311	Present Position Longitude	0.5 sec
312	Ground Speed	0.5 sec
313	Track Angle True	0.5 sec
314	True Heading	0.5 sec
315	Wind Speed	0.5 sec
316	Wind Direction	0.5 sec
204	Baro-Corrected Altitude (pass through from ADC)	0.5 sec
203	Pressure Altitude (pass through from ADC)	0.5 sec
206	Calibrated Airspeed (pass through from ADC)	0.5 sec
205	Mach (pass through from ADC)	0.5 sec
210	True Airspeed (pass through from ADC)	0.5 sec
213	Static Air Temperature (pass through from ADC)	0.5 sec
320	Magnetic Heading (pass through from IRS)	0.5 sec
325	Roll Data (pass through from IRS)	0.5 sec
335	Track Angle Rate (pass through from IRS)	0.5 sec
365	Inertial Vertical Velocity (pass through from IRS)	0.5 sec
366	N/S Velocity	0.5 sec
367	E/W Velocity	0.5 sec
270	Intent Status bit 29-speed/time controlled bit 28-lateral controlled bit 27-vertical controlled bit 26-no active flight plan intent data bit 25-desired track mag/true ref (1 = true) bit 24-indicates when bus is guidance master	0.5 sec

3404

3409 3410

3411 3412 3413

COMMENTARY

Table 5-1 provides FMS data parameters for surveillance and fully recognizes that other data parameters necessary for surveillance may be provided by other systems (e.g., GPS, inertial system, air data system, Flight Controls system).

The integrity data is Estimated Position Uncertainty and Current Vertical Path Performance. It is expected that surveillance systems using this data to transmit an integrity parameter outside the airplane would use these data items (or the appropriate integrity parameters when using data from another source, such as GPS) to compute the

5.0 STANDARD INTERFACES

requisite integrity parameter as specified by the RTCA MOPS for that particular surveillance application.

5.2.12.1.2 Ethernet Aircraft State

3416

3417 3418

3419

The format of the aircraft state consists of a single block coded in big endian mode. This block should nominally be sent at 2 Hz rate.

Table 5-2 Ethernet Intent Aircraft State Format

Ethernet Aircraft State							
Data	Туре	Size (bits)	Units	Comments			
Start of Block		8		Start of application block. Code hx53			
Block Size	Integer	8	Bytes	Size in bytes of aircraft state data block			
Pad	Integer	16	-	hx0000			
FMS Selected Altitude	Float	32	ft	Label 102, Note 1			
FMS Selected Airspeed	Float	32	kt	Label 103, Note 1			
FMS Selected Mach	Float	32	-	Label 106, Note 1			
FMS Desired Track	Float	32	deg	Label 114, Note 1			
Cross Track Distance	Float	32	NM	Label 116, Note 1			
Vertical Deviation	Float	32	ft	Label 117, Note 1			
Vertical RNP	Float	32	ft	Label 135, Note 1			
Vertical ANP	Float	32	ft	Label 136, Notes 1			
UTC	Float	32	sec	Label 150, Note 1			
Estimated Position Uncertainty (or ANP)	Float	32	NM	Label 167, Note 1			
Current RNP	Float	32	NM	Label 171, Note 1			
Distance to Destination	Float	32	NM	Label 176, Note 1			
Flight ID	String	m * 32	-	Label 233 – Label 237, Note 2			
Present Position Latitude	Float	32	deg	Label 310, Note 1			
Present Position Longitude	Float	32	deg	Label 311, Note 1			
Ground Speed	Float	32	kt	Label 312, Note 1			

5.0 STANDARD INTERFACES

Ethernet Aircraft State						
Data	Туре	Size (bits)	Units	Comments		
Track Angle True	Float	32	deg	Label 313, Note 1		
True Heading	Float	32	deg	Label 314, Note 1		
Wind Speed	Float	32	kt	Label 315, Note 1		
Wind Direction	Float	32	deg	Label 316, Note 1		
ADC Baro-Corrected Altitude	Float	32	ft	Label 204, Note 1		
ADC Pressure Altitude	Float	32	ft	Label 203, Note 1		
ADC Calibrated Airspeed	Float	32	kts	Label 206, Note 1		
ADC Mach	Float	32	-	Label 205, Note 1		
ADC True Airspeed	Float	32	kts	Label 210, Note 1		
ADC Static Air Temperature	Float	32	degC	Label 213, Note 1		
IRS Magnetic Heading	Float	32	deg	Label 320, Note 1		
IRS Roll Angle	Float	32	deg	Label 325, Note 1		
IRS Track Angle Rate	Float	32	deg/sec	Label 335, Note 1		
IRS Vertical Velocity	Float	32	ft/min	Label 365, Note 1		
N/S Velocity	Float	32	kt	Label 366, Note 1		
E/W Velocity	Float	32	kt	Label 367, Note 1		
Intent Status	Integer	32	-	Label 270		
End of Block		8		End of application block. Code hx45		
Pad		24		hx000000		

3420

3421 3422

3423 3424 3425

3426

Notes:

- 1. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.
- 2. Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bits unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).

5.2.12.2 Trajectory Intent Data

 In addition to the aircraft state data defined above, the FMC should provide an output of the flight path trajectory for each flight plan (i.e., active, modified, secondary, and ATC flight plans). This may be used to support predictive functions such as real-time traffic conflict probes, airspace traffic situational awareness, strategic traffic coordination, and terrain/obstacle avoidance. The data should consist of a string of points that describe the predicted trajectory of the aircraft along with the point type and data associated with the flight path transition. This data forms the basis for a using function to be able to unambiguously reconstruct the predicted flight trajectory. This block transmission is for the entire flight trajectory even though a using function may only be interested in a part of the active trajectory. For the active flight plan, this data should be updated on the following events:

- Whenever an active flight plan change occurs.
- When a lateral waypoint is passed.
- When a defined period has elapsed (on the order of one minute) since the last transmission.

COMMENTARY

Other events might require data to be updated. For example, it may be desirable to update the data when there has been a significant change to the predicted trajectory caused by tactical operations or unforecast environmental conditions.

For the modified, secondary and data link flight plans, this data should be updated (at a minimum) when the plan is created, deleted or modified.

5.2.12.2.1 ARINC 429 Trajectory Intent File Transfer Format

The ARINC 429 Trajectory Intent File Transfer Format is an encapsulation of the Ethernet Trajectory Intent File Transfer Format (5.2.12.2.2). The Ethernet file, including the header and footer, is encapsulated in a series of ARINC 429 words as outlined in the table below.

Table 5-3 ARINC 429 Trajectory Intent File Transfer Format

Word Type Bits 31, 30	Parameter	Bit 29	Format Bits	Label Bits 8-1		
Start Of Transmission 1 1		0	Bits 28-25 (Note 2) Bits 24-17 word count Bits 16-9 LDU sequence		232 for Active Intent (Note 3)	
Full Data Word 0 1 (frame start)	Version	Bits 29-13 Pad 0 Bits 12-9 Version/Compatibility (Note 4)			232	
Full Data Word 0 0	Trajectory File	Bits 29-9 Trajectory File Content			232	
Repeat Full Data Word group starting with frame start (01) as necessary to the end of trajectory. After 253 Full Data Words a new LDU must be started.						
End Of Transmission 1 1		1	Bits 28-26 Bits 25 Bits 24-9	0 0 0 final LDU = 1 CRC	232	

Notes:

- 1. Because of multiple users (sink) of this file, no RTS, CTS, ACK, or NAK protocol is provided. Receivers must be capable of handling the block file transfer when the transmitter sends it.
- 2. Start of transmission word, Bits 28-25 describe provisions for alternate content.
- 3. The following labels are used for different flight plan types:

Label	Flight Plan Type
232	Active
242	Modified
252	Secondary
262	Data Link

4. Version/Compatibility codes are as follows:

Bits 12-9	Version
0000	ARINC 702A-2 (2005)
0001	ARINC 702A-3 (2006) ¹
0010	ARINC 702A-4 (2014) ¹
0011	ARINC 702A-5 (2018)
	Reserved
1111	Reserved

Note

1. The definition of A429 Aircraft State and A429 Trajectory Intent Data is identical in ARINC 702A-3 and ARINC 702A-4.

3473

3474

3475

3476

3477

5.2.12.2.2

Ethernet Trajectory Intent File Transfer Format

The format of the trajectory data uses blocks containing a header, body, and footer. All elements shall be coded in big endian mode.

Table 5-4 Ethernet Trajectory Intent File Transfer Format

HEADER				
Data		Туре	Size (bits)	Comments
Start_of_block			8	Start of application block. Code hx53
Flight Plan typ	е	Integer	8	(Note 1)
	quence_number	Integer	8	From 1 to 255 (0 reserved for special use) (Note 9)
Header_size		Integer	8	Size in byte of the header including pad
Trajectory_file	_size	Integer	32	Size in byte of the file (does not include header nor footer)
Block_number		Integer	8	Number of application block starting with "0"
Number_of_bloom	ocks	Integer	8	Total number of application blocks for the transmitted file
Pad			16	hx0000
Block_size		Integer	32	Size in byte of application block including header and footer
Transition_altit	tude	Signed Integer	32	Initial climb transition altitude in feet (Note 6)
Climb_baro_se	etting	Float	32	Climb baro setting in hPa. (Note 6)
Transition_FL		Signed Integer	32	Descent transition FL in feet (converted by FL x 100) (Note 6)
Descent_baro_	_setting	Float	32	Descent baro setting in hPa (Note 6)
	Month	Integer	8	Timestamp which effectively represents the time of
Trajectory	Day	Integer	8	Timestamp which effectively represents the time at which this trajectory was first available for output on the Intent Bus. The Timestamp may be used to tell if
Timestamp	Year	Integer	16	successive transmissions of the trajectory are the same.
	Time (seconds)	Integer	32	Sumo.
Climb Speed S	Schedule CAS	Float	32	Climb Speed Schedule CAS in knots (Note 6)
Climb Speed Schedule MACH		Float	32	Climb Speed Schedule MACH (Note 6)
Cruise Speed Schedule CAS		Float	32	Cruise Speed Schedule CAS in knots (Note 6)
Cruise Speed Schedule MACH		Float	32	Cruise Speed Schedule MACH (Note 6)
Descent Speed Schedule CAS		Float	32	Descent Speed Schedule CAS in knots (Note 6)
Descent Speed Schedule MACH		Float	32	Descent Speed Schedule MACH (Note 6)

BODY						
Data	Туре	Size (bits)	Comments			
Geometry	Integer	3	Always included. (Note 2)			
Data Type	Integer	5	Always included. (Note 3)			
Characteristics	Integer	24	Always included. (Note 4)			
Path RNP	Float	32	Always included. (Note 6) RNP in NM.			
Point Latitude	Float	32	Always included. (Note 6) Latitude in degrees.			
Point Longitude	Float	32	Always included. (Note 6) Longitude in degrees.			
Turn Radius	Float	32	Only included if geometry is arc to point. (Note 6) Radius in NM.			
Turn Center Latitude	Float	32	Only included if geometry is arc to point. (Note 6) Latitude in degrees.			
Turn Center Longitude	Float	32	Only included if geometry is arc to point. (Note 6) Longitude in degrees			
Point Altitude	Signed Integer	32	Always included. See bit 1 and 2 of characteristics (Note 4, Note 5) for altitude reference. (Note 6) Altitude in feet.			
Point ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC)			
Point Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Mach if value between 0-10 CAS in kt if value greater than 10			
Point Wind Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Wind Speed in kt. Wind is the wind used in trajectory computation			
Point Wind Direction	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Wind Direction in degrees. Wind is the wind used in trajectory computation			
Point Name	String	m * 32	Only included as specified in Data Type Table. (Note 3, Note 6, Note 7)			
Ref Latitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Latitude in degrees.			
Ref Longitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Longitude in degrees.			
Altitude Constraint, Lower Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.			

5.0 STANDARD INTERFACES

Altitude Constraint, Upper Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.				
Earliest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).				
Latest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).				
Data Type Extension	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 8)				
Point Distance to Destination	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Distance in NM				
Point Fuel	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Fuel in lbs				
Point Temperature	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6? Temperature in °C				
Point Path Altitude	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 8) (Note 4, Note 5) for altitude reference. Note 6? Altitude in feet.				
Point Path Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 8) Note 6. Mach if value between 0-10 CAS in kt if value greater than 10				
Speed Constraint Type	Integer	8	0 = NONE 1 = AT or BELOW 2 = AT 3 = AT or ABOVE				
Speed Constraint Value	Integer	24	Only included as specified in Data Type Table. (Note 3, Note 8) Speed in kt				
RTA Constraint Type	Integer	8	0 = NONE 1 = AT or BEFORE 2 = AT 3 = AT or AFTER				
RTA Constraint Value	Integer	24	Only included as specified in Data Type Table. (Note 3, Note 8) RTA in seconds (UTC).				
FOOTER							
Data	Туре	Size (bits)	Comments				
End of block		8	End of application block. Code hx45				
Pad		24	hx000000				

478 Notes:

1. The following coding is used for different flight plan types:

34783479

Integer Value	Flight Plan Type
0	Reserved
1	Partial Portion of Active
2	Active
3	Secondary
4	Data Link
5	Modified/Temporary
6 - 255	Spare

2. Geometry codes are as followed:

Integer Value	Geometry
0	Not Used
1	Start Point 3D
2	Line to point 3D
3	Arc to point 3D
4 - 7	Spare

3. Data Type codes are as follows:

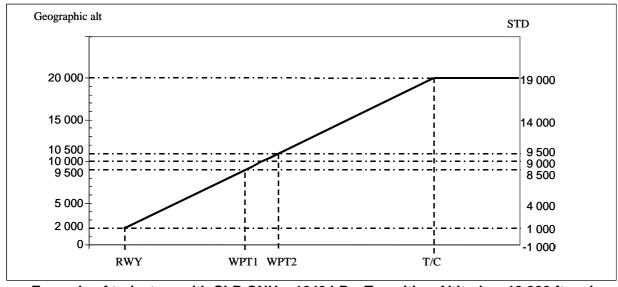
	J. Dala	Type codes	are as follows			
Data Type Integer Value	Data Includes ETA	Data Includes point speed, wind speed, wind direction	Data Includes point name, ref latitude, ref longitude	Data Includes Iower altitude constraint, upper altitude constraint	Data Includes earliest ETA, latest ETA	Data Includes extension field
0						
1	YES					
2	YES	YES				
3			YES			
4	YES		YES			
5	YES	YES	YES			
6			YES	YES		
7	YES		YES	YES		
8	YES	YES	YES	YES		
9	YES	YES	YES		YES	
10	YES	YES	YES	YES	YES	
11-15				SPARE		
16						YES
17	YES					YES
18	YES	YES				YES
19			YES			YES
20	YES		YES			YES
21	YES	YES	YES			YES
22			YES	YES		YES
23	YES		YES	YES		YES
24	YES	YES	YES	YES		YES
25	YES	YES	YES		YES	YES
26	YES	YES	YES	YES	YES	YES
27-31				SPARE		

3480

4. Characteristic codes are as follows:

Bits		c codes are as follows:
1-24	Characteristics	Description
1	Start of climb	The point where the trajectory will begin a climb segment following a level (intermediate or cruise) segment.
2	Top of climb	Where the trajectory arrives at the cruise flight level. There will be one top-of-climb point for each cruise flight level (step climbs).
3	Top of descent	The point where the trajectory begins a descent from the cruise flight level.
4	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.
5	Start of descent	A point where the trajectory will begin a descent segment following a level (intermediate or cruise) segment.
6	Runway	Indicates that the point corresponds to a runway.
7	Level-Off Start	A point in climb or descent where a (intermediate) level segment begins
8	Level-Off End	A point in descent where a (intermediate) level segment ends
9	Aircraft projection	Indicates that the point corresponds to the projection of the airplane's present position onto the current flight plan leg.
10	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.
11	Non-flyable	Indicates that the trajectory from the previous point to this one is unflyable.
12	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.
13	Current or next leg	Indicates that the segment belongs at least partially to the active or the next leg.
14	Reserved	
15	Reserved	
16	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics listed that are necessary to describe the vertical trajectory.
17	Baro ref 1	Note 5
18	Baro ref 2	Note 5
19	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.
20	Transition altitude or Transition level	The point where the trajectory reaches the transition altitude (in climb) or transition level (in descent).
21	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.
22	Reserved	
23	Reserved	
	Reserved	1

3485


5. Altitude Reference

Baro ref 1 (bit1)	Baro ref 2 (bit2)	Description
0	0	Reserved
0	1	The altitude is baro referenced for a segment in climb with baro correction = Climb_baro_setting (if available)
1	0	The altitude is baro referenced for a segment in descent with baro correction = Descent_baro_setting correction (if available)
1	1	The altitude is STD referenced

3486

Note that two codings may be used to code the same trajectory:

3487

3488 3489 3490

Example of trajectory with CLB QNH = 1049 hPa, Transition Altitude = 10 000 ft and Standard Temperature.

ARINC CHARACTERISTIC 702A - Page 104

5.0 STANDARD INTERFACES

Note: Geographic altitude is true height above the earth (tape measure), with Mean Sea Level as the "0" reference.

Geographic altitude is independent of atmospheric pressure or temperature.

				Codi	ng with "STD'	only		oding with "S Saro" referenc	
	Geo Altitude	Std Altitude (1013 hPa)	ATC Altitude	Altitudes coded in "format"	Baro_ref1	Baro_ref2	Altitudes coded in "format"	Baro_ref1	Baro_ref2
T/C	20 000	19 000	FL 190	19 000	1	1	19 000	1	1
WPT2	10 500	9 500	FL 095	9 500	1	1	9 500	1	1
Trans ALT	10 000	9 000	10 000 ft	9 000	1	1	10 000	0	1
WPT1	9 500	8 500	9 500 ft	8 500	1	1	9 500	0	1
RWY	2 000	1 000	2 000 ft	1 000	1	1	2 000	0	1
	0	-1 000	N/A	N/A	N/A	N/A	N/A	N/A	N/A

3496

3497 3498

3499 3500

3501 3502

3503

6. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.

- 7. Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bits unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).
- 8. Data Type Extension codes are as follows:

Bits 1-32	Parameter Provided (Y = 1, N = 0)
1	Point Distance to Destination
2	Point Fuel
3	Point Temperature
4	Point Path Altitude
5	Point Path Speed
6	Speed Constraint (Type & Value)
7	RTA Constraint (Type & Value)
8-32	Spare

9. For the transmission of a single trajectory, this number will remain unchanged for all application blocks (i.e. this number is attached to the trajectory file transmitted). This number is incremented when transmitting a new trajectory (i.e. upon refresh whether the trajectory has changed or not) and will return to 1 after 255. This will allow the

3509 3510 3511 3512		received to ensure that the blocks received correspond to the same trajectory. It should be noted that, for a single channel, this number could be identical but the Flight Plan Type different, depending on the implementation. The code 0 (zero) is reserved for special use.
3513	5.2.1	13 Reserved Ports for Growth
3514 3515		Four ARINC 429 output ports should be reserved for growth. These ports should be programmable for high-speed or low-speed operation.
3516	5.3	Discrete Inputs and Outputs
3517 3518 3519		Digital discrete inputs may be provided by discrete program pins or by coded digital configuration inputs, such as a configuration data base or Airplane Personality Module (APM). Discrete program pins are defined in Attachment 2-3.
3520	5.4	FMC/FMC Intersystem Communications
3521 3522 3523		FMC-to-FMC intersystem communications are not defined in this document. The formats and data content should be optimized by the system implementer to support system synchronization, including, but not limited to, the following:
3524 3525		Navigation Cross Check – used to monitor independent navigation calculation and improve the integrity of the navigation solution.
3526 3527		Data Entry Transfer – used to ensure that data entries and selections are reflected in all FMCs.
3528 3529		Radio Tuning Coordination – used to ensure that each FMC tunes a different set of radio sensors (if possible) to ensure navigation independence.
3530 3531		Status Information – used to synchronize mode of operation such as phase of flight, active flight plan leg, navigation status and other events.
3532 3533		Sensor Data – used to transfer data from some inputs, cross check discretes, confirm sensor faults, etc.
3534 3535		Crossloading of data bases and software - intersystem communications can be utilized to facilitate data loading in a dual FMS installation.
3536	5.5	Ethernet Interface (ARINC 646)
3537 3538 3539 3540		Two ARINC 646 Ethernet interfaces are provided for dual interface capability to peripheral devices such as ARINC 615A data loader, ARINC 744A printer, and ARINC 758 CMU. This should not be confused with ARINC 664 Ethernet operating in a switched network topology (typical).
3541		

6.0 CONTROL DISPLAY UNIT INTERFACE

3542	6.0	CONTROL DISPLAY UNIT INTERFACE
3543	6.1	General
3544 3545		The Control Display Unit (CDU) design should be a Multi-Purpose Control and Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A.
3546		COMMENTARY
3547 3548 3549 3550 3551 3552 3553 3554		It is expected that the MCDU installed in this configuration will provide a shared control and display resource used by both the FMC and the data link management unit. This is especially true where ATC data link communications are used. Depending on the chosen architecture for ATS Datalink (see Section 4.3.7), an ARINC 739A MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off menu style selection.
3555	6.2	Standby Navigation
3556 3557 3558 3559 3560 3561		In order to initialize the MCDU flight plan for standby navigation, the FMC should provide the MCDU with an ordered list defining the current active flight plan legs. Any leg whose type is not compatible with the MCDU flight plan, as described in ARINC 739, should be replaced with a flight plan discontinuity. This initialization should occur as required to ensure the MCDU has current data at the time of transition to standby navigation.
3562	6.3	Self-Test Self-Test
3563 3564 3565 3566		The MCDU may include a pilot confidence test, initiated by a control on the MCDU, which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces.
3567	6.4	MCDU Annunciators
3568 3569 3570 3571 3572		The ARINC 739 MCDU may have several annunciator lights located on the unit fron panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following:
3573 3574		 MSG (Message) – illuminates when FMC generated messages are displayed in the MCDU scratchpad
3575 3576		 DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode
3577		FAIL – illuminates in case of selected FMC failure
3578		OFST (Offset) – illuminates when a parallel offset is in use
3579 3580		 IND (Independent) – illuminates in case of independent dual system operation
3581 3582		 MENU – illuminates when the FMC is the active subsystem and a non- active subsystem requests MCDU access

6.0 CONTROL DISPLAY UNIT INTERFACE

3583	6.5	MCDU Alerting
3584 3585 3586 3587 3588 3589 3590		The MCDU may display a number of messages on the bottom line of the display known as the scratchpad. These messages may be of several types, indicating different priorities or originating conditions. Specific message definitions, classes, and display logic are dependent on overall flight deck display/annunciation design and operational philosophy, and are not specified in this document. The following paragraphs provide a description of typical message classes and logic design considerations.
3591 3592 3593 3594 3595		High priority messages, referred to as Alerting or Type I messages, are typically displayed in response to a significant status change or operational condition of the system. Lower priority messages may be referred to as Advisory, Type II, or Entry Error messages, and usually indicate a condition of lesser importance, or prompt the pilot to enter required data or correct a previous entry through the MCDU.
3596		Considerations for design of MCDU alerting include the following:
3597 3598		 Priority of scratch pad messages over other classes of messages and MCDU scratchpad alpha-numeric data entries
3599 3600		 Relationship of scratchpad messages to EFIS messages or other dedicated annunciators in the pilot's forward field of view
3601 3602		 Message clearing logic. Messages may be cleared by keyboard action, or automatically by a change in system status
3603		 Inhibition of MCDU messages during critical flight phases
3604		 Stack operation of multiple messages
3605	6.6	MCDU Color and Font Usage
3606 3607 3608 3609 3610		The MCDU may utilize variation in display color and character font size to convey additional information to the flight crew. Designers should consider priority of the displayed information and consistency with color usage on other display devices in defining MCDU color usage standards. Character font size may be used to indicate data attributes such as computed versus pilot-entered data.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

7.1 Introduction

The navigation data base stored in the ARINC 702A Advanced Flight Management Computer may, together with computed guidance data, be used to support the operation of a map display on an electronic horizontal situation indicator or other electronic display in the cockpit. This section of this Characteristic describes interface standards which will enable any manufacturer's FMC to be used with any manufacturer's electronic display. The term Electronic Flight Instrument (EFI) will be used to describe such displays generically.

7.2 FMC Outputs to EFI

Two high-speed ARINC 429 data output ports are provided on the FMC for instrumentation supply. All of the map background and position updating (dynamic) data for two EFIS will be supplied from both of these ports. In an installation comprising one FMC and two EFIS, the FMC's #1 Instrumentation Output should be connected to the captain's EFI, and its #2 Instrumentation output to the first officer's EFI. A possible interconnection scheme in an installation comprising two FMCs and two EFIS is to connect the #1 output of FMC #1 and the #2 output of FMC #2 to the captain's EFI and the #1 output of the FMC #2 to the #2 output of FMC #1 to the first officer's EFI.

3632 COMMENTARY

The foregoing data output arrangements permit one FMC to supply independently organized data to each of two EFIS. While the word formats of the individual data elements crossing the interface are not map scale dependent, the total number of data words needed to construct the map does vary with the map scale selected. The FMC can thus accommodate the generation of maps on both sides of the cockpit even when the captain and the first officer have selected different scales.

7.3 FMC Inputs from EFI

The FMC provides two low-speed ARINC 429 data input ports through which map mode, scale and symbol option selections are transferred from the EFIS to the FMC.

7.4 EFI Design Features

The following EFI design features impact the design of the FMC/EFI interface.

7.4.1 Map

The EFI will generate a dynamic map positioned relative to the aircraft. The map may be oriented with respect to aircraft track or heading.

7.4.2 Plan

The EFI may also generate a north-oriented static map positioned relative to reference points selected at the FMC Multi-Purpose Control Display Unit (MCDU). This may be used by the flight crew to verify the correct insertion of flight plan waypoints and other data.

7.4.3 HSI Mode 3654 3655 The FMC/EFI interface may provide outputs of desired track (course), track angle error, drift angle, and lateral and vertical deviations to support the generation of a 3656 HSI (rose mode) type of display. If provided, the lateral and vertical deviation 3657 3658 outputs should support the use of variable sensitivities (full scale deflection) in 3659 accordance with the requirements of the latest version of RTCA DO-283. 3660 7.4.4 Map Scales EFI map scales for map and plan modes will be a compatible subset of the ARINC 3661 3662 708A Weather Radar, which has selectable ranges, from 5 to 640 nautical miles of look-ahead. Additional low range capability may be required for incorporation of 3663 surface map display capability. 3664 7.4.5 **Map Projection** 3665 3666 The EFI will transform earth coordinate data received from the FMC into flat plane coordinates for the map display. The accuracy of this transformation will be such 3667 that the EFI can be used as a primary instrument for guiding the aircraft along 3668 3669 geodesic and circular transition flight paths, and provide accurate registration of planar weather radar data on the map display. The map projection method chosen 3670 is expected to permit worldwide EFI usage without latitude restrictions. 3671 3672 The EFI will also ensure that vector lines and conics which cross display editing 3673 boundaries are correctly terminated to ensure a continuous and accurate presentation on the display. The EFI will translate the map background to account 3674 for aircraft motion between map background data block transmissions based on 3675 3676 aircraft position and angular data received from the FMC and other systems. 3677 7.4.6 Option Selection 3678 The EFI will provide for symbology option selections, including weather radar data 3679 overlay on the map. These will allow the flight crew to declutter the map by 3680 selectively removing different categories of data, e.g., Navaids, Airfields, 3681 Geographic Reference Points, Waypoint Definition Data, etc. 7.4.7 Symbol Repertoire 3682 3683 Each category of data shipped from the FMC for display on the EFI will call for a 3684 distinctive symbol on the display. A list of potential data categories includes, but is not necessarily limited to, the following: 3685 3686 Active flight plan path 3687 Secondary flight plan path Modified flight plan path 3688 3689 Altitude Intercepts RTA symbology 3690 3691 Waypoints 3692 Waypoint data (altitude, speed, time) 3693 Origin and destination airports 3694 FIR boundaries 3695 Special reference points (e.g., T/C, T/D) 3696 Runway Data

ARINC CHARACTERISTIC 702A - Page 110

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3697		Marker Beacons
3698		Tuned Navaids
3699		 Navaids, including (co-Located VOR and TACAN (VORTAC), VOR,
3700		DME/ TACAN (high altitude and low altitude)
3701		VOR radials
3702		Airports
3703		Geographic reference points
3704		Non-directional beacons
3705		 Navigation data (e.g., sensor positions)
3706		 Terrain/obstacle data (MSA, MEA, MORA)
3707		Special use airspace
3708 3709 3710 3711		The data available for display in a particular installation will depend on the navigation data base content of the FMC. The above data categories fall into the following general symbology types, each of which requires different data parameters for definition via the FMC/EFI interface.
3712		Vectors (geodesic lines)
3713		Conics (circular arc lines)
3714		Upright symbols
3715		Rotated symbols
3716		Dynamic symbols
3717		Alpha/numeric data readouts
3718	7.4.8	EFI Data Conditioning
3719 3720		The EFI will perform any input data filtering needed to produce a smoothly changing map display, and will condition data used to update readouts on the display.
3721	7.4.9	Pointing Device
3722		[Deleted by Supplement 5]
3723	7.4.10	Surface Map Mode
3724		[Deleted by Supplement 5]
3725	7.5	FMC Design Features
	7.5	•
3726		The following FMC design features impact the design of the FMC/EFI interface.
3727	7.5.1	Flight Plans
3728 3729 3730 3731 3732 3733 3734		As part of its guidance function, the FMC will have flight plans assembled in its guidance buffers by pilot data entry or data link and selection through the MCDU. Such flight plans will define paths in the sky in two, three and ultimately four dimensions. Accurate representation of aircraft position with respect to the flight plan path is essential when the EFI is used as the primary instrument by which the flight crew controls the aircraft laterally and vertically with respect to a three-dimensional path, and along that path to meet assigned times at waypoints.
3735 3736 3737		Flight plan paths can be presented on the EFI as sequences of lines and conics representing geodesic paths between waypoints and curved transitions between path legs. Circular path legs consisting of DME arcs, RF legs, holding patterns, and

procedure turns can also be displayed. The FMC generates the necessary data to define four-dimensional flight plans in its guidance buffers. The guidance algorithms in the FMC calculate the position, speed and time differences between the aircraft state vector and the flight plan, and hence generate the guidance commands to the automatic flight control system (including the auto-throttle) to accomplish the flight plan.

The guidance data can be used to define the vector lines and conics needed to represent the flight plan path and other guidance symbology on the EFI.

7.5.2 Map Display Edit Areas

The FMC should, to the extent of the limitations imposed by the size of the data block (see Section 7.6.2), supply map background data for an area large enough to preclude the appearance of blank screen between transmissions. The EFI will limit the data displayed to that needed for the viewing window. This limit operation will include vector clipping to ensure the correct display of vector data and associated text.

7.5.3 Pointing Device

[Deleted by Supplement 5]

7.6 Interface Design

The design of the FMC/EFI interface is described in the following paragraphs.

7.6.1 General

Map background data and position updating and other dynamic data should be interleaved on the FMC instrumentation output buses. The FMC should specify the data type to be displayed and the associated positioning and rotation data. The EFI will control symbology color, size, brightness, blinking and related parameters, and transform map position data received from the FMC into screen coordinates.

The FMC should extract the information necessary for the map background from its navigation data base and flight plan buffers. Position data transmitted to the EFI should be in latitude and longitude coordinates. The types of data transmitted should respond to mode symbology options and display range selected by the flight crew on the EFI control panel. The order of the data on the bus should be in general accordance with the priority in which it is to be displayed.

The FMC/EFI dynamic data interface should be designed to permit updating of the map background data positions between background data block transmissions without the need for a hand-shaking relationship between the FMC and the EFI symbol generator. FMC/EFI dynamic data is defined in Attachment 4.

The FMC/EFI interface design and map background and dynamic data bus implementation should be such that the EFI can provide a valid map display if map background data transmissions are lost or invalid for periods of up to 10 seconds duration.

The display mechanization should accommodate a worldwide map projection. This may result in the need to provide additional and/or special software to project map data in the vicinity of the earth's poles.

3780	7.6.2	Map Data Updating
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790		The FMC should supply map data to the EFI in alternating 64-word blocks of background and dynamic data until a complete map background data block has been transmitted (see Attachment 6, Figure 2). The maximum size of the background data block should be programmable up to a maximum of 1023 words. After completion of the map background data transmission, the dynamic data should continue to be updated at a rate of 20 times per second (nominal) until a new map background data block is to be transmitted. Map background data should be updated and transmitted once every three seconds (nominal), except that when a mode, scale or option change is made on the EFI, the FMC should update and transmit new map background data within one second (maximum).
3791		COMMENTARY
3792 3793		Dynamic data update at a rate greater than 16 times per second is needed to avoid undesirable visual effects on the display.
3794	7.6.3	Background Data Prioritizing
3795 3796 3797 3798		To ensure that writing time or other internal data processing limitations in the EFI do not result in most wanted map background data not appearing on the display, the FMC should prioritize the information as follows. The EFI should truncate the data, if necessary, in the reverse order of this prioritization.
3799		1. Flight plan data
3800		a. Active flight plan
3801		b. Secondary flight plan
3802		c. Flight plan changes
3803		d. Waypoints
3804		e. Waypoint data
3805		f. Offsets
3806		g. Altitude intercepts
3807		h. Flight plan events
3808		i. RTA symbology
3809		Selected reference points
3810 3811		Runway Data (may be edited out in some flight phases but should not disappear because of truncation of the data stream)
3812		4. Origin and destination airports
3813		5. Tuned navaids
3814		6. Navigation data (may be dynamic rather than background)
3815		7. Non-flight plan navaids
3816		8. General reference points (position ordered)
3817	7.6.4	Background Data Editing
3818 3819 3820 3821		An example of the background data editing process is shown in Attachment 6, Figure 1. The FMC should, as a minimum, transmit data for the displayed area plus the area which could appear on the display as a result of aircraft translation and rotation between map background data updates.

3822 3823 3824 3825 3826		Because the density of data needed for terminal operations could saturate the display at the higher map scales and the volume of data within the edit area overload the EFI symbol generator buffers, the FMC should determine the amount of data it supplies to the EFI from an analysis of the map scale and mode selection information it receives from the EFI.
3827 3828 3829		Typically, the high map scales are used in cruise and the low map scales are used for terminal area operations. Therefore, only high altitude chart data need be transferred across the interface for the larger map scales.
3830	7.6.5	Mode Change Response
3831 3832 3833		The FMC should respond to a mode, scale or symbology option selection change received from the EFI such that the desired data transmission occurs within one second maximum.
3834		COMMENTARY
3835 3836		Airlines desire the overall (FMC and EFI) response time of a practical system to be less than two seconds.
3837	7.6.6	Map Translation and Rotation Data
3838 3839		The FMC should provide the following data to the EFI to support map projection and rotation functions:
3840		Map Projection
3841		Map background data
3842		 Map reference latitude (plan mode only)
3843		 Map reference longitude (plan mode only)
3844		Map mode/scale
3845		Map Position Data
3846		Aircraft present latitude
3847		Aircraft present longitude
3848		Map Rotation
3849		Map Position Data
3850		Track (true)
3851		Track (magnetic)
3852	7.6.7	Resolution
3853 3854 3855		The resolution of data used to position symbology on the display should be such that a change of binary state of the least significant bit of a position data word produces no visible step movement on the display.
3856	7.6.8	Interface Data Errors
3857 3858		The mechanization of the FMC/EFI interface should minimize the visual effects on the map display of occasional data errors.
3859	7.6.9	FMC-to-EFI Data Transfer Protocol
3860 3861		Because the FMC/EFI interface is dedicated to the transfer of data between the FMC and the EFI symbol generator(s), not all of the formatting and protocol

standards of ARINC Specification 429 will be applied. The following sections indicate where these departures from ARINC 429 have been made. Although not mentioned hereafter, the electrical and timing standards set forth in ARINC 429 for high-speed operation (100 kbps) and the standard broadcast protocol do apply.

7.6.9.1 Data Block Format

The first word of each 64-word data block should be a Start of Transmission word containing octal code 301 in its label field (bits 1 through 8) if the block contains map background data and octal code 303 in this field if the block contains dynamic data. Bits 9 through 13 of each map background data block Start of Transmission word should contain a binary number indicating the position of the block in the sequence of such blocks into which the transmission is divided. In addition, the first such Start of Transmission word of a transmission should contain in bits 20 through 29 a binary count of the total number of usable background data words to be contained in the transmission. (This count should not include Start of Transmission, End of Transmission, or fill-in words.) This field should contain binary zeros in all subsequent background data block Start of Transmission words of the transmission. All background data block Start of Transmission words should contain binary zeros in bits 14 through 19, while bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The Start of Transmission word of each dynamic data block should contain binary zeros in bits 9 through 29 and the control word code defined in Section 7.6.9.2 in bits 30 and 31. Bit 32 should be set to render word parity odd.

The last word of each 64-word map background data block should be an End of Transmission word containing octal code 302 in its label field. Bits 9 through 29 of this word should contain binary zeros. Bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The 62 usable data words of each map background data block should contain the positional, character, and control information used by the EFI to construct the map background. The label codes and word formats defined in Attachment 6 to this document should be used. Bits 30 and 31 should be encoded to indicate word type per Section 7.6.9.2 and bit 32 should be set to render word parity odd. If the final block of the transmission contains less than 62 useful words, it should be padded to this length with fill-in words (binary zeros in bit positions 1 through 32) and terminated with the End of Transmission word at position 64.

Dynamic data blocks should be interleaved with map background data blocks as described in Section 7.6.2. Dynamic data blocks should contain data words labeled and formatted per ARINC Specification 429.

COMMENTARY

The interleaving on the same bus of blocks of data labeled per ARINC 429 standards and blocks of data labeled per other standards requires the EFI to be capable of changing from one set of standards to the other at appropriate instants during the data transmissions. The EFI is expected to make use of the two Start of Transmission words and the background data block End of Transmission word in deciding when to make these changes.

7.6.9.2 Data Type Word Formats

The general word format defined in ARINC Specification 429 should be employed. Words transmitted by the FMC for which standards are defined in ARINC 429 should employ those standards and their ARINC 429 labels. Formats of symbol word groups, vector word groups, map reference word groups, and dynamic symbol words should differ from ARINC 429 standards in that the label field should be used to encode data type and the sign/status matrix to designate multiple word records within a data type group as follows:

В	IT	
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

Attachment 6 to this document sets forth the formats of these FMC-specific ARINC 429 words.

7.6.10 EFI-to-FMC Data Transfer

The data sent from the EFI to the FMC will consist of the map mode, scale and symbol option selections made by the flight crew at the EFI control panel. These selections will be encoded into one or more discrete words, as defined in ARINC Specification 429, Part 2 and in **ARINC Characteristic 725**: *Electronic Flight Instruments (EFI)*.

ARINC CHARACTERISTIC 702A - Page 116

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

3925	8.0 (COMMUNICATIONS MANAGEMENT UNIT INTERFACE
3926	8.1	General
3927 3928 3929		The Communications Management Unit (CMU) interface is defined in ARINC Characteristic 758: Communications Management Unit (CMU). Specific details are implementation dependent.
3930		

9.0 DATA BASE STORAGE CONSIDERATIONS

3931	9.0 [9.0 DATA BASE STORAGE CONSIDERATIONS				
3932	9.1	Introduction				
3933 3934 3935 3936 3937 3938 3939 3940		The FMC will contain a number of data bases and configuration tables which provide the data and definitions required to support the functions defined in Section 4.0. The data bases are stored in non-volatile memory and may be periodically updated or modified via the data loader. The individual data bases should be separately loadable. Designers should provide significant growth capacity when sizing data base memory storage. Mechanisms should be provided to ensure the integrity of the stored data and that the data cannot be modified by the crew or system.				
3941	9.2	Navigation Data Base				
3942 3943 3944 3945 3946 3947		The navigation data base is stored in non-volatile memory in two parts: a body of active permanent data which is effective until a specified expiration date and a set of data revisions or active data for the next period of effectivity. The effectivity dates for both sets of data are displayed for reference on the system's configuration definition page. Data base updates are to be accomplished at appropriate intervals by loading the next cycle via means of a data base loader.				
3948 3949 3950 3951		The navigation data base contains all current information required for operation in a specified geographic area. The data base should be consistent with the requirements of the latest version of RTCA DO-201A : Standards for Aeronautical Data. It may include the following data:				
3952		 VOR, ILS, DME, VORTAC, and TACAN navigation aids 				
3953		• NDBs				
3954		Waypoints				
3955		 Airports and runways 				
3956		 Standard Instrument Departures (SIDs) 				
3957		 Standard Terminal Arrival Routes (STARs) 				
3958		Enroute airways				
3959		 Charted holding patterns 				
3960		 Approaches (GNSS, ILS, VOR, NDB, LOC, LDA, etc., types) 				
3961		 Approach and departure transitions 				
3962		 Final Approach Segment (FAS) Data Block (for LP/LPV approaches) 				
3963		 Company route structure 				
3964		Terminal gates				
3965		 Alternates 				
3966		 Minimum Safe Altitude (MSA) 				
3967		 Grid Minimum Off-Route Altitudes (MORAs) 				
3968		 FIR/Upper Flight Information Region (UIR) Boundaries 				
3969		Special Use Airspace				
3970		Effectivity dates				

• Airline customized data

ARINC CHARACTERISTIC 702A - Page 118

9.0 DATA BASE STORAGE CONSIDERATIONS

3972 3973 3974			e is capable of supplying all of the information required for the complete flight plan for the selected route via MCDU data entry and
3975 9	.3	Airline Modifiable Info	ormation (AMI) Data Base
3976 3977 3978			odifiable Information data base is capable of defining those items individually selectable by the airline operator. These may include the
3979		• Pe	rformance management options
3980		• Air	port speed restrictions
3981		• AC	OC data link parameters
3982		• Ta	ilorable CDU page formats
3983		• Fli	ght test bus definitions
3984 3985			odifiable Information may also contain: special operations information, special airline specific messages, and/or parameters.
3986 9	.4	Performance Data Ba	se
3987 3988 3989 3990 3991 3992		provide the ve calculations (\$ data will cons of representin	nce data base will contain the data necessary to allow the FMS to ertical trajectory predictions (Section 4.3.3.2.1), performance Section 4.3.4), and vertical guidance (Section 4.3.3.2.2) functions. The ist of tables, coefficient for polynomials or any other convenient means by the data, but will not include any executable code. The data the Performance Data base may include elements of the following:
3993		• Ae	rodynamic Data
3994		0	Drag polars (clean and high-lift)
3995		0	Reynolds number drag correction
3996		0	Compressibility drag
3997		0	Trim drag (clean and high-lift)
3998		0	Windmill drag
3999		0	Spoiler/speed brake drag
4000		0	Buffet onset mach number/lift coefficients
4001		0	Stall speeds (clean and high-lift)
4002		0	Bank angle limits
4003		• Pro	opulsion Data
4004 4005		0	Data to compute each thrust limit (Takeoff, Max Continuous, Max Cruise)
4006		0	Data to compute de-rate and flex take-off rating
4007		0	Bleed effects
4008		0	Idle thrust setting
4009 4010		0	Relationship between thrust, fuel flow, ram drag and thrust setting parameter (EPR or N1)
4011		• Pe	rformance Data
4012		0	Economy climb speed data (all-engine and one engine inoperative)
4013		0	Economy cruise speed data (all-engine and one engine inoperative)

9.0 DATA BASE STORAGE CONSIDERATIONS

4014 4015		 Economy descent speed data (all-engine and one engine inoperative)
4016		Drift-down speed data
4017		Hold speed data
4018		Maximum endurance speed data
4019		 Long Range Cruise (LRC) speed data
4020		Maximum angle climb speed data
4021		 Maximum rate of climb speed data
4022		 Flap/slat/gear placard speeds
4023		 Maximum altitude (all engine and one engine inoperative)
4024		 Take-off time, fuel, distance data
4025		 Go-around time, fuel, distance data
4026		 Alternate flight plan time, fuel, distance data
4027		 Optimum altitude/optimum step weight data
4028		 Relationship between fuel weight/C.G.
4029		Take-off/approach data
4030		 Data to compute V1, VR, and V2
4031		 Approach speed data
4032		 Climb-out speed data
4033 4034 4035 4036 4037		This is not an all-inclusive list. Some of the data in the list may not be applicable to a specific airplane/system and some additional data may be necessary in some applications, particularly as additional capability is added to the system. The format of the data is not specified in this document, but manufacturers are encouraged to use a standard format that will allow use of the FMS across multiple airplane types.
4038 4039 4040 4041		Data for the Performance data base is developed from data supplied by the airplane manufacturer, and may include off-line data reduction and modeling before loading into the FMS. It should be consistent with the data contained in that airplane's Airplane Flight Manual (AFM) and Flight Crew Operations Manual (FCOM).
4042 4043 4044 4045 4046		The data base should contain sufficient data to allow identification of its part number and to which airplane model(s) it is applicable. Loading and use of the data in the FMS should include positive means of verifying that the appropriate data has been loaded, and that data pertaining to a particular model airplane is not being used on an airplane to which it does not apply.
4047 4048		A particular data base may contain data for more than one airplane model. In this case, positive means to preclude the wrong data being used should be provided.
4049	9.5	Magnetic Variation Data Base
4050 4051 4052 4053		The magnetic variation data base will support the determination of magnetic variation for any Lat/Long, Navaid, Waypoint, Airport, etc. The format of the data stored in this data base is a manufacturer option, but should be flexible to accommodate periodic update of the magnetic variation data reference.
4054		COMMENTARY
4055 4056		The use of current MagVar throughout the flight deck is desired to minimize confusion. However, for those aircraft configurations which

ARINC CHARACTERISTIC 702A - Page 120

4081

9.0 DATA BASE STORAGE CONSIDERATIONS

4057 4058 4059 4060		cannot be updated, system designers should give consideration to providing a means to harmonize MagVar tables with other aircraft equipment, such as the inertial reference system, to provide a consistent display of magnetic bearings in the flight deck.
4061	9.6	Terrain and Obstacle Data
4062		[Deleted by Supplement 5]
4063	9.7	Airport Surface Map Data
4064		[Deleted by Supplement 5]
4065	9.8	Configuration Data Base
4066 4067		The configuration data base defines parameters specific to an individual system application or installation.
4068		COMMENTARY
4069 4070		These items are type certification driven. Changes to these items will require re-certification.
4071		These items may include the following:
4072		 Tables containing ATS data link parameters
4073		 Transport and network protocols
4074		 FMS configuration
4075		 Available functional options
4076		 Interface variations
4077		 CMU specific configuration variations
4078		 Optional maintenance configurations
4079		 Weight variants definitions
4080		

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4082	10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS
4083	10.1 General Discussion
4084 4085 4086	Since the FMC may be the primary means of navigation on some aircraft, the utmost attention should be paid to the need for reliability and maintainability in all phases of system design, production, and installation.
4087	COMMENTARY
4088 4089 4090 4091 4092 4093 4094	It is also important to remember that all aspects of the testing program (BITE, ramp, and shop testing) contribute to the reliability and profitable operation of a system by the end users. The ability of the program to identify faults, and facilitate their repair, will affect maintainability and overall reliability. Attention to a close relationship between aircraft faults and shop testing will help in reducing the number of unscheduled removals.
4095	10.2 Fault Detection and Reporting
4096	10.2.1 General
4097 4098	The FMC should support at least one of the following Built-In Test Equipment (BITE) capabilities defined by the AEEC:
4099	ARINC Report 624: Design Guidance for Onboard Maintenance System
4100 4101	 ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment
4102 4103 4104	MCDU maintenance pages should contain a fault log formatted in accordance with ARINC Report 624 or ARINC 604. This maintenance log should be able to be printed on the cockpit printer via selection on the MCDU.
4105	COMMENTARY
4106 4107	The option used should be compatible with the aircraft in which the FMC will be installed.
4108 4109 4110	BITE in the FMC should be capable of detecting at least 95% of the faults or failures which can occur within the FMS, and as many faults as possible associated with other interfaces.
4111 4112 4113	Where possible, optional functions present in the FMS that are not activated by the operator should be excluded from all on-board testing. The intent is to eliminate unnecessary removals.
4114 4115 4116	BITE should closely relate to bench testing. Error modes encountered on the aircraft should be reproducible in the shop. Error messages recorded by BITE should assist bench testing.
4117 4118	No failure occurring in the BITE subsystem should interfere with the normal operation of the FMC.
4119	10.2.2 Self-Monitoring
4120 4121 4122	The self-contained fault detection should incorporate nonvolatile memory and logic to identify true hardware faults based on the historical trends. This includes a flight hour monitor as well as air-ground logic to monitor installed time on the aircraft.
4123	

4165

4166

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4124 10.2.3 Debugging Tools 4125 FMC complexity is such that it may sometimes exhibit operational anomalies for which the root cause(s) are difficult to identify. To provide for quick in-service 4126 observation/evaluation of the FMC software anomalies, the FMC should provide 4127 password accessible MCDU pages for BITE, view latched fail code(s), memory 4128 contents, etc. This feature would be usable by supplier/operator engineers as a 4129 debugging tool. Access to these pages should be categorized and leveled for line 4130 4131 maintenance or engineering use, as appropriate. This should be a certified 4132 configuration so as to allow engineering evaluations in-flight during revenue operations of the system. 4133 4134 10.2.4 Failure Rate Monitor 4135 Reasonable failure rate thresholds for some significant faults should be incorporated 4136 such that the FMC would optionally set a flag when these thresholds are exceeded. 4137 **COMMENTARY** 4138 Some hardware faults that would be reset during a ground check or 4139 power interruption may not be repeated immediately. This condition 4140 may allow the unit to remain on board the aircraft. A threshold exceedance monitor would detect and set the flag when one of these 4141 4142 transient faults exceeds an acceptable rate of occurrence. Some airlines may choose to deactivate such a monitor. 4143 4144 10.2.5 Fault Messaging 4145 The FMC will have a go/no-go light or indicator indicating overall unit performance ability. BITE fault messages (MCDU display, code lights or otherwise) will be as 4146 4147 descriptive as possible (English language fault descriptions). When an external or internal fault occurs, the FMC will alert maintenance personnel to the status of the 4148 4149 specific system components, either as a displayed list, or on request. 4150 System faults should be classified based on their effect on the system as debilitating 4151 or non-debilitating. Fault displays should also indicate the most probable correction 4152 of the problem. 4153 A system debilitating failure is any non-recoverable failure which prohibits the FMC from performing any basic required function: navigation, performance computations, 4154 flight planning, etc. Cockpit and/or LRU failure annunciation is provided for a system 4155 4156 debilitating failure. A system debilitating failure will be logged in BITE memory. If 4157 recoverable, crew action may be necessary. A non-system-debilitating failure is any BITE-detected failure which is auto-4158 recoverable within specified/acceptable operational limitations (of short duration and 4159 4160 requiring no crew action for recovery) and which has no adverse impact on the required functions of the FMC. A non-system-debilitating failure will be logged in 4161 BITE memory, but need not be cockpit and/or LRU annunciated. 4162 4163 10.3 Ramp Maintenance 4164 10.3.1 Return to Service Testing

When an FMC is installed on an air transport aircraft, some form of end to end

testing should be available for two primary reasons:

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4167 To provide an operational verification of the system function prior to return to service. 4168 4169 To reduce unnecessary removals of the FMC when the fault was actually in another part of the system. 4170 4171 As an end-to-end test, the procedure should verify integrity of the LRU as well as 4172 interfaces with other systems. This maintenance test will provide test values on the digital outputs with the appropriate status matrix code for the test condition as 4173 defined in ARINC Specification 429. This test can also exercise internal monitoring 4174 and diagnostic routines and provide test formats on the MCDU and on a 4175 multifunction display. 4176 4177 **COMMENTARY** 4178 The airlines prefer test results to indicate the probable cause of failure. Emphasis on end to end system testing will lead to a 4179 desirable increase in the MTBUR, especially for removals that were 4180 4181 not related to LRU faults. 4182 Means should be provided for initiating this maintenance test either through an 4183 externally supplied discrete input or an MCDU prompt. The FMC may also have the capability, via a switch on the front of the FMC, for initiating the maintenance test. If 4184 this switch is provided, an indicator should also be mounted on the FMC front panel 4185 4186 to show the result of the test. 4187 10.3.2 Programmable Data Bus Interface 4188 The system should provide output data to be recorded for analysis of system 4189 performance, including in-service operation. A list of available parameters, scaling, and label assignments should be determined by the manufacturer and made 4190 available for selection by the aircraft operator as required. 4191 4192 10.3.3 Data Loading It is expected that operational software (manufacturer and airline controlled software 4193 4194 or tables) and data bases (e.g., navigation data, performance data) will be on-board loadable. The FMC should accept this data from a data loader in accordance with 4195 4196 ARINC 615 or ARINC 615A. The standard interface from the data loader to the FMC is high-speed ARINC 429. The return interface to the data loader is low-speed 4197 4198 ARINC 429. The FMC should also support high-speed data loading via Ethernet interface defined in ARINC 615A. 4199 4200 **COMMENTARY** 4201 It is recognized that some minimal level of boot software must be 4202 non-loadable to provide the basic loading interface. The FMC should provide compatibility testing to ensure that loadable software and 4203 4204 data are compatible with the FMC hardware configuration. Mechanisms should be 4205 provided to ensure the integrity of the loaded data.

All loadable software and data bases should be selectively cross loadable between

two FMCs in a dual installation via the intersystem bus.

4206

4207

4208

10.3.4 Cross Loadable Software

ARINC CHARACTERISTIC 702A - Page 124

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4209	COMMENTARY
4210 4211 4212 4213	The objective of the cross-loading capability is to reduce loading times. Since mixed cases of cross loadable and non-cross loadable software present many problems, operators prefer that all of the software be cross loadable.
4214	10.3.5 Data Loading Fault Recovery
4215 4216 4217 4218	In all cases, when loading or cross loading software or data, the procedure must provide a method for recovering from faults. The FMC should be able to abort a software or data base loading process without a major disruption of the system (disruption requiring removal of the FMC from the aircraft).
4219	10.4 Provisions for Automatic Test Equipment
4220	10.4.1 General
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230	To enable Automatic Test Equipment (ATE) to be used in the bench maintenance, internal circuit functions not available at the unit service connector and considered by the equipment manufacturer necessary for automatic test purposes may be brought to pins on an auxiliary connector of a type selected by the equipment manufacturer. This connector should be fitted an adequate number of contacts needed to support the ATE functions. The connector should be provided with a protective cover suitable to protect these contacts from damage, contamination, etc. while the unit is installed in the aircraft. The manufacturer should observe ARINC Specification 600 for unit projections, etc., when choosing the location for this auxiliary connector.
4231	10.4.2 ATE Testing
4232 4233 4234 4235	The FMC should be ATE testable and should have a test program written using the ATLAS language specified in ARINC Specification 626 : Standard ATLAS Subset for Modular Test. Development of the test program set should consider and apply the quality characteristics set forth in ARINC Specification 625.
4236	COMMENTARY
4237 4238 4239	The airlines desire that the ATLAS test procedure be demonstrated to execute without modification on Automatic Test Systems defined in ARINC Specification 608A: Automatic Test Equipment Standards.
4240	

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

ATTACHMENT 1 FLIGHT MANAGEMENT SYSTEM

4241

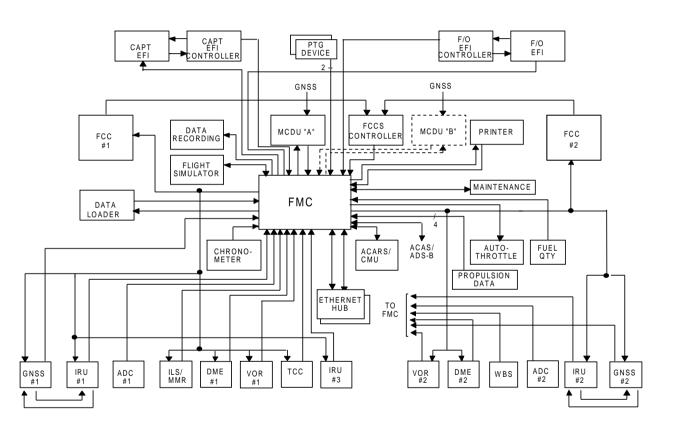
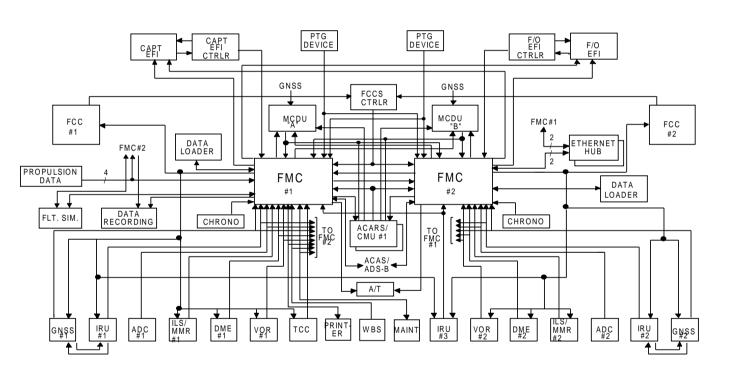
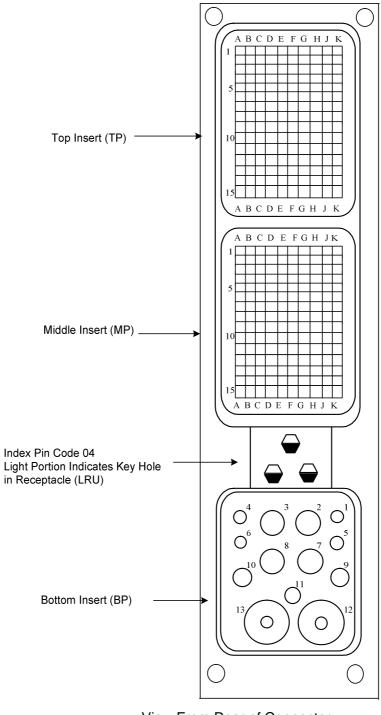


Figure 1-1 – Configuration 1 – Single FMC Installation and Configuration 2 – Single FMC/Dual CDU Installation

4245

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM




Figure 1-2 - Configuration 3 - Dual FMC CDU Intallation

4246 4247

ATTACHMENT 2 FMC CONNECTOR AND INTERWIRING

4249 ATTACHMENT 2 ATTACHMENT 2-1 FMC CONNECTOR POSITIONING

4250

4251

View From Rear of Connector

4253 ATTACHMENT 3 ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	٦а	TP1A	ARINC 711 VOR #1
ARINC 429 Input] A B	TP1B	ARINC 711 VOR #1
Spare	_	TP1C	
ARINC 429 Input	٦А	TP1D	ARINC 709 DME #1
ARINC 429 Input	В	TP1E	ARINC 709 DME #1
Spare	_	TP1F	
ARINC 429 Input	ŢΑ	TP1G	ARINC 710 ILS
ARINC 429 Input	J₿	TP1H	ARINC 710 ILS
Spare		TP1J	
Discrete Input		TP1K	Oleo Strut Switch
ARINC 429 Output	ŢΑ	TP2A	ARINC 758 CMU
ARINC 429 Output	J₿	TP2B	ARINC 758 CMU
Spare		TP2C	
ARINC 429 Output	ŢΑ	TP2D	Trajectory Bus
ARINC 429 Output	∫В	TP2E	Trajectory Bus
Spare	_	TP2F	
ARINC 429 Output	Α	TP2G	Spare
ARINC 429 Output	ΙВ	TP2H	Spare
Spare		TP2J	
Spare		TP2K	
ARINC 429 Input	ŢΑ	TP3A	ARINC 704A IRS
ARINC 429 Input	JB	TP3B	or ARINC 705 AHRS #1
Spare		TP3C	
ARINC 429 Input] A B	TP3D	ARINC 743A/755 GNSS #1
ARINC 429 Input	J B	TP3E	ARINC 743A/755 GNSS #1
Spare	٦.	TP3F	
ARINC 429 Input	A	TP3G	ARINC 737 Weight and Balance System
ARINC 429 Input	JB	TP3H	ARINC 737 Weight and Balance System
Spare Discrete Input		TP3J TP3K	Self Test Switch
·			
Spare		TP4A	
Spare		TP4B TP4C	
Spare ARINC 429 Output	٦٨	TP4C TP4D	Spare
ARINC 429 Output] A B	TP4E	Spare
Spare	7 0	TP4F	Οραιο
ARINC 429 Input	ŢΑ	TP4G	ARINC 762 TAWS
ARINC 429 Input	B	TP4H	ARINC 762 TAWS
Spare		TP4J	7
Discrete Input		TP4K	Mag/True Input #1
ARINC 429 Input	ПΑ	TP5A	EFI Data Source #1
ARINC 429 Input] A B	TP5B	EFI Data Source #1
Spare		TP5C	2 23.3 504.00 // 1
ARINC 429 Input	٦А	TP5D	ARINC 611 Fuel Quantity Data Source
ARINC 429 Input] A B	TP5E	ARINC 611 Fuel Quantity Data Source
	_ B		
	ΤВ	TP5F	·
Spare	_		ARINC 703 TCC
-] A] B	TP5F	

2 1 SOURCE/SINKS **FUNCTION FMC PIN NOTES** Discrete Input TP5K MCDU Select Switch 3 TP6A Spare TP6B Spare TP6C Spare ARINC 429 Output TP6D Spare В ARINC 429 Output TP6E Spare TP6F Spare ARINC 429 Output TP6G ARINC 739A Offside MCDU ∫в ARINC 429 Output TP6H ARINC 739A Offside MCDU TP6J Spare TP6K Reserved Spare Discrete Input ARINC 429 Input TP7A Propulsion Data В ARINC 429 Input TP7B Source #3 TP7C Spare ARINC 429 Input TP7D ARINC 706 ARINC 429 Input TP7E Air Data System #1 TP7F Spare TP7G ARINC 701 ARINC 429 Input Јв ARINC 429 Input TP7H Glare Shield Controller TP7J Spare Discrete Input TP7K Spare TP8A Spare TP8B Spare TP8C TP8D Spare Spare TP8E Spare TP8F Spare TP8G TP8H Spare Spare TP8J Spare TP8K ARINC 429 Input TP9A ARINC 739A Onside MCDU В ARINC 429 Input TP9B ARINC 739A Onside MCDU TP9C Spare ARINC 429 Input TP9D ARINC 615 Data Loader 6 ARINC 429 Input ⅃в TP9E ARINC 615 Data Loader Discrete Input TP9F Data Utilization ARINC 429 Output TP9G ARINC 429 Output Jв TP9H Devices Spare TP9J Discrete Input TP9K Man/Autotune Input #1 4 TP10A Spare Spare TP10B Spare TP10C Spare TP10D Spare TP10E Spare TP10F Spare TP10G Spare TP10H Spare TP10J Spare TP10K

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Output	ŢΑ	TP11A	EF/Instruments
ARINC 429 Output	∫В	TP11B TP11C	EF/Instruments
Spare ARINC 429 Input	ĪΑ	TP11D	ARINC 739A Offside MCDU
ARINC 429 Input	JB	TP11E	ARINC 739A Offside MCDU
Spare ARINC 429 Output	JΑ	TP11F TP11G	ARINC 615 Data Loader 6
ARINC 429 Output ARINC 429 Output	∫ B	TP11H	ARING 615 Data Loader ARING 615 Data Loader
Spare		TP11J	
Discrete Input		TP11K	Man/Autotune Input #2 4
Spare		TP12A	
Spare Spare		TP12B TP12C	
Spare Spare		TP12C	
Spare		TP12E	
Spare		TP12F	
Spare Spare		TP12G TP12H	
Spare		TP12J	
Spare		TP12K	
ARINC 429 Output	ŢΑ	TP13A	Other ARINC 702A FMC
ARINC 429 Output	∫В	TP13B	Other ARINC 702A FMC
Spare ARINC 429 Output	٦٨	TP13C TP13D	ARINC 739A Onside MCDU
ARINC 429 Output ARINC 429 Output	A B	TP13E	ARINC 739A Onside MCDU
Spare		TP13F	
ARINC 429 Output] A	TP13G	Test Data Recording
ARINC 429 Output Spare	ЈВ	TP13H TP13J	Test Data Recording
Discrete Output		TP13K	Alert Annunicator
Spare		TP14A	
Spare		TP14B	
Spare	_	TP14C	
Ethernet Interface #1] A B	TP14D	615A Data Loader, 758 CMU,
Ethernet Interface #1	Ίв	TP14E	and/or 744A Printer via Ethernet Hub
Ethernet Interface #1]c	TP14F	615A Data Loader, 758 CMU,
Ethernet Interface #1	D	TP14G	and/or 744A Printer via
Ethernet Interface #1	JE	TP14H	Ethernet Hub
Spare Spare		TP14J TP14K	
Spare		1 F 14N	

			1 2	
FUNCTION		FMC PIN		TES
	- .			
ARINC 429 Input	A	TP15A	ARINC 758 CMU #1	
ARINC 429 Input	JB	TP15B	ARINC 758 CMU #1	
Spare	٦.	TP15C	A D IN 10 TO 4 A 1 D O	
ARINC 429 Input	A	TP15D	ARINC 704A IRS or	
ARINC 429 Input	J B	TP15E	ARINC 705 AHRS #3	
Spare	٦,	TP15F	D 1: D: 0 "1	
ARINC 429 Input	A	TP15G	Propulsion Data Source #1	
ARINC 429 Input	J₿	TP15H	Propulsion Data Source #1	
Spare Output		TP15J		
Discrete Output		TP15K		
ARINC 429 Input] A	MP1A	Propulsion Data	
ARINC 429 Input	J₿	MP1B	Source #4	
Spare	_	MP1C		
ARINC 429 Input	A	MP1D	ARINC 711 VOR #2	
ARINC 429 Input	ΙВ	MP1E	ARINC 711 VOR #2	
Spare	_	MP1F		
ARINC 429 Input	A	MP1G	Other ARINC 702A FMC	
ARINC 429 Input	JВ	MP1H	Other ARINC 702A FMC	
Spare		MP1J	CDI Code Input #4	
Discrete Input		MP1K	SDI Code Input #1 5	
ARINC 429 Output] A	MP2A	Autothrottle System	
ARINC 429 Output	JВ	MP2B	Autothrottle System	
Spare		MP2C		
ARINC 429 Output	ΤА	MP2D	ARINC 624 Maintenance Syster	n
ARINC 429 Output	∫В	MP2E	ARINC 624 Maintenance Syster	n
Spare	_	MP2F		
ARINC 429 Output	A	MP2G	ARINC 740/744A Printer	
ARINC 429 Output	ЈВ	MP2H	ARINC 740/744A Printer	
Spare		MP2J		
Discrete Input		MP2K		
ARINC 429 Input	ŢΑ	MP3A	ARINC 704A IRS or	
ARINC 429 Input	」в	MP3B	ARINC 705 AHRS #2	
Spare	_	MP3C		
ARINC 429 Input	7 A	MP3D	ARINC 731 Digital Clock	
ARINC 429 Input	Jв	MP3E	ARINC 731 Digital Clock	
Spare		MP3F		
ARINC 429 Input] A B	MP3G	ARINC 724B ACARS	
ARINC 429 Input	JB	MP3H	ARINC 724B ACARS	
Spare		MP3J		
Discrete Input		MP3K	SDI Code Input #2 5	
Spare		MP4A		
Spare		MP4B		
Spare		MP4C		
ARINC 429 Output] A	MP4D	Spare	
ARINC 429 Output	JB	MP4E	Spare	
Spare		MP4F		
ARINC 429 Input	7 A	MP4G	ASAS Bus	
ARINC 429 Input	JВ	MP4H	ASAS Bus	
Spare		MP4J		
Spare		MP4K		

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input ARINC 429 Input Spare] A B	MP5A MP5B MP5C	Propulsion Data Source #2
ARINC 429 Input ARINC 429 Input Spare	J A B	MP5D MP5E MP5F	ARINC 706 Air Data System #2
ARINC 429 Input ARINC 429 Input Spare	∫ A B	MP5G MP5H MP5J	ARINC 740/744A Printer ARINC 740/744A Printer
Discrete Input		MP5K	SDI Code Input #3 5
ARINC 429 Input ARINC 429 Input Spare] A B	MP6A MP6B MP6C	ARINC 624 Maintenance System ARINC 624 Maintenance System
ARINC 429 Input ARINC 429 Input Spare] A B	MP6D MP6E MP6F	ARINC 758 CMU #2 ARINC 758 CMU #2
ARINC 429 Input ARINC 429 Input Spare Discrete Output] A B	MP6G MP6H MP6J MP6K	ARINC 724B ACARS #2 ARINC 724B ACARS #2
ARINC 429 Input ARINC 429 Input Spare] A B	MP7A MP7B MP7C	ARINC 743A/755 GNSS #2 ARINC 743A/755 GNSS #2
ARINC 429 Output ARINC 429 Output Spare] A B	MP7D MP7E MP7F	Data Utilization Devices
ARINC 429 Input ARINC 429 Input Spare Discrete Output] A B	MP7G MP7H MP7J MP7K	ARINC 709 DME #2 ARINC 709 DME #2
ARINC 429 Input ARINC 429 Input Spare] A B	MP8A MP8B MP8C	Spare Spare
ARINC 429 Input ARINC 429 Input Spare] A B	MP8D MP8E MP8F	Spare Spare
ARINC 429 Input ARINC 429 Input Spare Spare] A B	MP8G MP8H MP8J MP8K	Spare Spare
ARINC 429 Output ARINC 429 Output Spare] A B	MP9A MP9B MP9C	ARINC 724B ACARS Data Link ARINC 724B ACARS Data Link
ARINC 429 Input ARINC 429 Input Discrete Input] A B	MP9D MP9E MP9F	EFIS EFIS
ARINC 429 Output ARINC 429 Output Spare Spare] A B	MP9G MP9H MP9J MP9K	EFI Instrumentation EFI Instrumentation

		1 2
FUNCTION	FMC PIN	SOURCE/SINKS NOTES
Spare	MP10A	
Spare	MP10B	
Spare	MP10C	
Ethernet Interface #2 7 A	MP10D	615A Data Loader, 758 CMU,
Ethernet Interface #2 B	MP10E	and/or 744A Printer via
Ethernet Interface #2 7 C	MP10F	Ethernet Hub 615A Data Loader, 758 CMU,
Ethernet Interface #2 D	MP10G	and/or 744A Printer via
Ethernet Interface #2 E	MP10H	Ethernet Hub
Spare	MP10J	Linemerriub
•	MP10K	
Spare	WIPTUR	
Discrete Input	MP11A	Data Loader Interface 6
Discrete Input	MP11B	Connector
Discrete Input	MP11C	Reserved for Application-
Discrete Input	MP11D	Unique Discrete Inputs
Discrete Input	MP11E	Reserved for Application-
Discrete Input	MP11F	Unique Discrete Inputs
Discrete Input	MP11G	Reserved for Application-
Discrete Input	MP11H	Unique Discrete Inputs
Discrete Input	MP11J	Reserved for Application-
Discrete Input	MP11K	Unique Discrete Inputs
Spare	MP12A	
Spare	MP12B	
Spare	MP12C	
Spare	MP12D	
Spare	MP12E	
Spare	MP12F	
Spare	MP12G	
Spare	MP12H	
Spare	MP12J	
Spare	MP12K	
Discrete Input	MP13A	Reserved for Application-
Discrete Input	MP13B	Unique Discrete Inputs
Discrete Input	MP13C	Reserved for Application-
Discrete Input	MP13D	Unique Discrete Inputs
Discrete Input	MP13E	Reserved for Application-
Discrete Input	MP13F	Unique Discrete Inputs
Discrete Input	MP13G	Reserved for Application-
Discrete Input	MP13H	Unique Discrete Inputs
Discrete Input	MP13J	Reserved for Application-
Discrete Input	MP13K	Unique Discrete Inputs
Spare	MP14A	
Spare	MP14B	
Spare	MP14C	
Spare	MP14D	
Spare	MP14E	
Spare	MP14E MP14F	
Spare	MP14G	
Spare	MP14H	
Spare	MP14J	
Spare	MP14K	

		1 2
FUNCTION	FMC PIN	SOURCE/SINKS NOTES
Discrete Input	MP15A	Reserved for Application-
Discrete Input	MP15B	Unique Discrete Inputs
Discrete Input	MP15C	Reserved for Application-
Discrete Input	MP15D	Unique Discrete Inputs
Discrete Input	MP15E	Reserved for Application-
Discrete Input	MP15F	Unique Discrete Inputs
Discrete Input	MP15G	Reserved for Application-
Discrete Input	MP15H	Unique Discrete Inputs
Reserved	MP15J	' '
Reserved	MP15K	
115 Vac Primary Power (Hot) BP1		115 Vac 5 A C/B
Spare	BP2	
Spare Spare	BP3	
Spare	BP4	
Spare	BP5	
Spare Spare	BP6	
115 Vac Primary Power (Cold)	BP7	AC Ground
Chassis Ground	BP8	DC Ground
Spare	BP9	
Spare	BP10	
Spare	BP11	
Spare	BP12	
Spare	BP13	

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

4255 ATTACHMENT 4 ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD 4256 INTERWIRING

4257 1. Standard Interwiring

The standard interwiring shown in this Attachment is for a single FMC installation comprised of one FMC and one CDU. For the sake of completeness, however, wiring is also shown to enable the FMC to operate with a second CDU and one for a cross-talk bus between this FMC and another one.

Because of the variety of interwiring characteristics of aircraft installations utilizing the 702A FMC, this attachment does not standardize detailed interwiring in the traditional sense. Connector pin assignments are standardized with respect to input/output signal types only. While nominal signal functions are provided, manufacturers are encouraged to utilize programmable I/O design approaches which allow for variations in aircraft interfaces and installations.

4268 2. Shield Grounds

Digital data bus shield grounds should be grounded to aircraft structure at both ends.

3. Off-Side CDU Enable Discrete

This discrete tells the FMC which CDU has control of data entry in dual CDU installations in which either may perform this function. When an open circuit is sensed by the FMC, its prime CDU has control. When the wire is connected to ground by means of a cockpit-located switch, or equivalent, the other CDU has control.

4. FMC Master/Slave and Manual Autotune Discrete

The Master/Slave discrete may be used in dual FMC installations to tell the FMCs which unit should be considered as master for dual system synchronism and redundancy management purposes as described in Section 3.5. The manual/autotune discretes provide information to the FMCs on VOR/DME turning status. When in autotune mode, these radios accept tuning commands from the FMC.

5. Source/Destination Identifier (SDI) Encoding

Pins MP1K, MP3K, and MP5K are assigned for encoding the location of the FMC in the aircraft (i.e., system number) per Section 2.1.4 of ARINC Specification 429. If the SDI function is used, the following encoding scheme should be employed, the pins designated being either left open circuit or connected, on the aircraft-mounted half of the connector, to pin MP5K. The wiring of these pins should cause bit numbers 9 and 10 of each digital word transmitted by the FMC to take on the binary states defined in ARINC Specification 429. When the SDI function is not used, both pins MP1K and MP3K should be left open circuit such that bit numbers 9 and 10 are always binary zeros.

FMC No.	Connector Pin		
	MP1K	MP3K	
Not Applicable	Open	Open	
1	Open	To MP5K	
2	To MP5K	Open	
3	To MP5K	To MP5K	

The foregoing describes the SDI function performed by a data source. ARINC Specification 429 also discusses the data identification function to be performed by sinks whose system

ARINC CHARACTERISTIC 702A - Page 136

ATTACHMENT 2-3 NOTES APPLICBLE TO THE STANDARD INTERWIRING

4292 4293 4294		words in which bit numbers 9 and 10 are either both zeros or form the code defined by pins MP1K and MP3K. All other data may be discarded.
4295	6.	Data Loader Interface
4296 4297 4298		It is expected that the airframe manufacturers will provide, at some convenient location on the aircraft, a connection point for an external data loader of the type described in ARINC Report 615 and 615A.
4299		

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

ATTACHMENT 5 ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

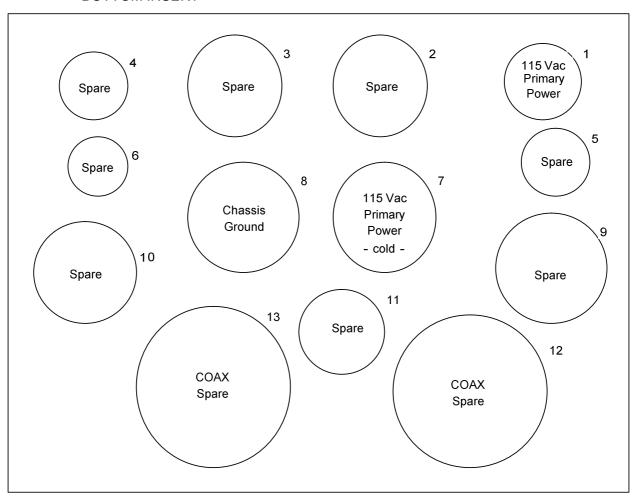
TOP INSERT

	Α	В	С	D	Е	F	G	Н	J	К
1	ARINC 429	_	SPARE	_	29 INPUT	SPARE	_	1	SPARE	N.
	0	0	0	0	0	0	0	0	0	O
	Α	В		Α	В		Α	В		DISC INPUT
2	ARINC 429		SPARE	_	OUTPUT	00.00	_	9 OUTPUT	SPARE	SPARE
	o A	o B	O	o A	o B	SPARE 0	o A	o B	О	0
3	ARINC 429	a INIPLIT	SPARE	ARING 4	29 INPUT	o SPARE	ARINC 4	20 INPLIT	SPARE	
9	0	0	0	0	0	0	0	0	0	0
	Α	В		Α	В		A			DISC INPUT
4	SPARE	SPARE	SPARE		OUTPUT	SPARE		29 INPUT	SPARE	
	0	0	0	o A	o B	0	o A	o B	О	o DISC
5	ARINC 429	O INIDI IT	SPARE	A DINC 4	29 INPUT	SPARE	A DINC 4	29 INPUT	SPARE	INPUT
J	0 ARING 42	0	O O	0 ARING 4	29 INPUT 0	O SPARE	0 ARING 4	29 INPUT 0	O SPARE	0
	Ä	В	Ü	Ä	В	Ü	Ä	B		DISC INPUT
6	SPARE	SPARE	SPARE	_	OUTPUT	SPARE	_	9 OUTPUT	SPARE	
	0	0	O	o A	o B	О	o A		0	o DISC INPUT
7	ARINC 429	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	INFOI
	0	o	o	0	0	О	0	0	О	O
	Α	В		A	В		A	В		DISC INPUT
8	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE		SPARE	SPARE
	О	0	0	О	О	0	О	О	О	0
9	ARINC 429	9 INPLIT	SPARE	ARINC 4	l 29 Input		ARINC 42	I 9 OUTPUT	SPARE	
Ŭ	_	0	0	_	0 R	О	0 A		0	O
	Α	В		A	В	DISC INPUT	A	В		DISC INPUT
10	SPARE	_	SPARE	_	SPARE	SPARE	_	SPARE	SPARE	SPARE
	0	0	O	О	0	О	0	0	О	0
11	ARINC 429	OUTPUT	SPARE	ARINC 42	1 29 INPUT	SPARE	ARINC 61	5 OUTPUT	SPARE	
	0	o	o	o		О	0	0	О	O
	Α	В		Α	В		Α	В		DISC INPUT
12	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE
	О	0	О	О	0	0	0	0	О	0
13	ARINC 429	OUTPUT	SPARE	ARINC 429	OUTPUT	SPARE	ARINC 42	OUTPUT	SPARE	
	o	0	0	o	o	0	О	0	0	o
	Α	В		А	В		Α	В		DISC OUTPUT
14	SPARE	SPARE	SPARE			RNET INTERFA	CE #1		SPARE	SPARE
	0	0	0	o A	o B	o C	o D	o E	O	0
15	ARINC 429	NPI IT	SPARE	ARINC 4	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	
15	0	0	0		0	0	0	0	0	o
	A	В		A	В		A	В		DISC OUTPUT
	1			1			1		l .	OUTFUT

4300

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

4304 MIDDLE INSERT


	А	В	С	D	Е	F	G	Н	J	K
1	ARINC 429 INPUT SPARE O O O A B ARINC 429 OUTPUT SPARE			29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	SDI CODE	
	0	0	0	0	0	0	0	о В	0	INPUT #1
	A	В		A	В		А	В		0
2	ARINC 429	OUTPUT	SPARE	_	OUTPUT	SPARE	_	9 OUTPUT	SPARE	
	0	o B	О	0	о В	0	0	о В	0	0
	А	В		A	В		A	В		DISC INPUT
3			SPARE	ARINC 4	29 INPUT	SPARE	ARINC 4	29 INPUT		
	0	o B	O	0	o B	0	0	o B	0	0
	А	В		Α	В		А	В		DISC INPUT
4		SPARE SPARE ARINC 429 OUTPUT O O O O A B			SPARE		29 INPUT	SPARE	SPARE	
	0	0	О	0	O D	0	O A	о В	0	0
5	ARINC 42	9 INPUT	SPARE		29 INPUT	SPARE		29 INPUT	SPARE	
	о А		0	o A		0		о В	0	o
	Α	В		Α	В		Α	В		DISC
6	ARINC 42	9 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	ARINC 4	29 INPUT	SPARE	INPUT
		о В	0	0	0	0	0	0 B		O
	Α	В		Α	В		Α	В		DISC OUTPUT
7	ARINC 42	9 INPUT	SPARE	ARINC 429	9 OUTPUT	SPARE	ARINC 4	29 INPUT	SPARE	
	o A	0	o	О	O	О	o	o B	0	О
	Α	В		Α	В		Α	В		DISC
										INPUT
8	ARINC 42	9 INPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 4	29 INPUT		SPARE
	o A	0	О		o B	0	0	о В	0	0
	A	D		A	Б		A	D		
9	.=									
			SPARE o	_	29 INPUT	o	ARINC 42	9 OUTPUT	SPARE o	SPARE o
	A	o B	0	A	o B	DISC	A	о В	U	O
12	00/55	00/	00:			INPLIT			00/	00/
10	SPARE o	SPARE o	SPARE o	o	ETHE	RNET INTERFA	ACE #2	О	SPARE o	SPARE o
		0		A	В	o C	D	E		
44							<u> </u>			
11	o	o	o	o	o	o	o	0	o	o
	DISC INPUT	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC
10	CDADE	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
12	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o
12										
13	o	o	o	o	o	0	o	o	o	0
	DISC INPUT	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC
14	CDADE	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
14	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o	SPARE o
15										
15	o	o	o	o	o	O	o	O	o	o
	DISC	DISC	DISC	DISC	DISC	DISC	DISC	DISC	RSVD	RSVD

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

	INPUT								

BOTTOM INSERT

4305

ATTACHMENT 3	FLIGHT MANAGEMENT SYSTEM CONFIGURATIONS	
	THIS SECTION INTENTIONALLY BLANK	
	ATTACHMENT 3	THIS SECTION INTENTIONALLY BLANK

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

4316 ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDN	GENERAL	IHB	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
DISTANCE TO GO	001	BCD		Χ	X				
TIME TO GO	002	BCD			0				
PRESENT POSITION LATITUDE	010	BCD		0					
PRESENT POSITION LONGITUDE	011	BCD		0					
GROUND SPEED	012	BCD		0	X				
SELECTED RUNWAY HEADING	017	BCD		0					
SELECTED N1/EPR (BCD)	021	BCD							
TACAN SELECTED COURSE (BCD)	027	BCD		0					
ILS FREQUENCY	033	BCD		0					
VOR/ILS FREQUENCY #1	034	BCD		0					
VOR/ILS FREQUENCY #2	034	BCD		0					
DME FREQUENCY #1	035	BCD		0					
DME FREQUENCY #2	035	BCD		0					
MLS FREQUENCY/CHANNEL	036	BCD		0					
SET LATITUDE	041	BCD		X					
SET LONGITUDE	042	BCD		Χ					
SET MAGNETIC HEADING	043	BCD		Χ					
FAS DATA BLOCK MESSAGE START (see ARINC 743B/755 for details)	045	BLK		0					
FAS DATA BLOCK MESSAGE DATA	046	BLK		0					
ETA (ACTIVE WAYPOINT)	056	BCD			X				
ACMS INFORMATION	061	BNR		0					
ACMS INFORMATION	062	BNR		0					
ACMS INFORMATION	063	BNR		0					
LONGITUDINAL (ACTIVE WAYPOINT) CENTER OF GRAVITY (BCD)	066	BCD		0					
REFERENCE AIRSPEED (VREF)	070	BNR		0	0				
TAKE-OFF CLIMB AIRSPEED (V2)	071	BNR		0	0				
ROTATION SPEED (VR)	072	BNR		0	Х				
CRITICAL ENGINE FAILURE SPEED VI	073	BNR		Χ					
ZERO FUEL WEIGHT	074	BNR		0					
GROSS WEIGHT	075	BNR		Х				0	
TARGET AIRSPEED	077	BNR		0					
SELECTED COURSE #1	100	BNR		0					
SELECTED ALTITUDE	102	BNR		0					Χ
SELECTED AIRSPEED	103	BNR		0				0	Χ
SELECTED VERTICAL SPEED	104	BNR		0					
SELECTED RUNWAY HEADING	105	BNR		0					
SELECTED MACH	106	BNR		0					Χ
SELECTED CRUISE ALTITUDE	107	BNR		0					
DESIRED TRACK	114	BNR		0	Х				Χ

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			МСDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
WAYPOINT BEARING	115	BNR		Χ	Х				
CROSS TRACK DISTANCE	116	BNR		0	X				
VERTICAL DEVIATION	117	BNR		0	0				
RANGE TO ALTITUDE	120	BNR			Χ				
HORIZONTAL COMMAND SIGNAL	121	BNR		X					
VERTICAL COMMAND SIGNAL	122	BNR		0				_	
THROTTLE COMMAND SIGNAL	123	BNR					0	0	
UNIVERSAL COORDINATED TIME (UTC)	125	BCD		Х					
VERTICAL DEVIATION (WIDE)	126	BNR		0					
SELECTED LANDING ALTITUDE	127	BNR		X					
CURRENT VERTICAL PATH PERF LIMIT	135	BNR							Χ
CURRENT VERTICAL PATH PERF	136	BNR							Χ
GREENWICH MEAN TIME (UTC)	150	BNR		Х	Х			0	Χ
LOCALIZER BEARING (TRUE)	151	BNR		0					
MAXIMUM ALTITUDE	153	BNR		Х					
RUNWAY HEADING (TRUE)	154	BNR		Х					
ESTIMATED POSITION UNCERTAINTY	167	BNR							Х
CURRENT RNP	171	BNR							Х
DRIFT ANGLE	200	BCD		0					
ENERGY MANAGEMENT (CLEAN)	202	BNR			0				
ENERGY MANAGEMENT SPEED BRAKES	203	BNR			0				
UTILITY AIRSPEED	204	BNR		0	0				
BARO ALTITUDE	204	BNR							
SBAS FAS DATABLOCK WORD #1	205	BLK		0					
(see ARINC 755 for details)									
COMPUTED AIRSPEED	206	BNR							
SBAS FAS DATABLOCK WORD #2	206	BLK		0					
SBAS FAS DATABLOCK WORD #3	207	BLK		0					
TOTAL AIR TEMPERATURE	211	BNR					0	0	
SBAS FAS DATABLOCK WORD #4	211	BLK		0					
ALTITUDE RATE	212	BNR							
STATIC AIR TEMPERATURE	213	BNR					0	0	
SBAS FAS DATABLOCK WORD #5	213	BLK		0					
SBAS FAS DATABLOCK WORD #6	215	BLK		0					
GEOMETRIC VERTICAL RATE	217	BNR							
SBAS FAS DATABLOCK WORD #7	217	BLK		0					•
MCDU #1 ADDRESS LABEL	220		Х						
SBAS FAS DATABLOCK WORD #8	220	BLK		0					
MCDU #2 ADDRESS LABEL	221		X						
SBAS FAS DATABLOCK WORD #9	221	BLK		0					

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDN	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
MCDU #3 ADDRESS LABEL	222		0						
CDU DATA (PER ARINC 739)			Χ						
PRINTER #1 ADDRESS LABEL	223						0		
SBAS FAS DATABLOCK WORD #10	223	BLK		0					
PRINTER #2 ADDRESS LABEL	224						0		
SBAS FAS DATABLOCK WORD #11	224	BLK		0					
MINIMUM MANEUVERING AIR SPEED	225	BNR			0				
SBAS FAS DATABLOCK WORD #12	225	BLK		0					
MINIMUM OPERATING FUEL TEMP.	226	BNR		0					
MCDU #4 ADDRESS LABEL	230			Χ					
SBAS FAS DATABLOCK WORD #13	231	BLK		0					
ACTIVE TRAJ INTENT DATA BLOCK	232								X
ACMS INFORMATION	233								X
ACMS INFORMATION	234								X
ACMS INFORMATION	235								X
ACMS INFORMATION	236								X
ACMS INFORMATION	237	DAID							Χ
MIN. AIRSPEED FOR FLAP	241	BNR			0				
MODIFIED INTENT DATA BLOCK	040								Χ
	242								^
SBAS FAS DATABLOCK WORD #14	242	BLK		0					
SBAS FAS DATABLOCK WORD #15	244	BLK		0					
MINIMUM AIRSPEED	245	BNR		0					
GENERAL MAX SPEED (VCMAX)	246	BNR		0					
SBAS FAS DATABLOCK WORD #16	246	BLK		0					
CONTROL MINIMUM SPEED (VCMIN)	247	BNR		0					
CONTINUOUS N1 SPEED	250	BNR	0				0		
GO-AROUND N1 LIMIT	253	BNR		X					
CRUISE N1 LIMIT	254	BNR		Х					
CLIMB N1 LIMIT	255	BNR		Х					
TIME FOR CLIMB	256	BNR		0					
TIME FOR DESCENT	257	BNR		0					
DATE/FLIGHT LEG	260	BCD		Χ				0	
FLIGHT NUMBER (BCD)	261	BCD		0					
DOCUMENTARY DATA (PER ARINC 619)	262	BNR				0			
MIN. AIRSPEED FOR FLAP RETRACTION	263	BNR			0				
NDB EFFECTIVITY	263			0					
TIME TO TOUCHDOWN	264	BNR		0	0				
MIN. BUFFET AIRSPEED	265	BNR		0					
MAX. MANEUVER AIRSPEED	267	BNR		0	0				

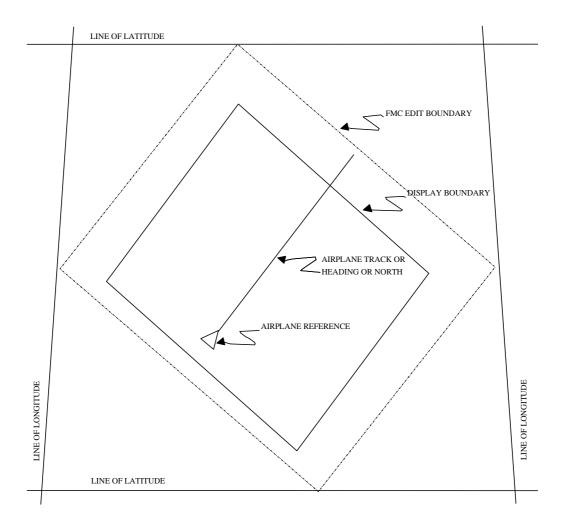
ARINC CHARACTERISTIC 702A - Page 144

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
INTENT STATUS	270	DISC							Х
STATUS DISCRETES	270	DISC		Х					
DISCRETE DATA #1	270	DISC			Х				
DISCRETE DATA #2	271	DISC		Х	Х				
DISCRETE DATA #3	272	DISC		0	0				
DISCRETE DATA #6	275	DISC		0	0				
DISCRETE DATA #7	276	DISC		0	0				
APPLICATION DEPENDENT	301				0				
APPLICATION DEPENDENT	302				0				
APPLICATION DEPENDENT	303				0				
PRESENT POSITION LATITUDE	310	BNR		0	Х				Χ
PRESENT POSITION LONGITUDE	311	BNR		0	Х				Х
GROUND SPEED	312	BNR		0	Х				Χ
TRACK ANGLE TRUE	313	BNR		0	Х				Χ
TRUE HEADING	314	BNR							Х
WIND SPEED	315	BNR			Х				Х
WIND DIRECTION (TRUE)	316	BNR			Х				Х
TRACK ANGLE MAGNETIC	317	BNR		0	Х				
MAGNETIC HEADING	320	BNR							Х
DRIFT ANGLE	321	BNR		0	Х				
FLIGHT PATH ANGLE	322	BNR			0				
GEOMETRIC ALTITUDE	323	BNR							
TRACK ANGLE RATE	335	BNR							Х
N1 OR EPR COMMAND	341	BNR		Х			0	0	
N1 BUG DRIVE	342	BNR		Х			0	0	
MAINTENANCE DATA #5	354			0					
ISO ALPHABET #5 MESSAGE	357	ISO-5			0				
FLIGHT INFORMATION	360	BNR		0	0				
N/S VELOCITY	366	BNR							Χ
E/W VELOCITY	367	BNR							Χ
EQUIPMENT ID	377			Х					

4317 Note:

4318 1. X = Basic or Baseline

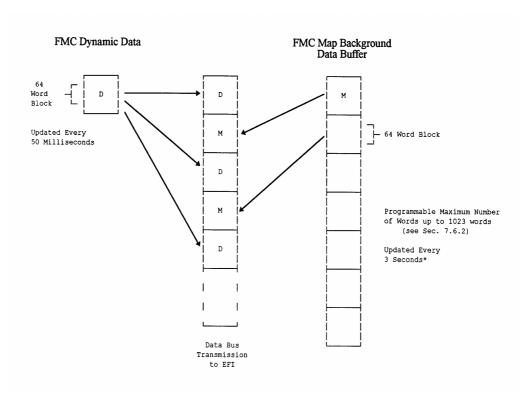

4319 2. O = Optional

4320

4322 ATTACHMENT 5 ENVIRONMENTAL TEST CATEGORIES

ENVIRONMENT	RTCA DO-160 SECTION	CATEGORY RTCA DO-160C/D
Temperature and Altitude	4	Category A2/W
Temperature Variation	5	Category A
Humidity	6	Category B
Shock	7	
Vibration	8	Category B'
Explosion	9	Category X
Waterproofness	10	Category X
Hydraulic Fluid	11	Category X
Sand and Dust	12	Category X
- Fungus	13	Category F
- Salt Spray	14	Category X
Magnetic Effects	15	Category Z
Power Input	16	Category A
Voltage Spikes	17	Category A
Audio Frequency		
 Conducted Susceptibility 	18	Category Z
Electromagnetic Compatibility		Category A
 Induced Signal Susceptibility 	19	Category Z
- Radio Frequency Susceptibility	20	Category W
- Emission of Radio Frequency Energy	21	Category Z
- Lightning	22	600v/120a

4325 ATTACHMENT 6 FMC/EFI INTERFACE


4326

4327 4328

4329

4330

Figure 6-1 – Map Edit Area North-Up Orientation Used in Plan Mode

4331

4332 4333

4334

4335

4336

4337

Note: Updated and transmitted within 1 second after either a mode, scale or option change.

Figure 6-2 - FMC/EFI Data Transmission Format

Table 6-1 – FMC/EFI Data Type Identification Codes

OCTAL	DIT	POS	ITIOI	NI.					
LABEL	1	2	3	4	5	6	7	8	PARAMETER
301	1	1	0	0	0	0	0	1	START OF TRANSMISSION (SOT) (BACKGROUND)
303	1	1	0	0	0	0	1	1	START OF TRANSMISSION (SOT) (BACKGROUND) START OF TRANSMISSION (SOT) (DYNAMIC)
100	0	1	0	0	0	0	0	0	VECTOR - Active Flight Plan
300	1	1	0	0	0	0	0	0	- Active Flight Plan Changes
040	0	0	1	0	0	0	0	0	- Inactive Flight Plan
240	1	0	1	0	0	0	0	0	- Inactive Flight Plan Changes
140	0	1	1	0	0	0	0	0	- Radial
340	1	1	1	0	0	0	0	0	- Runway Center Line
020	0	0	0	1	0	0	0	0	- Offset Path
220			0		0	0	0	0	undefined
120 320	0	1	0	1	0	0	0	0	undefined undefined
060		0	1	1	0	0	0	0	undefined
	0	0	1	1	0	0		0	undefined
260 160	0	1	1	1	0	0	0	0	VECTOR IDENTIFIERS
360	1	1	1	1	0	0	0	0	undefined
010	0	0	0	0	1	0	0	0	undefined
210	1	0	0	0	1	0	0	0	undefined
110	0	1	0	0	1	0	0	0	undefined
310	1	1	0	0	1	0	0	0	undefined
050	0	0	1	0	1	0	0	0	undefined
250	1	0	1	0	1	0	0	0	SYMBOLS - VORTAC + Identifier
150	0	1	1	0	1	0	0	0	- Tuned VORTAC + Identifier
350	1	1	1	0	1	0	0	0	- VOR + Identifier
030	0	0	0	1	1	0	0	0	- Tuned VOR + Identifier
230	1	0	0	1	1	0	0	0	- DME/TACAN + Identifier
130	0	1	0	1	1	0	0	0	- Tuned DME/TACAN + Identifier
330	1	1	0	1	1	0	0	0	- Waypoint + Identifier
070	0	0	1	1	1	0	0	0	- Active Waypoint + Identifier
270	1	0	1	1	1	0	0	0	- Airfield + Identifier
170	0	1	1	1	1	0	0	0	- Origin/Destination Airfield Ident
370	1	1	1	1	1	0	0	0	- GRP + Identifier
004	0	0	0	0	0	1	0	0	- Altitude Profile Point + Identifier
204	1	0	0	0	0	1	0	0	- Selected Reference Point
104	0	1	0	0	0	1	0	0	undefined
304	1	1	0	0	0	1	0	0	undefined
044	0	0	1	0	0	1	0	0	undefined
244	1	0	1	0	0	1	0	0	undefined
144	0	1	1	0	0	1	0	0	undefined
344	1	1	1	0	0	1	0	0	undefined
024	0	0	0	1	0	1	0	0	undefined
224	1	0	0	1	0	1	0	0	TEXT - Type 1: Navigation Advisory
124	1	0	0	1	0	1	0	0	- Type 2: Maintenance Test
324	1	1	0	1	0	1	0	0	- Type 3
064	0	0	1	1	0	1	0	0	- Type 4
264	1	0	1	1	0	1	0	0	MAP REFERENCE GROUP - Latitude

ARINC CHARACTERISTIC 702A - Page 149

ATTACHMENT 6 FMC/EFI INTERFACE

OCTAL	BIT	POS	ITIOI	V				0 DISCRETE WORD - Map Mode 0 -Range 0 undefined 0 undefined 0 undefined 0 ROTATED SYMBOLS - Runway + Identifier 0 - Airport + Runway + Identifier 0 - Marker Beacon 0 - Holding Pattern - R 0 - Holding Pattern - L 0 - Procedure Turn - R 0 - Procedure Turn - L 0 undefined 0 undefined 0 undefined 0 undefined						
LABEL	1	2	3	4	5	6	7	8	PARAMETER					
164	0	1	1	1	0	1	0	0	-Longitude					
364	1	1	1	1	0	1	0	0	DISCRETE WORD - Map Mode					
014	0	0	0	0	1	1	0	0	- Range					
214	1	0	0	0	1	1	0	0	undefined					
114	0	1	0	0	1	1	0	0	undefined					
314	1	1	0	0	1	1	0	0	undefined					
054	0	0	1	0	1	1	0	0	ROTATED SYMBOLS - Runway + Identifier					
254	1	0	1	0	1	1	0	0	- Airport + Runway + Identifier					
154	0	1	1	0	1	1	0	0	- Marker Beacon					
354	1	1	1	0	1	1	0	0	- Holding Pattern – R					
034	0	0	0	1	1	1	0	0	- Holding Pattern – L					
234	1	0	0	1	1	1	0	0	- Procedure Turn – R					
134	0	1	0	1	1	1	0	0	- Procedure Turn – L					
334	1	1	0	1	1	1	0	0	undefined					
074	0	0	1	1	1	1	0	0	undefined					
274	1	0	1	1	1	1	0	0	undefined					
174	0	1	1	1	1	1	0	0	undefined					
374	1	1	1	1	1	1	0	0	undefined					
302	1	1	0	0	0	0	1	0	END OF TRANSMISSION (EOT)					
000	0	0	0	0	0	0	0	0	FILL-IN WORDS					

4339

Table 6-2 Symbol Word Group

The symbol group is comprised of the following:

Table 6-2A – Latitude Symbol Word

32	31 30	29	28 27 2	6 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7 6	; ;	5	4	3 2	2 1
Р	SSM	NS	Latitude (Deg	grees)																	SYM	BOL	_ T\	/PE	:		

Table 6-2A-1 - Latitude

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	
18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	
26	11.25	
27	22.5	
28	45.0	

Table 6-2A-2 - NS Bit

BIT 29	VALUE	NOTES
0	North	
1	South	

Table 6-2A-3 - Sign/Status its

BIT 31 3		WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

4345

4341 4342

4343

4344

4348

Table 6-2B - Longitude Symbol Word

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	
Р	SSM	EW	Longi	tude	(De	gree	s)																SYI	MB	OL.	ΓYΡ	Έ			

4349

Table 6-2B-1 – Longitude

		og
BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4350

4351

Table 6-2B-2 - EW

BIT 29	VALUE	NOTES
0	East	
1	West	

4352

Table 6-2B-3 - Sign/Status Bits

BIT	•	WORD
31	30	DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol rotation
		and vector conics)
1	0	Last word of data type group

4353

4355

Table 6-2C - Azimuth Symbol Word (Rotated Symbols Only)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 1	17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	±	Azimuth (Degrees)	_	SYMBOL TYPE

4356

4357

Table 6-2C-1 - Azimuth

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4358

4359

4360

4361

Table 6-2C-2 - Sign

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2C-3 - Sign/Status Bits

BIT	•	WORD
31	30	DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4363

Table 6-2D - Symbol Identifier Word(s)

32	31 30	29 28 27 26 25 24 23	22 21 20 19 18 17 16	15 14 13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	CHARACTER #3	CHARACTER #2	CHARACTER #1	SYMBOL TYPE
		b7 b1	b7 b1	b7 b1	

4364

Table 6-2D-1 – Sign/Status Bits

BIT 31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

4365

Note: Character data is encoded per ISO #5 format with bit 1 transmitted first. See Section 2 of Attachment 7.

4366

4368

Table 6-2E – Length (Runway Symbols Only)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	±	Runway Length (Feet)	Pad	SYMBOL TYPE
				(all 0's)	

4369

4370

Table 6-2E-1 – Runway Length

BIT	VALUE	NOTES
14	1	
15	2	
16	4	
17	8	
18	16	
19	32	
20	64	
21	128	
22	256	
23	512	
24	1024	
25	2048	
26	4096	
27	8192	·
28	16384	

4371

4372

Table 6-2E-2 – Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

Table 6-2E-3 - Sign/Status Bits

BIT		WORD DESCRIPTION
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol
		rotation and vector
		conics)
1	0	Last word of data type
		group

4373

4374

Table 6-3 Vector Word Group

The Vector Word Group is comprised of the following:

Table 6-3A - Latitude Vector Word

32	31 30	29	28 27 26 25 24 23	22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	NS	Latitude (Degrees)		VECTOR TYPE

4379

4376

4377

4378

4380

Table 6-3A-1 - Latitude

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	
18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	
26	11.25	
27	22.5	
28	45.0	

4381

4382

Table 6-3A-2 - NS Bit

BIT 29	VALUE	NOTES
0	North	
1	South	

Table 6-3A-3 - Sign/Status Bits

BIT	•	WORD DESCRIPTION				
31	30					
0	1	First word of data type				
		group				
0	0	Intermediate positional,				
		character words				
1	1	Control word (symbol				
		rotation and vector conics)				
1	0	Last word of data type				
		group				

4384

Table 6-3B - Longitude Vector Word

	32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7 (ŝ ;	5	4 3	2	1
F)	SSM	EW	Longit	ude	(Deg	rees)																VEC	TOF	R T	YPE			

4385

Table 6-3B-1 – Longitude

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4386

4387

Table 6-3B-2 – EW Bit

BIT 29	VALUE	NOTES
0	East	
1	West	

Table 6-3B-3 - Sign/Status Bits

ВІТ	31 30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

4388

4390

Table 6-3C - Conic Definition Word (Subtended Angle)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17	16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1				
Р	SSM	±	Subtended Angle (Degrees)	Pad	VECTOR TYPE				
				(all 0's)					

4391

Table 6-3C-1 – Subtended Angle

BIT	VALUE	NOTES
17	0.0439	
18	0.0879	
19	0.1758	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4392

Table 6-3C-2 - Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4393

Table 6-3C-3 - Sign/Status Bits

BIT							
31	30	WORD DESCRIPTION					
0	1	First word of data type					
		group					
0	0	Intermediate positional,					
		character words					
1	1	Control word (symbol					
		rotation and vector conics)					
1	0	Last word of data type					
		group					

4395

Table 6-3D - Conic Definition Word (Radius)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9	8 7 6 5 4 3 2 1						
Р	SSM	Sign	Radius (NM)	Pad VECTOR TYPE							
				(all 0's)							

4396

Table 6-3D-1 - Radius

BIT	VALUE	NOTES
14	2 ⁻⁷	
15	2-6	
16	2 ⁻⁵	
17	2 ⁻⁴	
18	2 ⁻³	
19	2-2	
20	2-1	
21	20	
22	2 ¹	
23	2 ²	
24	2 ³	
25	24	
26	2 ⁵	
27	2 ⁶ 2 ⁷	
28	27	

4397

Table 6-3D-2 - Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4398

Table 6-3D-3 - Sign/Status Bits

BIT	•	
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control words (symbol
		rotation and vector
		conics)
1	0	Last word of data type
		group

4399

4401

Table 6-3E - Conic Definition Word (Initial Angle)

32	31 30	29	28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Р	SSM Sign Initial Angle (Degrees)					Pad								VECTOR TYPE															
														(all 0	"s)														

4402

Table 6-3E-1 – Initial Angle

BIT	VALUE	NOTES					
17	0.0439						
18	0.0879						
19	0.1758						
20	0.3515						
21	0.7031						
22	1.406						
23	2.812						
24	5.625						
25	11.25						
26	22.5						
27	45.0						
28	90.0						

4403

Table 6-3E-2 - Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4404

Table 6-3E-3 - Sign/Status Bits

BIT	•	
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control word (symbol
		rotation and vector conics)
1	0	Last word of data type
		group

4405

Table 6-4 Map References Position Word Group

The Map Reference Position Word Group consists of the following:

Table 6-4A – Latitude (Plan Mode) Word (Label 264)

32	31 30	29	28 27	26 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	' 6	5	4	3	2	1
Р	SSM	NS	Latitude (D	egrees)																	0	0	1	0	1	1	0	1

Table 6-4A-1 – Latitude

BIT	VALUE	NOTES
9	0.00008	
10	0.00017	
11	0.0003	
12	0.0006	
13	0.0013	
14	0.0027	
15	0.0054	
16	0.0109	
17	0.0219	
18	0.0439	
19	0.0878	
20	0.1757	
21	0.3515	
22	0.7031	
23	1.406	
24	2.812	
25	5.625	· ·
26	11.25	
27	22.50	
28	45.0	

Table 6-4A-2 - NS Bit

BIT 29	VALUE	NOTES
0	North	
1	South	

Table 6-4A-3 - Sign/Status Bits

BIT		
31	30	WORD DESCRIPTION
0	1	First word of data type
		group
0	0	Intermediate positional,
		character words
1	1	Control word (symbol
		rotation and vector conics)
1	0	Last word of data type
		group

4413

4414

4411

4407

4408

4409

4410

4415

Table 6-4B - Longitude (Plan Mode) Word (Label 164)

32	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Р	SSM	EW	Longit	ude	(De	grees	s)																0	0	1	0 1	1 1	1	I 0)

4416

Table 6-4B-1 – Longitude

BIT	VALUE	NOTES
9	0.00017	
10	0.0003	
11	0.0006	
12	0.0013	
13	0.0027	
14	0.0054	
15	0.0109	
16	0.0219	
17	0.0439	
18	0.0878	
19	0.1757	
20	0.3515	
21	0.7031	
22	1.406	
23	2.812	
24	5.625	
25	11.25	
26	22.5	
27	45.0	
28	90.0	

4417

4418

Table 6-4B-2 – EW Bit

BIT 29	VALUE	NOTES
0	East	
1	West	

Table 6-4B-3 - Sign/Status Bits

BIT	•						
31	30	WORD DESCRIPTION					
0	1	First word of data type group					
0	0	Intermediate positional,					
		character words					
1	1	Control word (symbol rotation					
		and vector conics)					
1	0	Last word of data type group					

4419

4421

Table 6-4C - Map Mode Discrete Word (Label 364)

32	31 30	29 28 27 26	25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	0 0 0	0 0	0 0	0 0 1 0 1 1 1 1

4422

Table 6-4C-1

BIT	NAME	ZERO	ONE	NOTES
11	MAP			1
12	VOR			1
13	ILS			1
14	PLAN			1
15	SPARE			1
16	SPARE			1
17	EFIS S/T			
20	NAV AIDS			
21	GPS			
22	WAYPOINT DATA			
23	AIRPORTS			
24	MAP ORIENT			
25	VOR/ILS ORIENT			
26	RA ALERT RESET			

4423

Table 6-4C-2 - Sign/Status Bits

BIT 31	30	WORD DESCRIPTION				
0	1	First word of data type group				
0	0	Intermediate positional, character words				
1	1	Control word (symbol rotation and vector conics)				
1	0	Last word of data type group				

4424

4425

4426 4427 Note:

1. For bits 11 through 16, only 1 bit should be set at a time.

4428

Table 6-4D - Map Range Discrete Word (Label 014)

	32	31 30	29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1
Ī	Р	SSM	Range (Miles)	PAD	0 0 1 1 0 0 0 0
			Note 1	(all 0's)	

4429

Table 6-4D-1 – Range

BIT	VALUE	NOTES
24	5.0	
25	10.0	
26	20.0	
27	40.0	
28	80.0	
29	160.0	

4430

Table 6-4D-2 - WXR Data

BIT 23	VALUE	NOTES
0		
1		

4431

Table 6-4D-3 - Sign/Status Bits

BIT 31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control word (symbol rotation and vector conics)
1	0	Last word of data type group

4432

Note:

4433

44344435

1. All bits set to zero represents 320 mile range

Table 6-5 Dynamic Symbol Word Group

The Dynamic Symbol Word Group consists of the following:

Table 6-5A - Altitude Range Arc Word (Label 157)

32	31 30	29	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10 9	8 7 6 5 4 3 2 1
Р	SSM	±	Altitude Range (NM)	Pad	1 1 1 1 0 1 1 0
			(8	(all 0's)	

4439 4440

44364437

4438

Table 6-5A-1 – Altitude Range

BIT	VALUE	NOTES
14	2-6	
15	2 ⁻⁵	
16	2-4	
17	2 ⁻³	
18	2-3	
19	2 ⁻¹	
20	20	
21	2 ¹	
22	2 ²	
23	2 ³	
24	2^{4}	
25	2 ⁵	
26	2 ⁶	
28	2 ⁷	
28	2 ⁸	

4441

Table 6-5A-2 - Sign Bit

BIT 29	VALUE	NOTES
0	Plus	
1	Minus	

4442

Table 6-5A-3 - Sign/Status Bits

BIT		WORD DESCRIPTION							
31	30								
0	1	First word of data type							
		group							
0	0	Intermediate positional,							
		character words							
1	1	Control words (symbol							
		rotation and vector conics)							
1	0	Last word of data type							
		group							

4443

Table 6-6 Bus Control Words

The following Bus Control Word Group consists of the following:

Table 6-6A – SOT (Start of Transmission) Word (Background Data) (Label 301)

32	31	30	29 28 27 26 25 24 23 22 21 20	19	18	17	16	15 14	13 12 11 10 9	8 7 6 5 4 3 2 1
Р	1	1	WORD COUNT (Note 1)	0	0	0	0	0 0	BLOCK NUMBER	10000011

4448 4449

4445

4446

4447

Table 6-6A-1 – Block Number

BIT	VALUE	NOTES
9	1.0	
10	2.0	
11	4.0	
12	9.0	
13	16.0	

4450

Table 6-6A-2 - Word Count

BIT	VALUE	NOTES
20	1.0	
21	2.0	
22	4.0	
23	8.0	
24	16.0	
25	32.0	
26	64.0	
27	128.0	
28	256	_
29	512	

4451

4452

4453 4454 Note: The word count is the number of usable words being transmitted in the background data transfer. This count is only coded in the 301 label of the first 64 block.

Table 6-6B – SOT (Start of Transmission) Word (Dynamic Data) (Label 303)

32	31	30	29	28	3 2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Р	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1 1	

4455

Table 6-6C - EOT (End of Transmission) Word (Label 302)

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	3 7	6	5	4	3	2	1
Р	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1 1	Π

ATTACHMENT 7 FMC/DATALINK INTERFACE

4457	ATTACHMENT 7 FMC/DATALINK INTERFACE
4458 4459	Part A Text-Imbedded Error Check for Ground Computer/Airborne Computer Messages
4460 4461	Section 1 End-to-End Error Check
4462 4463 4464 4465 4466 4467	The FMC should provide the facility to perform an "end-to-end" error check on messages received and transmitted via ACARS. This is accomplished by designating the four characters preceding the suffix character (ETX) of the final block of the message as the "text-imbedded" error control field. This field will be used to verify successful transfer of each message to which the end-to-end error check applies.
4468 4469 4470 4471 4472	The allowable character set on which the end-to-end check is performed is defined in Attachment 10 to this Characteristic, entitled "ISO Alphabet No. 5 Subset for Ground Computer/Airborne Computer Message Exchange Via ACARS." In addition, bit patterns of the characters appended to the message by the error checking procedure should be encoded per this ISO subset.
4473 4474	The pad bit for each 7-bit character in the message is set to a binary zero prior to encoding or decoding of the error check.
4475 4476 4477 4478	The error check to be used in the verification of end-to-end message integrity is a Cyclic Redundancy Check (CRC), described in Section 3 of this attachment, "Character-oriented CRC Calculation." The CRC generator polynomial is the same CCITT polynomial introduced into ARINC Specification 429 by Supplement 12.
4479	COMMENTARY
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489	The end-to-end error check provides an assurance that a message composed on the ground has been correctly reconstructed by the FMC (and vice versa for messages originated by the FMC). It supplements the message integrity assurance provisions which are employed at various levels during the transfer of data from originator (e.g., the host airline computer) to the FMC. The normal message integrity checks which, onboard the aircraft, include BCS, word count check, parity check, etc., should continue to be exercised in accordance with the latest version of ARINC Characteristic 724 and this document.
4490	Encoding the CRC at the Message Source
4491 4492 4493	The procedure specifying the application of the CRC by the source on the message text is as follows. (See Section 3 of this attachment, Character-Oriented CRC Calculation, for a detailed description and example of this procedure.)
4494 4495 4496	 The CRC is to be applied to the message text beginning with the first character of the IMI, and ending with the last text character of the message.
4497 4498 4499	 When ordering bits in the message to be CRC'd, the Most Significant Bit (MSB) of the message is the least significant bit of the first character of the IMI. The Least Significant Bit (LSB) of the message is the most

1500 1501		significant bit of the last text character of the message (excluding the ETX character).
1502 1503 1504 1505 1506 1507 1508 1509		After the source has been determined the CRC code from the 16-bit "remainder," four hexadecimal characters representing these 4-bit bytes will be encoded as ISO #5 characters for the CRC field. The hexadecimal characters are determined by assigning 4 bits at a time in the order specified by the table in Section 2 of this attachment. The resulting four characters are placed at the end of the original message text to be transmitted, in the same transmission order as message text characters; i.e., the LSB of each character is transmitted first. For character-oriented file transfer protocols, an ETX character follows
511		the last character of the CRC code.
512	Decoding the CRC a	at the Message Sink
513 514 515	•	Upon the receipt of a message which is error-free in accordance with the link level protocol, the sink will begin verification of the received message.
1516 1517 1518 1519 1520	•	In order to verify the value of the CRC, the sink should first ensure each 7-bit ISO #5 character of the message text has the associated pad bit se to a binary zero, such that each character can be assumed to be 8 bits in length. The sink should also ensure any intermediate "end-of-block" characters have been deleted from the message text.
1521 1522 1523 1524 1525 1526 1527		o The sink then operates on the four characters representing the CRC code to translate them back to the original 16-bit binary value calculated by the source; i.e., the reverse of the procedure specified above is performed. Finally, the sink verifies the integrity of the message text by applying either of the verification procedures specified for the receiving system in the following section on Character-Oriented CRC Calculation.
528 529 530 531	•	If the CRC confirms message integrity, the sink should accept the message. If message integrity is not confirmed (the CRC fails), the sink should discard the message. Further action will be defined by the user and will depend on the application of the message.
532		COMMENTARY
1533 1534 1535 1536	f i F	This CRC scheme is only compatible with uncorrupted messages from the host airline computer to the FMC and vice versa. No intermediate systems may be allowed to modify the message text portion of the transmission by character substitution or insertion (such
1537	8	as line feeds, carriage returns, etc.).

Section 2

ISO #5 Representation of Hexadecimal Characters for Binary Data Transmission

This document states that ISO #5 representation of hexadecimal characters should be used for the interchange of binary information between ground-based and airborne computers via ACARS. The following example illustrates the binary-to-ISO character conversion process.

		TRANS	MISS	SION ORDER	? = =	>				
	LSE	3						MSB		
1. BINARY DATA STREAM	1 0	1 1	0 1	0 0	0 0	0 0 0	0 0	0 0 1 1		
2. 4 BIT BYTES STREAM	1 0	1 1	0 1	0 0	0 0	0 0 0	0 0 1 1			
3. HEX CHARACTER VALUE	В		4		0		3			
4. ISO CHARACTER (COLUMN, ROW)	4,2		3,4		3,0		3,3			
5. ISO BIT VALUES (P = PAD BIT)	Р	100010	Р	0110100	Р	0110000	Р	0110011		
6. ISO BITS TRANSMITTED (PAD BITS set to 0)	0	100010	0	0110100	0	0110000	0	0110011		
7. CHARACTER TX ORDER	CHA	AR 4	CH	AR 3	CH	AR 2	СНА	R 1		

4547 4548 Binary representation of ISO #5 hexadecimal characters is illustrated in the table below.

				ı		ī		1		П	П	1 1
					0	0	0	0	1	1	1	1
DIT 5					0	0	1	1	0	0	1	1
ы э				Col →	0	1	2	3	<u>0</u> 4	1 5	6	7
BIT 4	BIT 3	BIT 2	BIT 1	Row↓	U		2	3	4	3		'
				NOW \$	00	10	20	30	40	50	60	70
							_		_			
0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
					01	11	21	31	41	51	61	71
0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
					02	12	22	32	42	52	62	72
0	0	1	0	2	STX	DC2	"	2	В	R	b	r
_ 	•	•	•		03	13	23	33	43	53	63	73
					00		20		40		00	,,,
0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
					04	14	24	34	44	54	64	74
0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
					05	15	25	35	45	55	65	75
				_	ENO	NIAIZ	0/	_	-			
0	1	0	1	5	ENQ	NAK	%	5	E 46	U	e	u
					06	16	26	36	46	56	66	76
0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
					07	17	27	37	47	57	67	77
0	1	1	1	7	EL	ЕТВ	,	7	G	w	g	w
	-	-	-	-	08	18	28	38	48	58	68	78
	_	_	_	_			_	_			_	
1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
					09	19	29	39	49	59	69	79
1	0	0	1	9	HT	EM)	9	I	Υ	i	у
					0A	1A	2A	3A	4A	5A	6A	7A
1	0	1	0	10	LF	SUB	*	:	J	z	j	z
•	•	•	•	10	0B	1B	2B	3B	4B	5B	6B	7B
1	0	1	1	11	VT	ESC	+	;	K]	k	{
					0C	1C	2C	3C	4C	5C	6C	7C
1	1	0	0	12	FF	FS	,	<	L	١	ı	
					0D	1D	2D	3D	4D	5D	6D	7D
	4	_	_	42	CD	C.S.	,		N.A	,		,
1	1	0	1	13	CR 0E	GS 1E	/ 2E	= 3E	M 4E] 5E	m 6E	} 7E
					UE	IE.	2E	JE	4 €	JE	UE.	, , ,
1	1	1	0	14	SO	RS	•	>	N	^	n	~
					0F	1F	2F	3F	4F	5F	6F	7F
1	1	1	1	15	SI	US	1	?	0		o	DEL
	•	•	•		,			<u> </u>	_	_		

ATTACHMENT 7 FMC/DATALINK INTERFACE

4550 4551	Section 3 Character-Oriented CRC Calculation
4552	Generation of the CRC Code
4553 4554 4555	This CRC calculation method is based on the premise that a message may be represented as the coefficients of a polynomial, $G(x)$, having k terms, where k is the number of bits in the message.
4556	COMMENTARY
4557 4558 4559 4560 4561 4562	The notation used to describe the CRC is based on the property of cyclic codes that a code vector such as 1000000100001 can be represented by a polynomial $G(x) = x^{12} + x^5 + 1$. The elements of a k element code vector are thus the coefficients of a polynomial of order k - 1. In this application, these coefficients can have the value 0 or 1, and all polynomial operations are performed modulo 2.
4563 4564	To create the polynomial $G(x)$ representing the message, the terms are ordered as follows:
4565 4566	 The coefficient of the most significant bit of G(x), (x^{k-1}), is the LSB of the first character of the message.
4567 4568	 The coefficient of the least significant bit of G(x), (x⁰), is the MSB of the last character of the message.
4569 4570 4571 4572 4573 4574	For example, if the message, $G(x)$, is 'FPR', the first character is 'F' which is represented by the code 46 hex or 01000110 binary. The rightmost bit of 'F', 0 in this example, is therefore the most significant bit of $G(x)$. Similarly, the last character, 'R', is represented by the code 52 hex or 01010010 and the least significant bit of $G(x)$ is the leftmost bit of 'R', which is 0. The message FPR has 24 bits so k has a value of 24.
4575	The actual transmission order for the message is MSB to LSB as follows:
4576	Note slashes (/) are used for octet separation only.
	Transmission Order ==> LSB MSB 01010010 01010000 01000110 R P F
4577 4578 4579	In order to illustrate the mathematical procedure, the entire message is transposed for representation as a bit stream with the MSB at the left and the LSB at the right to yield:
	Transmission Order ==> MSB LSB 01100010 00001010 01001010

4582 Expressing the bit stream for this example as a polynomial, G(x), yields:

$$G(x) = x^{22} + x^{21} + x^{17} + x^{11} + x^{9} + x^{6} + x^{3} + x^{1}$$

To generate the CRC code the generator polynomial is defined as:

$$P(x) = x^{16} + x^{12} + x^{5} + 1$$

The CRC code is the one's complement of the remainder obtained from the modulo division of:

$$\frac{x^{16}G(x) + x^{k}(x^{15} + x^{14} + x^{13} + \dots + x^{2} + x + 1)}{P(x)} = Q(x) + \frac{R(x)}{P(x)}$$

where Q(x) is the quotient and R(x) is the remainder.

Note: The addition of $x^{16}G(x)$ and $x^k(x^{15} + x^{14} + x^{13} + ... x^2 + x + 1)$ is modulo 2 and is equivalent to inverting the 16 most significant bits of G(x) and appending a bit string of 16 zeroes to the lower order end of G(x).

If the 16-bit binary CRC code were appended to the original G(x) the resulting message, M(x), would be of length n, where n = k + 16. This is equivalent to the following operation:

$$M(x) = x^{16} G(x) + (16 - bit)CRC (Modulo 2).$$

When the 16-bit binary CRC is transformed into four ISO #5 characters (8 bits each), the final message to be transmitted, $M^*(x)$ is now of length $N^* = k + 32$, and so

$$M*(x) = x^{32}G(x) + (32-bit)CRC (Modulo 2).$$

ARINC CHARACTERISTIC 702A - Page 172

ATTACHMENT 7 FMC/DATALINK INTERFACE

4600 4601 4602 4603 4604	Using the above example with 'FPR' as G(x), the CRC calculation gives a remainder of 0011111/11010010, where the left-hand 0 is the most significant bit and the right-hand 0 is the least significant bit (see Appendix 7 of ARINC Specification 429, Mathematical Example of CRC Encoding/Decoding, for a detailed example of the mathematical operations involved to arrive at this remainder).
4605 4606 4607 4608	The CRC code is the one's complement of the remainder, or 11000000/00101100. This CRC code is converted to a four-character (ISO #5) code and appended to the end of the message over which the CRC code was calculated by applying steps 1 through 7 in Section 2 as follows:
4609 4610 4611 4612 4613	 Because the message was transposed in this illustration to generate the CRC code, the resultant CRC code should also be transposed from left to right. Transposing 11000000/00101101 yields 10110100/00000011. This operation returns the CRC code to the same transmission order as the original message, with the MSB to the right and the LSB to the left.
4614 4615	2-3. Separating the 16-bit transposed value into 4-bit segments and expressing it in hex yields B403.
4616 4617 4618	4-7. The four characters representing this value are coded as ISO #5 characters and appended to the message in the order: MS to LS character. For this example, the order is 3, 0 4, B.
4619	The complete message plus CRC code for this example (read left to right) is:
4620	FPR304B
4621	The transmission order of this message is right to left, as:
4622	B403RPF ==>
4623	

4624 Section 4 4625 Verification (Decoding) of the CRC Code

4626

4627

4628 4629

4630

4631

4632

4633 4634

4635

4636

4637

4638

4639

4640

4641 4642

4643

4644

4645

4646

4647 4648

4649

4650

4651

4652

4653

4654 4655

4656 4657 At the receiving system, the four characters representing the CRC code are converted back into the original binary CRC code; i.e., the steps in Section 2 are performed in reverse order. At this point, verification (decoding) of the CRC is accomplished by either of the following methods:

1. After conversion back to the binary CRC code, the 16-bit binary CRC is appended to the message G(x) (in the same transmission order as the message) resulting in the message M(x), of length n, where n = k + 16 and

$$M(x) = \chi^{16} G(x) + (16 - bit)CRC (Modulo 2).$$

M(x) is multiplied by X^{16} , added to the product $x^n(x^{15} + x^{14} + x^{13} + ... + x^2 + x + 1)$, and divided by P(x) as follows (where n = k + 16):

$$\frac{x^{16}M(x)+x^{n}(x^{15}+x^{14}+x^{13}+...+x+1)}{P(x)} = Qr(x)+\frac{Rr(x)}{P(x)}$$

This CRC procedure is designed to create a constant remainder for error free messages. If the transmission of the serial incoming bits plus CRC code (i.e., M(x)) is error free, then the remainder, Rr(x) is always:

Transmission Order ==>		
MSB	LSB	
00011101	00001111	

(coefficients of x^{15} through x^0 , respectively).

- 2. An alternate procedure for the receiving system, which will ensure the same data integrity, is to recompute the CRC code on the received message less the four CRC characters (using the same generator polynomial). The generated CRC code is then compared with the one received. The following steps are performed:
 - The received message, M*(x), is stripped of the four CRC characters, leaving only G(x). The four characters representing the CRC code are converted back into the original binary 16-bit CRC code; that is, the steps in Section 2 are performed in reverse order.
 - A binary CRC code is generated for G(x) using the same encoding method described for the message source.
 - The generated binary CRC code is compared with the 16-bit binary CRC code stripped from the message and if they are identical, the message is assumed to be free of errors and exactly represents the message transmitted by the source.

4693

ATTACHMENT 7 FMC/DATALINK INTERFACE

4658 4659	Part B Table-Based	l Forn	nats for FMC IMI/IEI Mes	sages
4660 4661	Section 1 Definition of	f Term	ns Used In Data Link Me	ssages
4662 4663		All up	link and downlink message:	s are formatted using a consistent set of syntax e used to describe parts of a message:
4664		IMI	(Imbedded Message Ide	ntifier)
4665 4666 4667		begin	ning of the text to identify th	character identifier. An IMI is placed at the le relative message content. Only one IMI is used be used for both uplinks and downlinks.
4668		Exam	ples of IMIs are: FPN, PER	, LDI, POS, REJ, etc.
4669		IEI	(Imbedded Element Ider	itifier)
4670 4671		The I	•	dentifier that is used to group one or more
4672			Examples of IEIs are: FN,	RP, RM, CG, RW, etc.
4673		Elem	ent	
4674 4675 4676 4677 4678 4679 4680 4681		be a sidefine chara either more indica	single parameter, or a numbed as either fixed length or vocters. Directional elements a single alpha character pronumeric characters follower	ible part of an uplink or downlink message. It can per of parameters. A single parameter element is variable length with a defined maximum number of are single parameter elements that must contain eceding one or more numeric characters, or one or d by an alpha character. The alpha character or) that is associated with the numeric value. If or variable length.
4682 4683 4684 4685 4686		paran and v be of	neter elements can be fixed ariable length. However, on	ed to group similar or related information. Multi- length, variable length or a combination of fixed ly one field within a multi-parameter element can delimiter between single data elements within a
4687			Example:	
4688			OAT: P23	Single parameter element OAT is +23 °C.
4689			V1VRV2: 131139147	Multi-parameter element is composed of:
4690				V1 = 131 knots
4691				VR = 139 knots
4692				V2 = 147 knots

4694	Parameter
4695	A parameter is an element or part of an element that has the following attributes:
4696	Type - Variable or Fixed
4697	2. Element Type
4698	a. Alpha (A - Z)
4699	b. Alphanumeric (A - Z, 0 - 9, dash)
4700	c. Numeric (0 - 9)
4701	Character Length - Number of Characters
4702	 Scaling Factor - Identifies the multiplication factor
4703	Units - Identifies the Parameter Units
4704	List
4705 4706	A list is a repeatable group of elements within a data link message. Each list contains one or more elements.
4707	Message Format Example
4708 4709 4710	The following is an example of a Predicted Wind Information uplink message (the IMI for this message is PWI, the IEI is DD for Descent Wind Data and the IEI DS is for Descent Wind Temperature).
4711 4712 4713	Example: PWI/DD350270060.310270045.140260040/DS320M50.250M30.100M10.010P10:0 60,,,M04,1013
	Altitude/Wind List (up to ten allowed):
	Altitude Wind

Altitude/Wind List (up to ten allowed):		
Altitude	Wind	
FL350	270/060 kts	
FL310	270/045 kts	
14000	260/040 kts	

4714

Altitude/Temperature List (up to ten allowed):		
Altitude	Temperature	
FL320	- 50 °C	
FL250	- 30 °C	
FL100	- 10 °C	
1000ft	+10 °C	

4715

Remaining Elements:	
TAI On Altitude	6000 ft
TAI On/Off Altitude	(Missing Data)
Des Transition Altitude	(Missing Data)
Descent ISA Deviation	-4 °C
QNH	1013 Hectopascals

4716 Flight Plan Definition 4717 Each independent part of a flight plan i 4718 FPE is preceded by a Flight Plan Elem

4719

4720

4721 4722

4723

4724

4725 4726

4727

4728 4729

4730

4731 4732

4733

4734

4735 4736

4737

4738

4739

4740 4741

4742 4743

4744

Each independent part of a flight plan is called a Flight Plan Element (FPE). Each FPE is preceded by a Flight Plan Element Identifier (FPEI) which identifies the group of data that follows. These FPEs are used in combination to fully define the FMC flight plan in both the uplinks and downlinks. The flight plan definition is used to create a flight plan (either active or inactive) or modify an existing flight plan.

FPEI (Flight Plan Element Identifier)

FPEIs are used to identify special elements, which are used in the (Flight Plan) Route IEIs of RP, RI, RM, and RA. Examples of Flight Plan Element Identifiers are :H:, :V:, ".", ".DA", etc.

FPE (Flight Plan Element)

A Flight Plan Element (FPE) is a special type of variable or fixed length element (or group of elements) used in RP, RI, RM, or RA IEIs.

Examples of FPEs (and their corresponding FPEIs) are shown below:

FPE	FPEI	Example
Departure Airport	:DA:	KJFK
Arrival Airport	:AA:	KLAX
Company Route	:CR:	JFKLAX07
Waypoint Spd/Alt/Time	:V:	N47W125,250,AT1250
Direct to Waypoint		BLAKO
Departure Runway	:R:	040
Airway VIA		J36
Arrival Procedure	:A:	DOWNE
Arrival Transition		HECTR
Arrival Runway	(XXX)	(040)

The last four items in the table illustrate the dual role of the special character "." which is context dependent. It can be used as a "VIA" indicator for an airway, or as a transition indicator if it is preceded by an ":A:" (or an ":AP:" or a :D:), as in DOWNE.HECTR(04O).

Example: F P N / R M..N I A . J 4 8 . B E N N Y , N 3 3 2 4 0 W 1 1 6 2 5 0 : A T : N I A - M0400,280,AT1400:A:BENE3.NIA:AP:ILS32R.EDD

- IMI (FPN) followed by
- IEI (RM) followed by
- Direct to waypoint NIA
- Followed by a via airway J48
- To waypoint BENNY with optional lat/lon definition
- Then an along track offset definition of NIA -40.0 with an associated speed restriction of 280 at 14,000 feet
- Followed by a standard arrival BENE3 with a NIA transition and the standard approach of ILS32R with an EDD transition.

4745	Uplink and Downlink Delimiters	
4746 4747 4748	consistently identify the information	ownlink message, delimiters are used to in the message. The delimiters supersede each the highest priority).
4749	IEI Delimiter '/' solidus, Characte	r 2/15
4750 4751 4752	beginning of predefined group of e	edded Element Identifier which identifies the ements. This delimiter is always followed by two
4753	List Terminator ':' colon, Charac	ter 3/10
4754 4755		haracter. This character is used to terminate a
4756	List Entry Terminator '.' period, (Character 3/11
4757 4758 4759	entry (group of elements). List entr	. This character is used to terminate each list ies are groups of parameters or elements that are
4760	Element Terminator ',' comma, C	haracter 2/12
4761 4762 4763	terminated with another control cha	ments (unless they have been separated by or aracter; i.e., '/', ':', '.' or another FPEI in the case ements are denoted by consecutive commas.
4764	Request Messages	
4765 4766 4767 4768 4769	is transmitting data and a message reserved for requests. This IMI ('RI message. The data that follows this	cognize the difference between a message that that is requesting data, a special IMI has been EQ' is the default) precedes any request IMI depends on whether the message is an
4770	Uplink Request A Downlink	
4771 4772 4773 4774 4775	is optionally followed by a comma by a list of elements that define the by a list entry terminator). An IMI, of	element which contains the IMI of the "reply." This (element terminator), which is optionally followed IEIs to be included in the downlink (all separated or IEIs following the REQ are considered
4776	Example: REQPRG,DT.FN	
4777 4778	·	ground for the current destination and current wnlink of:
4779	PRG/DTKSEA/FNSFOSEA001	
4780	Downlink Requesting An Uplink	
4781	In a downlink request, the request	IMI is followed by the requested information.
4782	Example: REQFPN/COKSEAKSF0	002
4783 4784	·	FMC for a flight plan, the request includes the lement.

Section 2 IMI/IEI Relationships

This section identifies the IEIs normally associated with IMIs that have been defined. This section will be updated as the need for new IMIs and IEIs is identified. Users are requested to advise the AEEC staff when such a need arises. The basic IEIs are listed in bold text, the dependent IEIs are listed in italics and the extended IEIs are listed as normal text.

				Up	olink Messag	es				
FPN	FPC	PER	LDI	PWI	PWM	POS	REQ	ALT	LIM	NDB
RP	RP	PD	RW	WD	WM	RF	FPN	Al	PL	SD
RI	RI	SN	CG	DD	DD	SN	FPC	AE		
RM	RM		SN	CB	CB		PER	AN		
FN	FN			AW	AW		LDI	AS		
RA	RA			CS	CS		POS			
MW	GA			DS	DS		PRG			
SD	SN			SN	SN		PRF			
SN				PG	PG		TOD			
							EFB			
							XXX			
							Report			
							IĖIs			

Note: XXX in 'XXX Report IEIs' is an unrecognizable IMI that is followed by recognizable IEIs. On some systems, XXX may not support all IEI's. The minimum set of IEI's supported is the following: RP, FN, PR, DT, CA, GA.

Reports Request	Required		
	PWI		
EFB TOD PRF FPX PER LDI POS PRG FPM ALT LIM NDB REJ RES FPN PER LD		PWM	ALT
FR	DQ WQ SP GA CA TS CQ WR PH CU DU	MQ SP GA CA TS DU	AAA AB SP GA CA TS AQ

Note that FPX represents FPN and FPC.

Section 3
Uplink IMI Definitions

 This section lists the currently defined uplink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Contains alternate airport information generated by the airline.
FPC	FLIGHT PLAN	Flight plan information supplied by ATC.
FPN	FLIGHT PLAN	Flight plan information generated by the airline.
LDI	LOAD INFORMATION	Contains load information for takeoff generated by the airline.
LIM	PERFORMANCE LIMITS DATA	Contains performance limits data that is provided by the airline.
NDB	AIRLINE DATABASE	Contains supplemental Navigation Data Base, Effectivity Date, Supplemental Navigation Airport, Navaid, and Waypoint definitions generated by the airline.
PER	PERFORMANCE INITIALIZATION	Contains performance initialization data generated by the airline.
POS	POSITION	Contains specified triggers for automatic position report information generated by the airline.
PWI	PREDICTED WIND DATA	Contains climb, alternate, enroute, descent wind, temperature, and/or tropopause information that is to be applied to the flight plan. Generated by the airline.
PWM	PREDICTED WIND MODIFICATION	Contains climb, alternate, enroute, descent wind, temperature, and/or tropopause information that is to be applied to the modified active flight plan. Descent winds and temperatures data may be applied regardless of the route status. Generated by the airline ground station.
REQ	REQUEST	Contains a type of request (FPN/FPC, PER, LDI, POS, PRG, PRF, TOD, EFB, XXX) for information generated by the airline.
TAC	RESERVED	
TAR	RESERVED	

Section 4 Downlink IMI Definitions

This section lists the currently defined downlink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Provides the airline with alternate airport information.
EFB	ELECTRONIC FLIGHT BAG	Provides wind/temperature forecast and performance parameter report to an external application
FPC	FLIGHT PLAN	Provides flight plan report to ATC.
FPM	FLIGHT PLAN	Provides flight plan modification information to the airline.
FPN	FLIGHT PLAN	Provides flight plan information to the airline.
LDI	LOAD INFORMATION	Provides the airline with a load information data report for a single runway.
LIM	PERFORMANCE LIMITS DATA	Provides the airline with the current FMC performance limits.
NDB	AIRLINE DATA BASE	Provides the contents of the supplemental data base to the airline.
PER	PERFORMANCE INITIALIZATION	Provides performance initialization data report to the airline.
POS	POSITION	Provides the airline with current position report information.
PRF	PREFLIGHT	Provides preflight report to the airline.
PRG	PROGRESS (ETA) REPORT	Provides the airline with progress report data in response to a trigger.
PWI	PREDICTED WIND DATA	Provides the airline with climb, enroute, descent wind and/or temperature information that is to be applied to the flight plan.
PWM	PREDICTED WIND MODIFICATION	Provides the airline with enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent wind data may be applied regardless of the route status.
REJ	DOWNLINK REJECTION	Provides ATC or the airline with information referencing a rejected uplink message.
REQ	REQUEST	Requests (FPN/FPC, PER, LDI, PWI/PWM, EFB) information from the airline or ATC.
RES	DOWNLINK RESPONSE	Provides a response to an uplink message.
TAC	RESERVED	
TAR	RESERVED	
TOD	TOP OF DESCENT	Provides top of descent data to the airline.

4816 Section 5 4817 Uplink IEIs

4818 4819

4820

This section lists the currently defined uplink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IEI	DESCRIPTION
AE	COMPANY PREFERRED ALTERNATES DATA
Al	ALTERNATE INFORMATION DATA
AN	ALTERNATES INHIBIT DATA
AW	ALTERNATE WIND DATA
AS	ALTERNATES FLIGHT LIST DATA
CA	COMPANY DISTRIBUTION
СВ	CLIMB WIND DATA
CG	TAKEOFF CENTER OF GRAVITY
CS	CLIMB TEMPERATURE DATA
DD	DESCENT FORECASTS
DS	DESCENT TEMPERATURE DATA
FN	FLIGHT NUMBERS
GA	GROUND ADDRESS
MW	MEAN WIND DATA
PD	PERFORMANCE INITIALIZATION DATA
PG	PAGE INFO
PL	PERFORMANCE LIMITS
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RF	POSITION REPORT FIX
RI	INACTIVE ROUTE
RM	ROUTE MODIFICATION
RP	ACTIVE ROUTE
RT	REQUIRED TIME OF ARRIVAL
RW	RUNWAY DATA
SD	SUPPLEMENTAL NAVIGATION DATABASE
SN	MESSAGE SEQUENCE NUMBER
TS	TIME STAMP
WD	ENROUTE WIND DATA
WE	WIND VECTOR MAGNITUDE DIFFERENCE
WL	WAYPOINT LIST
WM	ENROUTE WIND MODIFICATION

4823 Section 6 4824 Downlink IEIs

4825

4826

4827

This section lists the currently defined downlink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

Wilon	uch a need arises.
IEI	DESCRIPTION
AA	COMPANY PREFERRED ALTERNATES REQUEST
AB	ALTERNATES FLIGHT LIST REQUEST
AC	ACCEPT
AK	ACKNOWLEDGE
AP	SUPPLEMENTAL NAV DATA BASE AIRPORTS
AQ	WEATHER REQUEST
AR	ALTERNATE INFORMATION REPORT
CA	COMPANY DISTRIBUTION
СО	COMPANY ROUTE REQUEST
CQ	CLIMB FORECAST REQUEST
CU	CLIMB TEMPERATURE REQUEST
DI	DOWNLINK TIME INFORMATION
DQ	DESCENT FORECAST REQUEST
DT	DESTINATION REPORT
DU	DESCENT TEMPERATURE REQUEST
ED	SUPPLEMENTAL EFFECTIVITY DATE
FH	FLIGHT PLAN HISTORY
FN	FLIGHT NUMBER
FP	FUEL PLANNING
FR	FORECAST REPORT
GA	GROUND ADDRESS
GL	GENERAL DATA
GP	GENERAL DIRECTIONS
MQ	MOD WIND REQUEST
NV	SUPPLEMENTAL NAV DATA BASE NAVAIDS
PH	FLIGHT PHASE
PL	PERFORMANCE LIMITS
PP	PERFORMANCE PARAMETERS REPORT
PQ	PERFORMANCE INITIALIZATION REQUEST
PR	PERFORMANCE INITIALIZATION REPORT
PS	POSITION REPORT
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RJ	REJECT
RP	ACTIVE ROUTE
RQ	RUNWAY DATA REQUEST
RR	RUNWAY DATA REPORT
SN	MESSAGE SEQUENCE NUMBER
SP	SCRATCHPAD
TD	TOP OF DESCENT REPORT
TS	TIME STAMP
WI	WAYPOINT INFORMATION
WQ	WIND REQUEST
WP	SUPPLEMENTAL NAV DATA BASE WAYPOINTS
WR	ALTERNATE AIRPORT WEATHER REQUEST

4829 4830	Section IEI and	on 7 d Associated Elements				
4831 4832 4833 4834 4835 4836	default text for all IEIs. This section is separated into basic IEIs (also dependent IEIs) and their associated elements, extended IEIs and their associated elements, and IMIs and their associated elements. The default IEI content and structure is indicated by 'IEI CONTENT'. The content and order of list entries are indicated by 'LIST ENTRY'. Examples are provided to clarify the default text.					
4837		DAGIO IEL- AND A	COCCUATED EL EMENTO			
	AC	ACCEPT BASIC IEIS AND A	SSOCIATED ELEMENTS Consists of a variable length field defining the message sequence number and stimulus code.			
		EXAMPLE: /AC12345,451 <u>IEI CONTENT</u> MESSAGE SEQUENCE NUMBER STIMULUS CODE				
	AK	<u>ACKNOWLEDGE</u>	Consists of a variable length field defining the message sequence number and stimulus code.			
		EXAMPLE: /AK12345,451 IEI CONTENT MESSAGE SEQUENCE NUMBER STIMULUS CODE				
	CA	COMPANY DISTRIBUTION EXAMPLE: /CAFLTOPS IEI CONTENT COMPANY DISTRIBUTION	Consists of an airline internal distribution identifier.			
	CG	TAKEOFF CENTER OF GRAVITY EXAMPLE: /CG200 IEI CONTENT TAKEOFF CENTER OF GRAVITY	Consists of a variable length field.			
	СО	COMPANY ROUTE REQUEST EXAMPLE: /COKBFIKSFO01 IEI CONTENT COMPANY ROUTE	Consists of a variable length field.			
	DD	DESCENT FORECAST EXAMPLE: /DD350270060.310270045.140260040 IEI CONTENT LIST ENTRY: ALTITUDE AND WIND TAI ON ALTITUDE TAI ON/OFF ALTITUDE DESCENT TRANSITION ALTITUDE DESCENT ISA DEVIATION QNH	Consists of a list of up to ten altitude wind entries, followed by the additional descent forecast elements. 0.100230020.06030. 180.M04.1013			
	DQ	DESCENT FORECAST REQUEST EXAMPLE: /DQ390	Consists of a single parameter element defining the top of descent altitude.			
		IEI CONTENT TOP OF DESCENT ALTITUDE				
	DS	DESCENT TEMPERATURE EXAMPLE: /DS320M50.250M30.010P10 IEI CONTENT	Consists of a list of up to ten altitude temperature entries			

BASIC IEIS AND ASSOCIATED ELEMENTS

	LIST ENTRY: ALTITUDE AND OAT	4330CIATED ELEMENTS
DU	DESCENT TEMPERATURE REQUEST	Consists of a single parameter element defining the top of Descent Altitude.
	EXAMPLE: /DU370	
	<u>IEI CONTENT</u>	
	TOP OF DESCENT ALTITUDE	
DT	DESTINATION REPORT	Consists of a fixed format, fixed order field.
	EXAMPLE: /DTKSFO,28L,0234,190023,003 IEI CONTENT	
	ARRIVAL AIRPORT IDENT	
	DESTINATION RUNWAY IDENT	
	PREDICTED FUEL REMAINING	
	ETA AT DESTINATION	
	REPORT STIMULUS	
FN	FLIGHT NUMBER	Consists of a variable length field.
	EXAMPLE: /FNUAL1633A	
	<u>IEI CONTENT</u> FLIGHT NUMBER	
GA	GROUND ADDRESS	Consists of a list of addresses. A copy of the network address
		not directly used for message routing purposes.
	EXAMPLE: /GATULDDAA.HEQXESA	
	IEI CONTENT	
	LIST ENTRY: GROUND ADDRESS	Operate of a fine discount fine dender field
PD	PERFORMANCE INITIALIZATION DAT. EXAMPLE: /PD2113,,270,,0150,23,,,,P12,M34	Consists of a fixed format, fixed order field
	<u>IEI CONTENT</u>	
	ZERO FUEL WEIGHT	
	CRUISE CENTER OF GRAVITY	
	CRUISE ALTITUDE	
	PLAN OR BLOCK FUEL	
	RESERVE FUEL	
	COST INDEX CRUISE WIND	
	TOC OR CRUISE TEMPERATURE	
	CLIMB TRANSITION ALTITUDE	
	FUEL FLOW FACTOR	
	DRAG FACTOR	
	PERF FACTOR	
	IDLE FACTOR	
	TROPOPAUSE ALTITUDE	
	TAXI FUEL ZERO FUEL WEIGHT CENTER OF GRAVITY	
	MINIMUM FUEL TEMPERATURE	
PQ	PERFORMANCE INITIALIZATION REQUEST	Consists of a fixed format, fixed order field.
	EXAMPLE: /PQ2113,,270,,0150,23,,,,P12,M34	
	<u>IEI CONTENT</u>	
	ZERO FUEL WEIGHT	
	CRUISE CENTER OF GRAVITY	
	CRUISE ALTITUDE PLAN OR BLOCK FUEL	
	RESERVE FUEL	
	COST INDEX	
	CRUISE WIND	
	TOC OR CRUISE TEMPERATURE	

BASIC IEIS AND ASSOCIATED ELEMENTS

CLIMB TRANSITION ALTITUDE

FUEL FLOW FACTOR

DRAG FACTOR

PERF FACTOR

IDLE FACTOR

TROPOPAUSE ALTITUDE

TAXI FUEL

ZERO FUEL WEIGHT CENTER OF GRAVITY

MINIMUM FUEL TEMPERATURE

PR PERFORMANCE INITIALIZATION REPORT

Consists of a fixed format, fixed order field.

EXAMPLE: /PR2633,,270,0520,,0150,23,,,,P12,M34

IEI CONTENT

CURRENT GROSS WEIGHT CRUISE CENTER OF GRAVITY

CRUISE ALTITUDE

FUEL REMAINING

PLAN OR BLOCK FUEL

RESERVE FUEL

COST INDEX

CRUISE WIND

TOC OR CRUISE TEMPERATURE

CLIMB TRANSITION ALTITUDE

FUEL FLOW FACTOR

DRAG FACTOR

PERF FACTOR

IDLE FACTOR

TROPOPAUSE ALTITUDE

TAXI FUEL

ZERO FUEL WEIGHT

ZERO FUEL WEIGHT CENTER OF GRAVITY

MINIMUM FUEL TEMPERATURE

RF POSITION REPORT FIX

Consists of a list of reporting points which when sequenced in

flight, trigger the position report.

EXAMPLE: /RFORTIN.SEA.N3545W090256

IEI CONTENT

LIST ENTRY: WAYPOINT SEQUENCE

RI INACTIVE ROUTE

A variable length field that consists of flight plan elements that replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance language.

:DA: DEPARTURE AIRPORT IDENT

:AA: ARRIVAL AIRPORT IDENT

:CR: COMPANY ROUTE

:R: DEPARTURE RUNWAY IDENT:D: DEPARTURE PROCEDURE:F: FLIGHT PLAN SEGMENT

PUBLISHED IDENT LATITUDE/LONGITUDE

PLACE BEARING/PLACE BEARING PLACE BEARING DISTANCE

:ON: START OF DESIGNATED FLIGHT PLAN SEGMENT

:A: ARRIVAL PROCEDURE :AP: APPROACH PROCEDURE (): ARRIVAL RUNWAY IDENT

	BASIC IEIs A	ND ASSOCIATED ELEMENTS
	:V: WAYPOINT SPEED/ALTITUDE/TIME	E
	:H: HOLD AT WAYPOINT	
	:WS: WAYPOINT STEP CLIMB	
	:AT: ALONG TRACK WAYPOINT	
	:RP: REPORTING POINTS	
	DIRECT FIX	
	. TRANSITION OR AIRWAY VIA	
	:F:. AIRWAY INTERCEPT	
	:IC: INTERCEPT COURSE FROM	
RJ	REJECT	Consists of a variable length field defining the message sequence number and the stimulus code.
	EXAMPLE: /RJ12345,451	·
	<u>IEI CONTENT</u>	
	MESSAGE SEQUENCE NUMBER	
	STIMULUS CODE	
RP	ACTIVE/INACTIVE ROUTE	A variable length field that consists of flight plan elements.
		These flight plan elements define a flight plan in approximately
		the same fashion as ATC clearance language.
	THE FORMAT IS THE SAME AS DESCRIBE	
RQ	RUNWAY DATA REQUEST	Consists of a fixed-list format, fixed order field consisting of data for up to two runway/intersection combinations.
	EXAMPLE: /RQKSEA,31L,A9,,,156,2613,,P1	
	<u>IEI CONTENT</u>	
	LIST ENTRY:	
		DEPARTURE AIRPORT IDENT
		TAKEOFF RUNWAY IDENT
		RUNWAY INTERSECTION
		POSITION SHIFT
		RUNWAY LENGTH REMAINING
		TAKEOFF CENTER OF GRAVITY
		CURRENT GROSS WEIGHT
		REFERENCE TAKEOFF GROSS WEIGHT
		OAT OR SAT
		TAKEOFF RUNWAY WIND
		TAKEOFF RUNWAY CONDITION
		TAKEOFF FLAPS
		TAKEOFF THRUST RATING
		VTR PERCENTAGE
		SELECTED TEMPERATURE
		BARO SETTING
		FLAP/SLAT CONFIGURATION
		THRUST REDUCTION ALTITUDE
		ACCELERATION ALTITUDE
		ENGINE-OUT ACCELERATION ALTITUDE
RT	REQUIRED TIME OF ARRIVAL	Consists of a fixed format, fixed order field
	EXAMPLE: /RTVAMPS,143000	
	<u>IEI CONTENT</u>	
	RTA WAYPOINT IDENT	
	RTA TIME	
	OPTIONAL RTA CONSTRAINT	
RW	RUNWAY DATA	Consists of a fixed-list entry format field consisting of data for up
		to six runway/intersection combinations followed by a departure

airport

BASIC IEIS AND ASSOCIATED ELEMENTS

EXAMPLE: /RW13R,A9,PO9,,0,1125,2613,2850,P23,U05,250015,1,15,1,08,P38,131139147,0,

15,1135,,130137145.31L,ETC:KBFI

IEI CONTENT

LIST ENTRY:

TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION

POSITION SHIFT

RUNWAY LENGTH REMAINING

INVALID FLAG

TRIM

REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT

OAT OR SAT

TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY WIND TAKEOFF RUNWAY CONDITION

TAKEOFF FLAPS

TAKEOFF THRUST RATING

VTR PERCENTAGE

ASSUMED TEMPERATURE

TAKEOFF SPEEDS

ALTERNATE THRUST RATING

ALTERNATE FLAPS ALTERNATE TRIM

ALTERNATE LIMIT TAKEOFF GROSS WEIGHT

ALTERNATE TAKEOFF SPEEDS

ALTERNATE ASSUMED TEMPERATURE

FLAP/SLAT CONFIGURATION

ALTERNATE FLAP/SLAT CONFIGURATION

ALTERNATE VTR PERCENTAGE

DEPARTURE AIRPORT IDENT

BARO SETTING

THRUST REDUCTION ALTITUDE

ACCELERATION ALTITUDE

ENGINE-OUT ACCELERATION ALTITUDE

NOISE ABATEMENT END ALTITUDE

NOISE ABATEMENT SPEED

NOISE ABATEMENT DERATE THRUST

NOISE ABATEMENT THRUST

NOISE ABATEMENT START ALTITUDE

SN MESSAGE SEQUENCE

Consists of a variable length format field defining the message

sequence number.

EXAMPLE: /SN12345

IEI CONTENT

MESSAGE SEQUENCE NUMBER

SP <u>SCRATCHPAD</u>

Consists of a variable length field that contains the contents of

the CDU scratch pad.

EXAMPLE: /SPSCRATCHPADMESSAGE

IEI CONTENT SCRATCHPAD

Consists of a fixed length field.

TS TIME STAMP

EXAMPLE: /TS152533,200290

IEI CONTENT

GREENWICH MEAN TIME

	BASIC IEIS AND A	ASSOCIATED ELEMENTS
WD	ENROUTE WIND DATA	Consists of an altitude and a variable length list of entries that include the waypoint, the waypoint winds that apply to that altitude, the waypoint temperature, and the waypoint tropopause altitude.
	EXAMPLE: /WD310,SEA,120015,350M35,60000.	N04030W120,130090,,55000
	IEI CONTENT	
	WIND ALTITUDE	
	LIST ENTRY: WAYPOINT NAME OR POSITION	
	WAYPOINT WIND	
	WAYPOINT ALTITUDE/OAT	
	WAYPOINT TROPOPAUSE ALTITUDE	
WQ	WIND REQUEST	Consists of a list of elements defining altitudes for which winds are requested, followed by a list of elements defining waypoints in the route for which the request is being made.
	EXAMPLE: /WQ350.370.390.410:SEA.N4030W1	10.ORD.ETC
	IEI CONTENT LIST ENTRY: WIND LEVEL ALTITUDE	
	LIST ENTRY: WIND LEVEL WAYPOINT	
POS	POSITION REPORT	Consists of elements used to define a position report.
	EXAMPLE: POSN47261W122185,SEA,093118,3	50,ORTIN,093436,BARRO,M32,120015,0485,784
	<u>IEI CONTENT</u>	
	CURRENT POSITION	
	(CROSSED) WAYPOINT IDENT GREENWICH MEAN TIME	
	CURRENT ALTITUDE	
	GOTO (NEXT) WAYPOINT IDENT	
	ETA AT GOTÓ WAYPOINT	
	GOTO+1 (FOLLOWING) WAYPOINT IDENT	
	STATIC AIR TEMPERATURE (SAT)	
	ACTUAL WIND	
	FUEL REMAINING TARGET MACH	
REJ	REJECT	Consists of the uplinked IMI, time uplink is received and a list of
		error codes.
	REJPWI,HHMMSS,103,,006,CB/.108,,CB,/CB.109),,001,NOVALIDIEI/TShhmmss,mmddyy
	UPLINKED IMI	
	TIME UPLINK RECEIVED LIST ENTRY:	
	ERROR TYPE CODE	
	ERROR DATA CODE	
	LITERAL ERROR DATA	
	EXTENDED REJECTION DATA	
RES	<u>RESPONSE</u>	Consists of the uplinked IMI, time uplink is received and a list of
	EVAMDI E.	error codes.
AA	EXAMPLE: COMPANY PREFERRED ALTERNATES	RESFPN/AC,073 Consists of a fixed format, fixed order field.
/ V7	REQUEST	Consists of a fixed format, fixed order field.
	EXAMPLE: /AAN47261W122185,BOE123,KSEA,	KSFO,SEASFO

IEI CONTENT

CURRENT POSITION FLIGHT NUMBER

DEPARTURE AIRPORT IDENT

	BASIC IEIS AND A	SSOCIATED ELEMENTS
	ARRIVAL AIRPORT IDENT	
	COMPANY ROUTE	
AB	ALTERNATES FLIGHT LIST REQUEST	Consists of a fixed format, fixed order field.
	EXAMPLE: /ABN47261W122185,BOE123,KSEA,	KSFO, SEASFO
	<u>IEI CONTENT</u>	
	CURRENT POSITION	
	FLIGHT NUMBER	
	DEPARTURE AIRPORT IDENT	
	ARRIVAL AIRPORT IDENT	
	COMPANY ROUTE	Operated of a control language list of autoing of alternate aircont
AE	COMPANY PREFERRED ALTERNATES DATA	Consists of a variable length list of entries of alternate airport information followed by fixed format, fixed order fields.
		·
	EXAMPLE:/AEKSEA,1,09020,350P10,HUMPP,KM	1.WH,2,080100,300M5,ELN:300,1290
	<u>IEI CONTENT</u>	
	LIST ENTRY	
	COMPANY PREFERRED ALTN IDENT	
	COMPANY PREFERRED ALTN PRIORIT COMPANY PREFERRED ALTN WIND	ĭ
	COMPANY PREFERRED ALTH WIND	DE/OAT
	COMPANY PREFERRED ALTN ALTITUDE	DETOAT
	COMPANY PREFERRED ALTN SPEED	
	COMPANY PREFERRED ALTN OFFSET	
Al	ALTERNATE INFORMATION DATA	Consists of a variable length list of entries consisting of alternate
		information
	EXAMPLE: /AIKSFO,D,1423,230,120045,M15.KL	AX,M,1700,310,325020,P34
	<u>IEI CONTENT</u>	
	LIST ENTRY:	
	ALTERNATE IDENT	
	ALTERNATE TYPE	
	DISTANCE TO ALTERNATE	
	ALTITUDE TO ALTERNATE	
	ESTIMATED WIND TO ALTERNATE	
AN	TEMPERATURE AT ALTERNATE ALTERNATES INHIBIT DATA	Consists of a variable length list of airports inhibited from being
AIN	ALILINATES INTIIDIT DATA	alternate airports
	EXAMPLE: /ANKPAE.KSEA	
	IEI CONTENT	
	LIST ENTRY: ALTN INHIBIT	
AP	SUPPLEMENTAL NDB AIRPORTS	Consists of a list of airports to be included in the supplemental
		navigation data base
	EXAMPLE: /APKABC,N39152W121185,01740,E1	0.KDEF,N37440W119118,00900,W12
	<u>IEI CONTENT</u>	
	LIST ENTRY:	
	AIRPORT IDENT	
	AIRPORT LAT/LON	
	AIRPORT ELEVATION	
۸0	AIRPORT MAGVAR	Consists of a variable length list of alternate airports followed by
AQ	WEATHER REQUEST	Consists of a variable length list of alternate airports followed by the primary airport
	EXAMPLE: /AQKSFO.KLAX.KONT:KPHX	the primary disport

IEI CONTENT LIST ENTRY:

COMPANY PREFERRED ALTN IDENT

BASIC IEIS AND ASSOCIATED ELEMENTS

		ASSOCIATED ELEMENTS
AR	ARRIVAL AIRPORT IDENT ALTERNATE INFORMATION REPORT	Consists of a variable length list consisting of alternate
AIX	ALTERNATE IN ORMATION REPORT	destination data.
	EXAMPLE: /ARKSFO,D,132456,0120,0123,310,3	
	IEI CONTENT	
	LIST ENTRY	
	ALTERNATE IDENT	
	ALTERNATE TYPE	
	ETA AT ALTERNATE DESTINATION	
	FUEL REMAINING AT ALTERNATE	
	DISTANCE TO ALTERNATE	
	ALTITUDE TO ALTERNATE	
	CRUISE WIND TO ALTERNATE	On a list of a called by board Park and all and a fall of the
AS	ALTERNATES FLIGHT LIST DATA	Consists of a variable length list consisting of alternate
	EXAMPLE: /ASKDEN,18030,350M5.KLAX,02040	destination wind and temperature data.
	LIST ENTRY:	J,330F 10
	ALTN FLIGHT LIST IDENT	
	ALTN FLIGHT LIST WIND	
	ALTN FLIGHT LIST ALTITUDE/OAT	
AW	ALTERNATE WIND DATA	Consists of a multi-parameter element defining the altitude and
		wind.
	EXAMPLE: /AW220035040	
	IEI CONTENT	
	ALTITUDE AND WIND	
СВ	CLIMB WIND DATA	Consists of a list of up to ten altitude wind entries.
	EXAMPLE: /CB350270060.310270045.14026004 IEI CONTENT	40.100230020
	LIST ENTRY: ALTITUDE AND WIND	
CQ	CLIMB FORECAST REQUEST	Consists of a single parameter element defining the top of climb
	<u></u>	altitude.
	EXAMPLE: /CQ370	
	<u>IEI CONTENT</u>	
	CRUISE ALTITUDE	
CS	CLIMB TEMPERATURE DATA	Consists of a list of up to ten altitude temperature entries.
	EXAMPLE: /CS120P05.250M30.300M40	
	IEI CONTENT	
	LIST ENTRY: ALTITUDE AND OAT	
CU	CLIMB TEMPERATURE REQUEST	Consists of a single parameter element defining the top of climb
	EXAMPLE: /CS370	altitude.
	IEI CONTENT	
	CRUISE ALTITUDE	
DI	DOWNLINK TIME INFORMATION	Consists of a fixed format, fixed order field containing time
		information.
	EXAMPLE: /D105163251635.051636	
	<u>IEI CONTENT</u>	
	TRIGGER TRIPPED TIME	
	DOWNLINK GENERATION TIME	
	GREENWICH MEAN TIME	Operators of a Broad language Bold of Policy One of the Color of the
ED	SUPPLEMENTAL EFFECTIVITY DATE	Consists of a fixed length field defining the effectivity date of the
	EXAMPLE: /EDJAN0191/	supplemental navigation data base.
	IEI CONTENT	
	ILI GOITILITI	

BASIC IEIS AND ASSOCIATED ELEMENTS

ᆮ	\sim τ	I\ /	ITV	DAT	
ᄗ	UΙ	IV	II T	DΑI	- ⊏/

FLIGHT PLAN HISTORY

Consists of a variable length list of parameters that are linked to the different waypoints of the flight plan.

EXAMPLE: /FHLACRE,132034,240K,0700,0197,P23,132016,235,Y,150,012,ILS32R,1100,etc

IEI CONTENT LIST ENTRY:

FΗ

PREDICTED WAYPOINT IDENT ETA AT PREDICTED WAYPOINT

PREDICTED AIRSPEED

ALTITUDE TO PREDICTED WAYPOINT

FUEL REMAINING AT PREDICTED WAYPOINT

OAT AT PREDICTED WAYPOINT WIND AT PREDICTED WAYPOINT TAS AT PREDICTED WAYPOINT

PROCEDURE INDICATOR

COURSE INTO PREDICTED WAYPOINT DISTANCE TO PREDICTED WAYPOINT

PROCEDURE IDENTIFIER CURRENT GROSS WEIGHT

FP FUEL PLANNING

Consists of a fixed format, fixed order field.

EXAMPLE: /FP1605,1100,12,220,08,140,110,P26,360

IEI CONTENT

TAKEOFF GROSS WEIGHT LANDING GROSS WEIGHT

TAXI FUEL
TRIP FUEL
RESERVE FUEL
ALTERNATE FUEL
FINAL FUEL
EXTRA FUEL
PLAN OR BLOCK FUEL

FR FORECAST REPORT

Consists of multiple variable length lists of elements defining wind and temperature forecasts for climb, cruise, and descent.

 ${\sf EXAMPLE:} \ / {\sf FR020120015.100125020.300130040:020P15.250M30:SEA,280130035,300M40.SEA,320130045.}$

ORD,280140035,300M45.ORD,320140050:040120015.120125020.300130040:020P15.250M30

IEI CONTENT

LIST ENTRY: (CLIMB) ALTITUDE AND WIND LIST ENTRY: (CLIMB) ALTITUDE AND OAT

LIST ENTRY:

WAYPOINT NAME OR POSITION WAYPOINT ALTITUDE AND WIND WAYPOINT ALTITUDE AND OAT

LIST ENTRY: (DESCENT) ALTITUDE AND WIND LIST ENTRY: (DESCENT) ALTITUDE AND OAT

GL GENERAL DATA

Consists of a fixed order field.

EXAMPLE: /GL290690,757-200,,BE49005001,NWA105,BFMWH01,KBFI,KMWH,10,1750,

PW2040,KPDX,BFIMWO02.230.255

IEI CONTENT

DATE

AIRCRAFT TYPE ENGINE THRUST

NAVIGATION DATA BASE IDENT

FLIGHT NUMBER COMPANY ROUTE

BASIC IEIS AND ASSOCIATED ELEMENTS

DEPARTURE AIRPORT IDENT ARRIVAL AIRPORT IDENT

COST INDEX

ZERO FUEL WEIGHT

ENGINE TYPE

ALTERNATE DESTINATION ALTERNATE COMPANY ROUTE

CRUISE ALTITUDE CENTER OF GRAVITY

GP GENERAL PREDICTIONS

Consists of a fixed format, fixed order field.

EXAMPLE: /GPKBFI,140000,0201,0280,230,2700,2180,,,,,,255,KSEA,0140,14033,206,230

IEI CONTENT

ARRIVAL AIRPORT IDENT ETA AT DESTINATION

DISTANCE TO DESTINATION
PREDICTED DESTINATION FUEL
ACTIVE CRUISE ALTITUDE
TAKEOFF GROSS WEIGHT
LANDING GROSS WEIGHT

TOTAL FUELFOB

PLAN OR BLOCK FUEL

TRIP FUEL RESERVE FUEL EXTRA FUEL FINAL FUEL

CENTER OF GRAVITY ALTERNATE DESTINATION

ALTERNATE FUEL ALTERNATE TIME

DISTANCE TO ALTERNATE ALTERNATE CRUISE ALTITUDE

MQ MOD WIND REQUEST

Consists of a list of elements defining altitudes for which winds are requested, followed by a list of elements defining waypoints in the modified route for which the request is being made.

EXAMPLE: /MQ350.370.390.410:SEA.N4030W110.ORD.ETC

IEI CONTENT

LIST ENTRY: WIND LEVEL ALTITUDE LIST ENTRY: WIND LEVEL WAYPOINT

MW MEAN WIND DATA

Consists of a fixed order, fixed format field.

EXAMPLE: /MWKBFI,KMWH,P045 IEI CONTENT

DEPARTURE AIRPORT IDENT ARRIVAL AIRPORT IDENT

MEAN WIND

NV <u>SUPPLEMENTAL NDB NAVAIDS</u>

EXAMPLE: /NVABCD,N25131W108473,11300,VTH,01250,W11

<u>IEI CONTENT</u> LIST ENTRY:

> NAVAID IDENT NAVAID LAT/LON FREQUENCY CLASS OF NAVAID NAVAID ELEVATION NAVAID MAGVAR

DACIC IEL	AND	ASSOCIAT	CED ELEN	/ENITO
BASIC IEIS	SAND	ASSUCIAI	ED ELEN	/IEN I O

ists of a fixed format field defining page information
ists of a fixed format field defining FMC flight phase.
ists of a fixed format field defining I MC flight phase.
ists of a fixed format, fixed order field.
20,500780
.0,300700
ists of a fixed order field.
ists of a fixed order field.
0150,23,1,180,180,100250,100250,,,,,1020,P14,M1,5,130,
7100,20,1,100,100,100200,100200,,,,,1020,111,,111,0,100,
ists of a fixed format, fixed order field.

IEI CONTENT

BASIC IEIS AND ASSOCIATED ELEMENTS

CURRENT POSITION
CROSSED WAYPOINT IDENT
GREENWICH MEAN TIME
CURRENT ALTITUDE
GOTO (NEXT) WAYPOINT IDENT
ETA AT GOTO WAYPOINT

GOTO + 1 (FOLLOWING) WAYPOINT IDENT

STATIC AIR TEMPERATURE (SAT)

ACTUAL WIND

FUEL REMAINING

TARGET MACH

CRUISE SPEED MODE

ENGINE OUT STATUS

ZERO FUEL WEIGHT

RA <u>ALTERNATE ROUTE</u>

A variable length field that consists of flight plan elements that replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance

EXAMPLE:

THE FORMAT IS THE SAME AS DESCRIBED FOR THE RI IEI DESCRIPTION.

RM ROUTE MODIFICATION A variable length field that the

A variable length field that that consists of flight plan elements that replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance language. The RM cannot contain the CR: or :DA: flight plan element identifiers.

THE FORMAT IS THE SAME AS DESCRIBED FOR THE RI IEI DESCRIPTION WITH THE ADDITION OF THE

FOLLOWING: LO: LATERAL OFFSET

RR RUNWAY DATA REPORT

Consists of a fixed format, fixed order field.

EXAMPLE: /RRKBFI,13R,A9,P09,,155,1125,2855,,P25,U35,250015,1,15,2,,P40,108119126

IEI CONTENT

DEPARTURE AIRPORT IDENT TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION POSITION SHIFT

RUNWAY LENGTH REMAINING TAKEOFF CENTER OF GRAVITY

TRIM

CURRENT GROSS WEIGHT

REFERENCE TAKEOFF GROSS WEIGHT

OAT OR SAT

TAKEOFF RUNWAY SLOPE
TAKEOFF RUNWAY WIND
TAKEOFF RUNWAY CONDITION

TAKEOFF FLAPS

TAKEOFF THRUST RATING

VTR PERCENTAGE

SELECTED TEMPERATURE

TAKEOFF SPEEDS BARO SETTING

FLAP/SLAT CONFIGURATION THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE

ENGINE-OUT ACCELERATION ALTITUDE

Contains a list of waypoints for which data is to be included in a

top of descent downlink.

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS SD SUPPLEMENTAL NAVIGATION DATA Consists of an effectivity date and four separate lists that define **BASE** the supplemental data base airport, navaid, waypoint and runway elements in that order. EXAMPLE: /SDJAN0190,KABC,N45240W119235,00911,W23.KJLL,etc:ABC,N45354W122506,11550, VTH,00530,W21.SEE,etc:ABCDE,N45354W122506,,, ,W22.WPT01,etc:05L,LFBO,N33125E010259,005,131,11125.02R,etc **IEI CONTENT EFFECTIVITY DATA** LIST ENTRY: AIRPORT IDENT AIRPORT LAT/LON AIRPORT ELEVATION AIRPORT MAGVAR LIST ENTRY: **NAVAID IDENT** NAVAID LAT/LON **FREQUENCY CLASS OF NAVAID** NAVAID ELEVATION **NAVAID MAGVAR** LIST ENTRY: WAYPOINT IDENT WAYPOINT LAT/LON REFERENCE IDENT REFERENCE LAT/LON RADIAL/DISTANCE WAYPOINT MAGVAR LIST ENTRY: **RUNWAY IDENT** REFERENCE AIRPORT IDENT **RUNWAY LAT/LON RUNWAY COURSE RUNWAY ELEVATION RUNWAY LENGTH** TD TOP OF DESCENT REPORT Consists of top of descent time and location, and current weight. EXAMPLE: /TD134230,N59151W132251,3153,001 **IEI CONTENT** TOP OF DESCENT ETA TOP OF DESCENT LOCATION **CURRENT GROSS WEIGHT** STIMULUS CODE WE WIND VECTOR MAGNITUDE DIFFERENCE Consists of a fixed length field used to define the downlink trigger threshold for wind discrepancies. EXAMPLE: /WE020 **IEI CONTENT** WIND VECTOR MAGNITUDE DIFFERENCE WI WAYPOINT INFORMATION Contains a list of waypoints and their ETAs. EXAMPLE: /WIBDX,143205.CGC,144510.N33E010,153512 **IEI CONTENT** LIST ENTRY: WAYPOINT NAME OR POSITION ETA AT PREDICTED WAYPOINT

WL

WAYPOINT LIST

BASIC IEIS AND ASSOCIATED ELEMENTS

EXAMPLE: /WLBDX.CGC.NSG.N33E010

<u>IEI CONTENT</u> LIST ENTRY:

WAYPOINT NAME OR POSITION

WM ENROUTE WIND MODIFICATION

Consists of an altitude and a variable length list of entries that include the waypoint, the waypoint winds that apply to that altitude, the waypoint temperature, and the waypoint tropopause

EXAMPLE: /WM310,SEA,120075,350M35,60000.N04030W120,130090,,55000

IEI CONTENT WIND ALTITUDE LIST ENTRY:

WAYPOINT NAME OR POSITION

WAYPOINT WIND

WAYPOINT ALTITUDE/OAT

WAYPOINT TROPOPAUSE ALTITUDE

WP SUPPLEMNTAL NDB WAYPOINTS

Consists of a list of waypoints to be included in the supplemental navigation data base.

EXAMPLE: /WPEFGH,N21421W101113,SRP,1090020,W09

<u>IEI CONTENT</u> LIST ENTRY:

> WAYPOINT IDENT WAYPOINT LAT/LON REFERENCE IDENT RADIAL/DISTANCE WAYPOINT MAGVAR

WR ALTERNATE AIRPORT WEATHER REQUEST

Consists of a variable length list of entries defining destination and alternate identifiers.

EXAMPLE: /WRKLAX.KSFO.KPHX

IEI CONTENT

LIST ENTRY: DESTINATION AND ALTERNATE IDENTS

4838

4839

Section 8 Element Definitions

V = VARIABLE

F = FIXED

4840 4841

4842

4843

4844 4845

4846

4847

4848

4849

4850

4851 4852 This section contains an alphabetical table of defined elements indicating the formats and attributes of each element. This section will be updated as the need for new elements is identified. Users are requested to advise the AEEC staff when such a need arises.

Notes:

- 1. This element may require one or more elements to completely define the desired data.
- 2. Some implementations require that this element be uplinked in a fixed length format of maximum character length.
- 3. See Section 10 for further definition of codes.
- 4. Millibars = Hectopascals = 100 newton/meter2

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ACARS CONFIG IDENT NUMBER	V	S	AN	10			
ACCELERATION ALTITUDE	V	S	N	5	1	Feet	
ACT PLAN CRUISE ALTITUDE	V	S	N	3	100	Feet	
ACTIVE CRZ WAYPOINT	V	S	AN	13			
ACTIVE CRZ WAYPOINT/WIND	V	S	AN	13			
ACTIVE DESCENT WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2
ACTUAL WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
AIRCRAFT TYPE	V	S	AN	11			
AIRPORT ELEVATION	V	S	N	5	1	Feet	
AIRPORT IDENT	V	S	AN	4			
AIRPORT LAT/LON	F	S	AN	13			

A = ALPHA

AN = ALPHANUMERIC

N = NUMERIC

D = DIRECTIONAL

S = SINGLE PARAMETER

M = MULTIPARAMETER

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
AIRPORT MAGVAR	V	S	AN	3			
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
ALTERNATE ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
ALTERNATE COMPANY ROUTE	V	S	AN	10			
ALTERNATE CRUISE ALTITUDE	V	S	N	3	100	Feet	
ALTERNATE DESTINATION	V	S	AN	4			1
ALTERNATE FLAP/SLAT							
CONFIGURATION	F	S	N	1			
ALTERNATE FLAPS	V	S	N	2	1	Degrees	
ALTERNATE FUEL	V	S	N	5	0.1	Klbs	
ALTERNATE IDENT	V	S	AN	10			

ALTERNATE LIMIT TAKEOFF

 $V = VARIABLE \qquad S = SINGLE PARAMETER \qquad A = ALPHA \qquad N = NUMERIC \\ F = FIXED \qquad M = MULTIPARAMETER \qquad AN = ALPHANUMERIC \qquad D = DIRECTIONAL$

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
GROSS WT	V	S	N	5	0.1	Klbs	
ALTERNATE TAKEOFF SPEEDS	F	М	N	9			
V1	F	S	N	3	1	Knots	
VR	F	S	N	3	1	Knots	
V2	F	S	N	3	1	Knots	
ALTERNATE THRUST RATING	F	S	N	1		0= No derate	
						1= Derate 1	
						2= Derate 2	
						I	
						9= Derate 9	
ALTERNATE TIME	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ALTERNATE TRIM	V	D	AN	5			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	4	0.01	Degrees	
ALTERNATE TYPE	F	S	А	1		M=Missed	1
						Appr	
						D=Dir to	
						from	
						Present Pos	

V = VARIABLE F = FIXED

S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC N = NUMERIC

D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ALTERNATE VTR PERCENTAGE	V	S	N	2	1	Percent	
ALTERNATE WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
ALTITUDE AND WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
ALTITUDE TO ALTERNATE	V	S	N	3	100	Feet	1
ALTITUDE TO PREDICTED WPT	V	S	N	4	10	Feet	
ALTN FLIGHT LIST ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	N	3	100		
DIRECTIONAL	F	D	Α	1			
MAGNITUDE	V		N	2	1		
ALTN FLIGHT LIST IDENT	V	S	AN	4			
ALTN FLIGHT LIST WIND	V	D	N	6			
DIRECTIONAL	F		N	3	1		
MAGNITUDE	V		N	3	1		
ALTN INHIBIT	V	S	AN	4			
ARRIVAL AIRPORT IDENT	V	S	AN	4			
ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUMERIC
D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Elemei Descript		Туре	Length Type	Elem Type	Char Length	Scale	Units No	otes
MAGNITUDE	,	V		N	2	1	°C	
BARO SETTING	,	V	D	AN	5			
DIRECTIONAL	1	F		Α	1		H=QNH	
							E=QFE	
MAGNITUDE	,	V		N	4	1	Hecto-pascals 4	
CENTER IRS POSITION	ı	F	S	AN	13			
DIRECTIONAL	1	F		Α	1		N=North	
							S=South	
DEGREES	ı	F		N	2	1	Degrees	
MINUTES	ı	F		N	3	0.1	Minutes	
DIRECTIONAL	ı	F		Α	1		E=East	
							W=West	
DEGREES	1	F		N	3	1	Degrees	
MINUTES	1	F		N	3	0.1	Minutes	
CENTER OF GRAVITY	,	V	S	N	3	0.1	Percent	
CLASS OF NAVAID	,	V	S	Α	7			
CLIMB CAS LIMITS	I	F	M	N	6			
MINIMUM CLB CAS	I	F	S	N	3	1	Knots	
MAXIMUM CLB CAS	İ	F	S	N	3	1	Knots	
CLIMB DERATE	1	F	S	N	1		N=as required	
							N=0 (NoDerate)	
							N=1 (Derate 1)	
							N=2 (Derate 2)	
CLIMB MACH LIMITS	ı	F	М	N	6			
MINIMUM CLB MACH		F	S	N	3	0.001	Mach	
ARIABLE XED	S = SINGLE PARAMET		A = ALP AN = AL	HA PHANUMEI	RIC		UMERIC IRECTIONAL	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MAXIMUM CLB MACH	F	S	N	3	0.001	Mach	
CLIMB SPEED LIMIT	F	М	N	6			
ALTITUDE	F	S	N	3	100	Feet	
SPEED	F	S	N	3	1	Knots (CAS)	
CLIMB TRANSITION ALTITUDE	V	S	N	3	100	Feet	
CLIMB WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
COMPANY DISTRIBUTION	V	S	AN	10			
COMPANY PREFERRED ALTN ALTITUDE	V	S	N	3	100	Feet	
COMPANY PREFERRED ALTN ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	N	3	100		
DIRECTIONAL	F	D	Α	1			
MAGNITUDE	V		N	2	1		
COMPANY PREFERRED ALTN IDENT	V	S	AN	4			
COMPANY PREFERRED ALTN OFFSET	V	D	AN	3			
DIRECTIONAL	F		Α	1			
DISTANCE	V		N	2	1		
COMPANY PREF ALTN OVERHEAD FIX	V	S	AN	13			
COMPANY PREFERRED ALTN PRIORITY	F	S	N	1			
COMPANY PREFERRED ALTN SPEED	V	М	N	4			
TYPE	F	S	N	1			
SPEED VALUE	V	S	N	S	1, 0.001		

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUMERIC
D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
COMPANY PREFERRED ALTN WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1		
MAGNITUDE	V	S	N	3	1		
COMPANY ROUTE	V	S	AN	10			
COST INDEX	V	S	N	4			
COURSE IN	F	S	N	3	1	Degrees	
COURSE INTO PREDICTED WAYPOINT	V	S	N	3	1	Degrees	1
CROSS TRACK DEVIATION	V	D	AN	4			
DIRECTIONAL	F		Α	1		L or R	
DISTANCE	V		N	3	0.1	NM	
CROSSED WAYPOINT IDENT	V	S	AN	13			
CRUISE ALTITUDE	V	S	N	3	100	Feet	
CRUISE CAS LIMITS	F	М	N	6			
MINIMUM CRZ CAS	F	S	N	3	1	Knots	
MAXIMUM CRZ CAS	F	S	N	3	1	Knots	
CRUISE CENTER OF GRAVITY	V	S	N	3	0.1	Percent	
CRUISE MACH LIMITS	F	М	N	6			
MINIMUM CRZ MACH	F	S	N	3	0.001	Mach	
MAXIMUM CRZ MACH	F	S	N	3	0.001	Mach	
CRUISE SPEED MODE	V	S	AN	17		Active Cruise	
						Page Title	
CRUISE WAYPOINT WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2
CRUISE WIND	V	М	N	6			

V = VARIABLE

S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC

F = FIXED M = MULTIPARAME

AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2
CRUISE WIND TO ALTERNATE	V	М	N	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
CURRENT ALTITUDE	V	S	N	3	100	Feet	
CURRENT CALIBRATED AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		Α	1		K or M	
CURRENT GROSS WEIGHT	V	S	N	5	0.1	Klbs	
CURRENT GROSS WEIGHT AT PRED WPT	V	S	N	5	0.1	Klbs	
CURRENT GROUND SPEED	F	S	N	3	1	Knots	
CURRENT POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
CURRENT TRUE AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		Α	1		K or M	

V = VARIABLE F = FIXED S = SINGLE PARAMETER

M = MULTIPARAMETER

A = ALPHA

N = NUMERIC

AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	1	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
CURRENT VERTICAL SPEI	ED	V	D	AN	5			
DIRECTIONAL		F		Α	1		U or D	
SPEED VALUE		V		N	4	1	Feet/min	
DATE		F	М	N	6			
DAY		F	S	N	2		Day	
MONTH		F	S	N	2		Month	
YEAR		F	S	N	2		Year	
DEPARTURE AIRPORT IDE	ENT	V	S	AN	4			
DESCENT CAS LIMITS		F	М	N	6			
MINIMUM DES CAS		F	S	N	3	1	Knots	
MAXIMUM DES CAS		F	S	N	3	1	Knots	
DESCENT ISA DEVIATION		V	D	AN	3			
DIRECTIONAL		F		Α	1		P=Plus	
							M=Minus	
MAGNITUDE		V		N	2	1	°C	
DESCENT MACH LIMITS		F	М	N	6			
MINIMUM DES MACH		F	S	N	3	0.001	Mach	
MAXIMUM DES MACH		F	S	N	3	0.001	Mach	
DESCENT SPEED LIMIT		F	М	N	6			
ALTITUDE		F	S	N	3	100	Feet	
SPEED		F	S	N	3	1	Knots (CAS)	
DESCENT TRANSITION AL	TITUDE	V	S	N	3	100	Feet	
DESCENT WIND		V	М	N	9			
ALTITUDE		F	S	N	3	100	Feet	2
DIRECTIONAL		F	S	N	3	1	Degrees	
	S = SINGLE PARA M = MULTIPARAM		A = ALF $AN = AL$	PHA PHANUME	RIC		UMERIC IRECTIONAL	

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
MAGNITUDE	V	S	N	3	1	Knots	
DESIRED TRACK	V	S	N	3	1	Degrees	
DESTINATION AND ALTERNATE IDENTS	V	S	AN	10			
DESTINATION ISA DEVIATION	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
DESTINATION QNH	V	S	N	4	1	Hecto pascals	
DESTINATION RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		N	2			
RUNWAY SUFFIX	F		Α	1		L=Left	
						C=Center	
						R=Right	
						O=None	
DESTINATION TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
DISTANCE TO ALTERNATE	V	S	N	4	1	NM	
DISTANCE TO DESTINATION	V	S	N	4	1	NM	
DISTANCE TO PREDICTED WAYPOINT	V	S	N	4	1	NM	
DISTANCE TO WAYPOINT	V	S	N	4	1	NM	
DOWNLINK GENERATION TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	

AN = ALPHANUMERIC D = DIRECTIONAL

M = MULTIPARAMETER

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1		
DRAG FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
EFFECTIVITY DATE	F	М	AN	7			
MONTH	F	S	Α	3		Month	
DAY	F	S	Α	2		Day	
YEAR	F	S	N	2		Year	
ENGINE-OUT ACCELERATION							
ALTITUDE	V	S	N	5	1	Feet	
ENGINE-OUT STATUS	V	S	N	1		0=All Engine	
						1=Engine Out	
ENGINE THRUST	F	S	N	3	0.1	Klbs	
ENGINE TYPE	V	S	AN	15			
ENTERED LANDING FLAP/SLAT CONFIGURATION	F	S	N	1			
ENTERED LANDING SPEED	F	S	N	3	1	Knots (CAS)	
ENTERED IRS HEADING	F	S	N	3	1	Degrees	
ERROR DATA CODE	F	S	N	3			3
ERROR TYPE CODE	F	S	N	3			3
ESTIMATED WIND TO ALTERNATE	V	М	N	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2

V = VARIABLE F = FIXED S = SINGLE PARAMETER

M = MULTIPARAMETER

A = ALPHA

N = NUMERIC

AN = ALPHANUMERIC

D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ETA AT ALTERNATE DESTINATION	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT DESTINATION	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT GOTO WAYPOINT	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT PREDICTED WAYPOINT	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA CHANGE VARIABLE	F	S	N	1	1	Minutes	
EXTENDED REJECTION DATA	V	S	AN	25			
EXTRA FUEL	V	D	AN	6			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	5	0.1	Klbs	
FINAL FUEL	V	S	N	5	0.1	Klbs	
FLAP/SLAT CONFIGURATION	F	S	N	1			

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUMERIC
D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
FLIGHT NUMBER	V	S	AN	10		
FLIGHT PATH ANGLE	V	D	AN	3		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
ANGLE	V		N	2	0.1	Degrees
FLIGHT PHASE	F	S	N	1		0= Preflight
						1=Takeoff
						2=Climb
						3=Cruise
						4= Descent
						5= Approach
						6=Go Around
						7=Done
FMC BEST POSITION	F	S	AN	13		
DIRECTIONAL	F		Α	1		N=North
						S=South
DEGREES	F		N	2	1	Degrees
MINUTES	F		N	3	0.1	Minutes
DIRECTIONAL	F		Α	1		E=East
						W=West
DEGREES	F		N	3	1	Degrees
MINUTES	F		N	3	0.1	Minutes
FMC POSITION PRIOR TO POS UPDATE	F	S	AN	13		

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
DIRECTIONAL	F		A	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
FMC SOFTWARE PART NUMBER	F	S	N	10			
FMC SYSTEM DATE	F	М	N	6			
DAY	F	S	N	2	1		
MONTH	F	S	N	2	1		
YEAR	F	S	N	2	1		
FMC SYSTEM TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
FREQUENCY	F	S	N	5	0.01	MHz	
FUEL AT DESTINATION	V	S	N	5	0.1	Klbs	
FUEL FLOW FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
FUEL REMAINING	V	S	N	5	0.1	Klbs	
FUEL REMAINING AT ALTN DEST	V	S	N	5	0.1	Klbs	

AN = ALPHANUMERIC D = DIRECTIONAL

M = MULTIPARAMETER

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
FUEL REMAINING AT PREDICTED WPT	V	S	N	5	0.1	Klbs	
GOTO (NEXT) WPT IDENT	V	S	AN	13			
GOTO+1 (FOLLOWING) WPT IDENT	V	S	AN	13			
GREENWICH MEAN TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Seconds	
GROUND ADDRESS	V	S	AN	7			
HOLD EFC TIME	F	М	N	4			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
IDLE FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
INACTIVE COMPANY ROUTE	V	S	AN	10			
INVALID FLAG	F	S	N	1		Nothing	
						0=Valid	
						1=Invalid	
IRS-C MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-L MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	

M = MULTIPARAMETER AN = ALPHANUMERIC D = DIRECTIONAL

F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
IRS-R MODE	F	S	N	1		1=Align
						2=Nav
						3=Attitude
IRS MONITOR	F	M	N	9		
LEFT IRS DRIFT	F	S	N	3	0.1	NM/hour
CENTER IRS DRIFT	F	S	N	3	0.1	NM/hour
RIGHT IRS DRIFT	F	S	N	3	0.1	NM/hour
LABEL CODE	F	S	N	3		
LANDING GROSS WEIGHT	V	S	N	5	0.1	Klbs
LEFT DME DISTANCE	V	S	N	4	0.1	NM
LEFT DME FREQUENCY	F	S	N	5	0.01	MHz
LEFT GNSS POSITION	F	S	AN	13		
DIRECTIONAL	F		Α	1		N=North
						S=South
DEGREES	F		N	2	1	Degrees
MINUTES	F		N	3	0.1	Minutes
DIRECTIONAL	F		Α	1		E=East
						W=West
DEGREES	F		N	3	1	Degrees
MINUTES	F		N	3	0.1	Minutes
LEFT ILS FREQUENCY	F	S	N	5	0.01	MHz

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	No
LEFT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
LEFT VOR BEARING	F	S	N	4	0.1	Degrees	
LEFT VOR FREQUENCY	F	S	N	5	0.01	MHz	
LITERAL ERROR DATA	V	S	AN	13			
LOCALIZER DEVIATION	V	D	AN	4		DDM	
DIRECTIONAL	F		Α	1		L = Left	
						R = Right	
MAGNITUDE	V		N	3	0.001		
MANEUVER MARGIN	V	S	N	3	0.01		
MAXIMUM CLIMB CAS	F	S	N	3	1	Knots	
MAXIMUM CLIMB MACH	F	S	N	3	0.001	Mach	
MAXIMUM CRUISE CAS	F	S	N	3	1	Knots	
MAXIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MAXIMUM DESCENT CAS	F	S	N	3	1	Knots	
MAXIMUM DESCENT MACH	I F	S	N	3	0.001	Mach	
MEAN WIND	V	D	AN	4			
DIRECTIONAL	F		Α	1		P=Plus	
	= SINGLE PARAMETER = MULTIPARAMETER	A = AL $AN = A$	PHA LPHANUME	ERIC		UMERIC IRECTIONAL	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						M=Minus	
MAGNITUDE	V		N	3	1	Knots	
MESSAGE SEQUENCE NUMBER	V	S	AN	10			
MINIMUM CLIMB CAS	F	S	N	3	1	Knots	
MINIMUM CLIMB MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE CAS	F	S	N	3	1	Knots	
MINIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE TIME	F	S	N	1	1	Minutes	
MINIMUM DESCENT CAS	F	S	N	3	1	Knots	
MINIMUM DESCENT MACH	F	S	N	3	0.001	Mach	
MINIMUM FUEL TEMPERATURE	V	D	AN	3		P=Plus	
DIRECTIONAL	F		Α	1		M=Minus	
MAGNITUDE	V		N	2	1	°C	
MINIMUM R/C - CLB	V	S	N	3	1	Feet/min	
MINIMUM R/C - CRZ	V	S	N	3	1	Feet/min	
MINIMUM R/C - ENG OUT	V	S	N	3	1	Feet/min	
MOD CRZ WAYPOINTS	V	S	AN	13			
MOD PLAN CRUISE ALTITUDE	V	S	N	3	100	Feet	
MONITOR CODE	F	S	N	2			
NAVAID ELEVATION	V	S	N	5	1	Feet	
NAVAID IDENT	V	S	AN	4			
NAVAID LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		Α	1		N=North	
						S=South	

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
NAVAID MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
NAVAID TYPE	F	S	Α	1		D=DME	
						V=VOR	
NAVIGATION DATA BASE IDENT	V	S	AN	10			
NETWORK ADDRESS	V	S	AN	7			
NOISE ABATEMENT END ALTITUDE	V	S	V	5	1	Feet	
NOISE ABATEMENT SPEED	F	S	N	3	1	Knots	
NOISE ABATEMENT DERATE THRUST	F	S	N	1		N=as required	
						N=0 (no noise derate Thrust)	
						N=1 (Derate 1)	
						N=2 (Derate 2)	
						N=3 (Max Climb)	
NOISE ABATEMENT THRUST	V	М	AN	6			
THRUST TYPE	F	S	Α	1		n=n1	

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

THRUST VALUE						
						N=N1
						E=EPR
	V	S	N	5	0.01	Percent or EPR
NOISE ABATEMENT START ALTITUDE	V	S	N	5	1	Feet
OAT OR SAT	V	D	AN	3		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
MAGNITUDE	V		N	2	1	°C
OAT AT PREDICTED WAYPOINT	V	D	AN	3		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
MAGNITUDE	V		N	2	1	°C
PAGE ID	V	М	AN	3		
PAGE NUMBER	V		N	2	1	
LAST PAGE FLAG	F		N	1		Blank= Page
						to Follow
						E=End
PAGE INFO	F	М	N	2		
PAGE NUMBER	F	S	N	1		
NUMBER OF PAGES	F	S	N	1		
PERF DEFAULTS CONFIG NO.	V	S	Α	10		
PERF FACTOR	V	D	AN	3		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
MAGNITUDE	V		N	2	0.1	Percent

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
PERFORMANCE DATA BASE IDENT	V	S	AN	10			
PLAN OR BLOCK FUEL	V	S	N	5	0.1	Klbs	
POSITION SHIFT	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
SHIFT	V		N	2	100	Feet	
PREDICTED AIRSPEED	F	D	AN	4			1
SPEED	F		N	3	1 or		
TYPE	F		Α	1	0.001	K=Knot	
						M=Mach	
PREDICTED DESTINATION FUEL	V	S	N	5	0.1	Klbs	1
PREDICTED FUEL REMAINING	V	S	N	5	0.1	Klbs	1
PREDICTED WAYPOINT IDENT	V	S	AN	13			
ACTIVE CRUISE ALTITUDE	V	S	N	3	100	Feet	
PROCEDURE INDICATOR	F	S	Α	1		Y=	1
						Proc.mbr.	
						N=Not	
						Proc.mbr.	
PROCEDURE IDENT	V	S	AN	6			1
PROCEDURE WAYPOINT	F	S	Α	1		Y or N	
QNH	V	S	N	4	1	Hecto pascals	4
QRH T/O SPD CONFIG NUM	V	S	А	10			
RADIAL/DISTANCE	F	М	AN	7			1

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
RADIAL	F	S	N	3	1	Degrees	
DASH	F	S	AN	1			
DISTANCE	F	S	N	3	1	NM	
RADIO MEASUREMENT	V	S	N	4	0.1	NM or degrees	
REFERENCE AIRPORT IDENT	V	S	AN	4			
REFERENCE CRZ WAYPOINT IDENT	V	S	AN	13			
REFERENCE IDENT	V	S	AN	5			1
REFERENCE LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
REFERENCE RTA WAYPOINT IDENT	V	S	AN	13			
REFERENCE TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
REPORT STIMULUS	F	S	N	3			3
RESERVE FUEL	V	S	N	5	0.1	Klbs	
RIGHT DME DISTANCE	V	S	N	4	0.1	NM	
RIGHT DME FREQUENCY	F	S	N	5	0.01	MHz	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Descriptio	п	Length Type	Elem Type	Char Length	Scale	Units	
RIGHT GPS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT ILS FREQUENCY	F	S	N	5	0.01	MHz	
RIGHT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT VOR BEARING	F	S	N	4	0.1	Degrees	
RIGHT VOR FREQUENCY	F	S	N	5	0.01	MHz	
RTA CONSTRAINT	F	S	А	2		AA=AT AFTER	or
						AB=AT BEFORE	or
						DEI OILE	

M = MULTIPARAMETER AN = ALPHANUMERIC D = DIRECTIONAL

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
RTA COST INDEX	V	D	AN	5			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
COST INDEX	V		N	4	1		
RTA TAKEOFF WINDOW TIMES	F	М	N	12			
FIRST HOURS	F	S	N	2	1	Hours	
FIRST MINUTES	F	S	N	2	1	Minutes	
FIRST SECONDS	F	S	N	2	1	Seconds	
LAST HOURS	F	S	N	2	1	Hours	
LAST MINUTES	F	S	N	2	1	Minutes	
LAST SECONDS	F	S	N	2	1	Seconds	
RTA TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
RTA TIME ERROR TOLERANCE	V	S	N	2	1	Seconds	
RTA WAYPOINT IDENT	V	S	AN	13			
RTA WINDOW TIMES	F	М	N	12			
FIRST HOURS	F	S	N	2	1	Hours	
FIRST MINUTES	F	S	N	2	1	Minutes	
FIRST SECONDS	F	S	N	2	1	Seconds	
LAST HOURS	F	S	N	2	1	Hours	
LAST MINUTES	F	S	N	2	1	Minutes	
LAST SECONDS	F	S	N	2	1	Seconds	
RUNWAY COURSE	V	S	N	3	1	Degrees	

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
RUNWAY ELEVATION	V	S	N	6	1	Feet
RUNWAY IDENT	F	D	AN	3		
RUNWAY NUMBER	F		N	2		
RUNWAY SUFFIX	F		Α	1		L=Left
						C=Center
						R=Right
						O=None
RUNWAY INTERSECTION	V	S	AN	3		
RUNWAY LAT/LON	F	S	AN	13		
DIRECTIONAL	F		Α	1		N=North
						S=South
DEGREES	F		N	2	1	Degrees
MINUTES	F		N	3	0.1	Minutes
DIRECTIONAL	F		Α	1		E=East
						W=West
DEGREES	F		N	3	1	Degrees
MINUTES	F		N	3	0.1	Minutes
RUNWAY LENGTH	V	S	N	5	1	Feet
RUNWAY LENGTH REMAINING	V	S	N	3	100	Feet
SCRATCHPAD	V	S	AN	24		
SELECTED TEMPERATURE	V	D	AN	3		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
MAGNITUDE	V		N	2	1	°C
STANDARD LIMIT TAKEOFF GR WT	V	S	N	5	0.1	Klbs

V = VARIABLE

S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC
D = DIRECTIONAL

F = FIXED M = MULTIPARAMETE

AN = ALPHANUMERIC

Element Description	Т	vne	ength Ele Type Typ		Scale	Units	No
STATIC AIR TEMPERATURE	E (SAT) V	D	AN	3			
DIRECTIONAL	F		А	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
STEADY/INTERMITTENT	F	S	А	1	S or I		
STIMULUS CODE	F	S	N	3			3
SYSTEM CODE	F	S	N	2			
TAI ON ALTITUDE	V	S	N	3	100	Feet	
TAI ON/OFF ALTITUDE	F	М	N	6			
TAI ON ALTITUDE	F	S	N	3	100	Feet	
TAI OFF ALTITUDE	F	S	N	3	100	Feet	
TAKEOFF CENTER OF GRA	VITY V	S	N	3	0.1	Percent	
TAKEOFF FLAPS	V	S	N	2	1	Degrees	
TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
TAKEOFF RUNWAY CONDI	TION F	S	N	1		1=Wet	
						2=Dry	
						3=1/4 water	
						4=1/2 water	
						5=1/4 slush	
						6=1/2 slush	
						7=compact snow	
						8= wet skid resist	
	= SINGLE PARAMETEI = MULTIPARAMETER		A = ALPHA AN = ALPHANI			NUMERIC DIRECTIONAL	

Element Descriptio		Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
TAKEOFF RUNWAY IDEN	Т	F	D	AN	3			
RUNWAY NUMBER		F		N	2			
RUNWAY SUFFIX		F		Α	1		L=Left	
							C=Center	
							R=Right	
							O=None	
TAKEOFF RUNWAY SLOP	PE	V	D	AN	3			
DIRECTIONAL		F		Α	1		U=Up	
							D=Down	
MAGNITUDE		V		N	2	0.1	Percent	
TAKEOFF RUNWAY WIND)	V	М	N	6			
DIRECTIONAL		F	S	N	3	1	Degree	
MAGNITUDE		V	S	N	3	1	Knots	2
TAKEOFF SPEEDS		F	М	N	9			
V1		F	S	N	3	1	Knots	
VR		F	S	N	3	1	Knots	
V2		F	S	N	3	1	Knots	2
TAKEOFF THRUST RATIN	NG	F	S	N	1		0= No derate	
							1= Derate 1	
							2= Derate 2	
							1	
							1	
							8=Bump	
ARIABLE	S = SINGLE PARAMI	ETER	A = ALP	HA		N = N	UMERIC	
KED	M = MULTIPARAMET	ΓER	AN = AL	PHANUME	RIC	D = D	IRECTIONAL	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						9=Derate	
TAKEOFF TIME							
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
TARGET MACH	V	S	N	3	.001	Mach	
TAS AT PREDICTED WAYPOINT	V	S	N	3	1	Knots	1
TAXI FUEL	V	S	N	5	0.1	Klbs	
TEMPERATURE AT ALTERNATE	V	D	AN	3			1
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
THRUST REDUCTION ALTITUDE	V	S	N	5	1	Feet	
TIME DETERMINED	F	M	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TIME ERROR TOLERANCE	V	S	N	2	1	Seconds	
TIME TO GO TO DESTINATION 1	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 2	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 3	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 4	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 5	V	S	N	3	1	Minutes	
TIME TO GO TRIGGER	V	S	N	3	1	Minutes	

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
TIME UPLINK IS RECEIVED	F	M	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOC OR CRUISE TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
TOP OF DESCENT ALTITUDE	V	S	N	3	100	Feet	
TOP OF DESCENT ETA	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOP OF DESCENT LOCATION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
TOTAL FUEL/FOB	V	S	N	5	0.1	Klbs	
TRACK ANGLE MAG	F	S	N	3	1	Degrees	
TRIGGER NUMBER	F	S	N	3	1		
BLE S = SINGLE F	ARAMETER	A = ALF	PHA		N = N	UMERIC	

V = VARIABLE

S = SINGLE PARAMETER
M = MULTIPARAMETER

N = NUMERIC D = DIRECTIONAL

F = FIXED

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	
TRIGGER TRIPPED TIME	F	M	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TRIGGER UPLINK TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TRIM	V	D	AN	5			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	4	0.01	Degrees	
TRIP FUEL	V	S	N	5	0.1	Klbs	
TROPOPAUSE ALTITUDE	F	S	N	5	1	Feet	
UPLINKED IMI	F	S	Α	3			
VERTICAL DEVIATION	V	D	AN	6			
DISTANCE	V		N	5	1	Feet	
DIRECTIONAL	F		Α	1		H or L	
VTR PERCENTAGE	V	S	N	2	1	Percent	
WAYPOINT ALTITUDE/OAT	V	М	AN	6			
ALTITUDE	F	S	N	3	100	Feet	
OAT DIRECTIONAL	F	D	N	1		P=Plus	
						M=Minus	
OAT MAGNITUDE	V		N	2	1	°C	
WAYPOINT BEARING	F	S	N	3	1	Degrees	

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
WAYPOINT IDENT	V	S	AN	5			
WAYPOINT LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
WAYPOINT MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
WAYPOINT NAME OR POSITION	V	S	AN	13			
WAYPOINT SEQUENCE	V	S	AN	13			
WAYPOINT WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	1
MAGNITUDE	V	S	N	3	1	Knots	2
WIND ALTITUDE	V	S	N	3	100	Feet	
WIND AT PREDICTED WAYPOINT	V	M	N	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
WIND LEVEL ALTITUDE	V	S	N	3	100	Feet	
WIND LEVEL WAYPOINT	V	S	AN	13			

V = VARIABLE F = FIXED S = SINGLE PARAMETER

M = MULTIPARAMETER

A = ALPHA

N = NUMERIC

AN = ALPHANUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
WIND VECTOR MAGNITUDE						
DIFFERENCE	V	S	N	3	1	Knots
ZERO FUEL WEIGHT	V	S	N	5	0.1	Klbs
ZERO FUEL WEIGHT CG	V	S	N	3	0.1	Percent

4853

4854

Section 9
Flight Plan Element Definitions

4855 4856

4857

4858

This section contains the flight plan element identifiers and a complete description of each flight plan element.

	FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
:	:DA:	DEPARTURE AIRPORT							
			AIRPORT IDENTIFIER	V	S	AN	4		
:	:AA:	ARRIVAL AIRPORT							
_			AIRPORT IDENTIFIER	V	S	AN	4		
:	:CR:	COMPANY ROUTE							
			COMPANY ROUTE	V	S	AN	10		
:	:R:	DEPARTURE RUNWAY							
			RUNWAY IDENTIFIER	F	D	AN	3		
			RWY NUMBER			N	2		
			RWY SUFFIX			Α	1		L=LEFT
									C=CENTER
									R=RIGHT
_		SUFFIX							O=NO
:	:D:	DEPARTURE PROCEDURE							
_			PROCEDURE IDENT	V	S	AN	10		
:	:F:	FLIGHT PLAN SEGMENT							
		PUBLISHED IDENT							
			FIX IDENTIFIER	V	S	AN	5		
			OPTIONAL INTRO.(,)						
/ = VARIAB	BLE	S = SI	NGLE PARAMETER	A = ALPHA	.		N = NI	JMERIC	
= FIXED		M = M	IULTIPARAMETER	AN = ALPH	IANUMER	IC	D = DI	RECTION	AL

FPEI De	scription	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		OPTIONAL LAT/LON	F	М	AN	13		
		DIRECTIONAL			Α	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			Α	1		E OR W
		DEGREES			N	6		
LAT/LON	1							
		LATITUDE/ LONGITUDE	V	М	AN	13		
		DIRECTIONAL			Α	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			Α	1		E OR W
		DEGREES			N	6		
PB/PB								
		FIX IDENTIFIER	V	S	AN	5		
		OPTIONAL INTRO.(,)						
		OPTIONAL LAT/LON	F	М	AN	13		
		DIRECTIONAL			Α	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			Α	1		E OR W
		DEGREES			N	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	N	3	1	DEGREES
		DASH						
		FIX IDENTIFIER	V	S	AN	5		
		OPTIONAL INTRO.(,)						
ARIABLE	S = SINO	GLE PARAMETER	A = ALPHA	\		N = N	UMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

		OPTIONAL LAT/LON DIRECTIONAL	F					
		DIRECTIONAL		М	AN	13		
		DINEOTIONAL			Α	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			Α	1		E OR W
		DEGREES			N	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	N	3	1	DEGREES
	PBD							
		FIX IDENTIFIER	V	S	AN	5		
		OPTIONAL INTRO.(,)						
		OPTIONAL LAT/LON	F	M	AN	13		
		DIRECTIONAL			Α	1		N OR S
		DEGREES			N	5		
		DIRECTIONAL			Α	1		E OR W
		DEGREES			N	6		
		OPTIONAL TERM.(,)						
		BEARING	F	S	N	3	1	DEGREES
		DASH						
		DISTANCE	F	S	N	4	0.1	NM
İ	START OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
1	END OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
1	DIRECT FIX	SAME AS :F:						

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
:A:	ARRIVAL PROCEDURE							
		PROCEDURE IDENT	V	S	AN	10		
:AP:	APPROACH PROCEDURE							
		PROCEDURE IDENT	V	S	AN	10		
()	ARRIVAL RUNWAY							
		RUNWAY IDENTIFIER	F	М	AN	3		
		RWY NUMBER		S	N	2		
		RWY SUFFIX		S	Α	1		L=LEFT
								C=CENTER
								R=RIGHT
	SUFFIX							O=NO
:V:	WAYPOINT SPD/ALT/TIME							
		FIX IDENTIFIER	V	S	AN	13		
		COMMA (,)						
		OPTIONAL* SPEED	F	S	N	3	1	KNOTS
		COMMA (,)						
		OPTIONAL* ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		Α	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V		N	4	10	FEET
RIABLE		SINGLE PARAMETER	A = ALPHA				UMERIC	
ED	M =	MULTIPARAMETER	AN = ALPH	IANUMER	IC	D = D	IRECTION	AL

FPEI	Description	on Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		COMMA (,)						
		OPTIONAL ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		Α	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V		N	4	10	FEET
		COMMA (,)						
		OPTIONAL TIME*	V	D	AN	6		
		DIRECTIONAL	F		A	2		AA=AT OR AFTER
								AB=AT OR BEFORE
								AT=AT
		TIME	F		N	4	1	HOURS MINUTES UTO (HHMM)
		* For speed-only, altitude- only, or time-only constraints						
		Note: Either speed, altitude or time, or any combination must be included.						
	:H:	HOLD AT WAYPOINT						
		FIX IDENTIFIER	V	S	AN	13		
		COMMA (,)						
		SPEED	F	S	N	3	1	KNOTS
IABLE		S = SINGLE PARAMETER	A = ALPHA	Δ		N = N	UMERIC	
:D		M = MULTIPARAMETER	AN = ALPH		IC		IRECTION	AL

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		COMMA (,)						
		ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		Α	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V	S	N	4	10	FEET
		COMMA (,)						
		TARGET SPEED	F	S	N	3	1	KNOTS
		COMMA (,)						
		TURN DIRECTION	F	S	Α	1		L=LEFT
								R=RIGHT
		COMMA (,)						
		INBOUND COURSE	F	S	N	3	1	DEGREES
		COMMA (,)						
		EFC TIME	F	М	N	4		
		HOURS	F	S	N	2	1	00-24 HOURS
		MINUTES	F	S	N	2	1	MINUTES
		COMMA (,)						
		LEG TIME	F	S	N	2	0.1	MINUTES
		COMMA (,)						
		LEG DISTANCE	V	S	N	3	0.1	NM

CLIMB

V = VARIABLE S = SINGLE PARAMETER F = FIXED M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Descrip	tion	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
			FIX IDENTIFIER	V	S	AN	13		
			COMMA (,)						
			ALTITUDE	V	s	N	3	100	FEET
:AT:	ALONG WAYPOINT	TRACK							
			FIX IDENTIFIER	V	S	AN	5		
			DASH (-)						
			DISTANCE	V	D	AN	5	0.1	NM
			DIRECTIONAL	F		Α	1		P=PLUS
									M=MINUS
			DISTANCE	V		N	4	0.1	NM
			COMMA (,)						
			SPEED	F	S	N	3	1	KNOTS
			COMMA (,)						
			ALTITUDE	V	D	AN	6		
			DIRECTIONAL	F		Α	2		AA=AT OR
									ABOVE
									AB=AT OR
									BELOW
									AT=AT
			ALTITUDE	V	S	N	4	10	FEET
			COMMA (,)						
			OPTIONAL ALTITUDE	V	D	AN	6		
			DIRECTIONAL	F		Α	2		AA=AT OR
									ABOVE
DIA DI =		0 0:::	OLE DADAMETE:						
RIABLE		S = SIN	GLE PARAMETER	A = ALPHA			N = N	UMERIC	

M = MULTIPARAMETER AN = ALPHANUMERIC D = DIRECTIONAL

F = FIXED

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	V	S	N	4	10	FEET
:RP:	REPORTING POINTS							
	LATITUDE RP	LATITUDE	V	М	AN	3		
		DIRECTIONAL	F	S	Α	1		N=NORTH
								S=SOUTH
		DEGREES	V	S	N	2		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	S	N	2		
	LONGITUDE RP	LONGITUDE	V	М	AN	4		
		DIRECTIONAL	F	S	Α	1		E=EAST
								W=WEST
		DEGREES	V	S	N	3		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	S	N	2		
	TRANSITION							
		TRANSITION IDENT	V	S	AN	5		
	AIRWAY VIA/EXIT VIA							
	AIRWAY VIA							
		AIRWAY IDENTIFIER	V	S	AN	5		
	AIRWAY EXIT VIA							
		FIX IDENTIFIER	V	S	AN	6		
:LO:	LATERAL OFFSET	OFFSET	V	D	AN	3		
ABLE	S = SIN	IGLE PARAMETER	A = ALPHA	١		N = N	IUMERIC	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		DIRECTIONAL	F		A	1		L=LEFT R=RIGHT
		DISTANCE	V/F		N	2/3	1/0.1	NM
		For backward compatibility, resolution of 1 NM or a fixe systems may not support 0.	d length of 3	numerics v	_			
		OPTIONAL COMMA (,)						
		OPTIONAL START FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL END FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL INTERCEPT ANGLE	V	S	N	3		DEGREES
:F:.	AIRWAY INTERCEPT							
		AIRWAY IDENTIFIER	V	S	AN	5		

:IC: INTERCEPT COURSE FROM

PUBLISHED IDENT, PB/PB or PBD as defined in the :F: FLIGHT PLAN FPE, followed by a COMMA (,) and COURSE:

COURSE	V	S	N	3	1	DEG

:CS: CRUISE SPEED SEGMENT

FIX IDENTIFIER V S AN 13

 $V = VARIABLE \qquad S = SINGLE \ PARAMETER \qquad A = ALPHA \qquad N = NUMERIC \\ F = FIXED \qquad M = MULTIPARAMETER \qquad AN = ALPHANUMERIC \qquad D = DIRECTIONAL$

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Eleme Descript	Length Type	Elem Type	Char Type	Length	Scale	Units
	COMMA (,)							
	SPEED TARGET		V	S	AN	3		Mach 000-999
								E=Econ
								L=LRC
	OPTIONAL COMMA (,)							
	OPTIONAL ALTITUDE		F	S	N	3	100	FT
	OPTIONAL COMMA (,)							
	OPTIONAL FIX IDENTIFIER	V	S	AN	13			
	OPTIONAL COMMA (,)							
	OPTIONAL SPEED TARGET	V	S	AN	3		Mach 000-999	
								E=Econ
								L=LR

4859

V = VARIABLE F = FIXED S = SINGLE PARAMETER
M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC

4860 Section 104861 Codes and Triggers

4862

4863

4864 4865

10.1 Error Type Codes

Error type codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	END TO END CRC
002	002	INVALID ATC
003	003	SYNTAX ERROR
004	004	MISSING ELEMENT
005	005	RESERVED FOR DEFINITION (B-737)
006	006	N/A FOR IN AIR
007	007	MISSING ALL DATA FOR DEPENDENT ELEMENT
800	800	INCOMPATIBLE DATA
009	009	FMC DOWNMODE
010	00A	REFERENCE MISMATCH
011	00B	NOT IN NDB
012	00C	DUPLICATE WAYPOINT
013	00D	ROUTE FULL ERROR
014	00E	DATA BASE FULL ERROR
015	00F	ENTRY SLOT UNAVAILABLE
016	010	DUPLICATE SUPPLEMENT NDB DEFINITION
017	011	RESERVED FOR DEFINITION (B-737)
018	012	RESERVED FOR DEFINITION (B-737)
019	013	RESERVED FOR DEFINITION (B-737)
020	014	RESERVED FOR DEFINITION (B-737)
021	015	NO MINIMUM FLIGHT PLAN
022	016	NO ACTIVE ROUTE FOR DOWNLINK
023	017	UNSOLICITED UPLINK
024	018	DATA NOT ALLOWED IN TAKEOFF PHASE
025	019	DATA NOT ALLOWED IN CLIMB PHASE
026	01A	DATA NOT ALLOWED IN CRUISE PHASE
027	01B	DATA NOT ALLOWED IN DESCENT PHASE
028	01C	INCOMPATIBLE RANGE
029	01D	DEPARTURE AIRPORT DOES NOT EXIST
030	01E	DESTINATION AIRPORT DOES NOT EXIST
031	01F	ATO DISTANCE IS ENTERED OVER AN INVALID LEG
032	020	NEGATIVE ATO IS ENTERED OVER MOD DIRECT TO WPT
033	021	ATO DISTANCE IS GREATER THAN LEG LENGTH
034	022	INITIAL FIX IS FLOATER OR PPOS
035	023	PBPB WAYPOINT WITH NO VALID INTERSECTION
036	024	DIRECT WPT AFTER INTERCEPT WAYPOINT
037	025	HOLD ENTERED ON NON-HARD WAYPOINT

DEC CODE	HEX CODE	DESCRIPTION
038	026	ALTITUDE RESTRICTION ON ALT ONLY WAYPOINT
039	027	TO FIX EQUALS FROM ON ROUTE PAGE
040	028	RESERVED FOR DEFINITION (B-737)
041	029	TO FIX IS NOT ON AIRWAY
042	02A	TO FIX CAUSES CHANGE OF DIRECT ON AIRWAY
043	02B	FROM AND TO NOT ON ENTERED AIRWAY
044	02C	CRUISE ALTITUDE LESS THAN MIN CRUISE ALT
045	02D	EFC MORE THAN 6 HOURS PAST HOLD FIX ETA
046	02E	RUNWAY REMAINING GREATER THAN RUNWAY LENGTH
047	02F	RESERVED FOR DEFINITION (B-737)
048	030	UNSOLICITED MOD WIND BECAUSE OF LONG DELETE
049	031	INAPPROPRIATE DATA TYPE
050	032	RESERVED FOR DEFINITION (B-737)
051	033	UNSOLICITED MOD WIND
052	034	CRUISE WIND IN DESCENT
053	035	DATA NOT ALLOWED IN PHASE
054	036	HOLD ENTERED ON HOLD EXIT WITH EXIT ARMED
055	037	VIA TYPE OF PROCEDURE TO FIX ENTRY NOT ALLOWED
056	038	ENTERED AIRPORT ID – DIRECT
057	039	VIA ENTERED FOR FIRST ROUTE SEGMENT
058	03A	AIRWAY UNPACK WAS UNSUCCESSFUL
059	03B	COMPANY ROUTE UNPACK UNSUCCESSFUL
060	03C	N/A FOR AIRCRAFT STATE
061	03D	PROCEDURE NOT FOUND (FOR ENROUTE AFTER)
062	03E	N/A FOR AIRCRAFT INSTALLATION
063	03F	DATA ELEMENT NOT ALLOWED ON GROUND
064	040	NO OFFSET EXISTS
065	041	NO OFFSET AT LEG
066	042	OFFSET IS ACTIVE
067	043	OFFSET DATA INCOMPATIBLE
068	044	NO OFFSETABLE LEG EXISTS
069	045	IMI LOST DUE TO WARM START
070	046	IMI LOST DUE TO OVERFLOW
071-100	047-064	RESERVED FOR DEFINITION (B-737)
101	065	BUFFER FULL
102	066	INCOMPATIBLE IEI
103	067	INVALID IEI FORMAT
104	068	INVALID IMI FORMAT
105	069	NOT ALLOWED ON GROUND
106	06A	INVALID REQUEST LABEL
107	06B	NO IEIS IN MESSAGE
108	06C	NO DATA IN ELEMENT TEXT
109	06D	INVALID FORMAT AND/OR RANGE
110	06E	NOT ALLOWED WHEN AIRBORNE

DEC CODE	HEX CODE	DESCRIPTION
111	06F	NO APPLICABLE ROUTE
112	070	NO APPLICABLE IEI
113	071	NO REPORTING POINTS CREATED
114	072	ZERO FUEL WEIGHT CAUSES INVALID GROSS WEIGHT
115	073	PRIORITY MESSAGE PENDING
116	074	MULTIPLE ROUTE IEI
117	075	NO ROUTE IEI
118	076	NO FLIGHT PLAN ELEMENTS
119	077	NO ACTIVE ROUTE
120	078	FIRST FLIGHT PLAN ELEMENT INVALID
121	079	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
122	07A	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
123	07B	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
124	07C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
125	07D	MULTIPLE DIRECT TO FIX
126	07E	MULTIPLE OF FLIGHT PLAN ELEMENT NOT ALLOWED
127	07F	FROM FIX IS NOT ON AIRWAY
128	080	AIRWAY/AIRWAY INTERSECTION NOT FOUND
129	081	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
130	082	NO FIX MATCH IN ROUTE
131	083	MULTIPLE HOLD AT FIX
132	084	BASE PROCEDURE UNDEFINED
133	085	LAT/LON REPORTING POINT NOT FOUND
134	086	CURRENT FLIGHT PLAN CONDITIONS INVALID FOR OFFSET
135	087	FPEI INCOMPATIBLE WITH IEI
136	088	NO COMPATIBLE RUNWAYS
137	089	AIRWAY FLIGHT PLAN ELEMENT IS NOT CLOSED
138	A80	NO FROM FIX FOR AIRWAY FLIGHT PLAN ELEMENT
139	08B	SPARE
140	08C	EXCEEDS CHARACTER LIMIT
141	08D	DERATE OPTION NOT SELECTED
142	08E	PAGES OUT OF SEQUENCE
143	08F	TIMED OUT
144	090	NO VALID RWY RECORDS
145-200	091-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201	0C9	DEPENDENT IMI REJECTED
202	0CA	DUPLICATE IEIS
203	0CB	REPORT NOT ALLOWED WITH INVALID A/C POSITION
204	0CC	BLOCK NOT SUFFICIENT FOR TAXI AND ROUTE RESERVE
205	0CD	WINDOW ALTITUDE CONSTRAINT NOT ALLOWED
206	0CE	NOT ALLOWED FOR ALTERNATE FLIGHT PLAN
207	0CF	DESTINATION DOES NOT MATCH ORIGIN OF ALTERNATE
208	0D0	PILOT DEFINED STORE IS FULL
209-300	0D1-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 7 FMC/DATALINK INTERFACE

4866

4867

10.2 Error Data Codes

4868

4869 Error codes are listed as decimal and hexadecimal values. Depending in 4870 implementation, this code may be downlinked as either a decimal or hexadecimal 4871 value.

value.		
DEC CODE	HEX CODE	DESCRIPTION
001	001	RTA WAYPOINT DATA CODE
002	002	RTA TIME DATA CODE
003	003	ALTERNATE AIRPORT ID DATA CODE
004	004	ALTERNATE AIRPORT TYPE DATA CODE
005	005	ALTERNATE AIRPORT DISTANCE DATA CODE
006	006	ALTERNATE AIRPORT ALTITUDE DATA CODE
007	007	ALTERNATE AIRPORT WIND DATA CODE
800	800	CLEAR FLIGHT PLAN DATA CODE
009	009	FLIGHT NUMBER DATA CODE
010	00A	COST INDEX DATA CODE
011	00B	CRUISE ALTITUDE DATA CODE
012	00C	CRUISE (TOC) TEMP DATA CODE
013	00D	ZERO FUEL WEIGHT DATA CODE
014	00E	CRUISE WIND DATA CODE
015	00F	RESERVE FUEL DATA CODE
016	010	CRUISE CENTER OF GRAVITY DATA CODE
017	011	CLIMB TRANSITION ALTITUDE DATA CODE
018	012	TAKEOFF DEPARTURE RUNWAY ID DATA CODE
019	013	RUNWAY INTERSECTION DATA CODE
020	014	RUNWAY POSITION SHIFT DATA CODE
021	015	RUNWAY LENGTH REMAINING DATA CODE
022	016	T/O RUNWAY INVALID FLAG DATA CODE
023	017	TRIM DATA CODE
024	018	TAKEOFF REFERENCE GROSS WEIGHT DATA CODE
025	019	TAKEOFF FLAPS DATA CODE
026	01A	V1 SPEED DATA CODE
027	01B	V2 SPEED DATA CODE
028	01C	VR SPEED DATA CODE
029	01D	TAKEOFF SEL TEMP DATA CODE (ASSUMED TEMP)
030	01E	T/O RUNWAY SLOPE DATA CODE
031	01F	T/O RUNWAY WIND DATA CODE
032	020	T/O RUNWAY CONDITION DATA CODE
033	021	TAKEOFF DERATE DATA CODE
034	022	RESERVED FOR DEFINITION (B-737)
035	023	OUTSIDE AIR TEMP DATA CODE
036	024	DESCENT WIND ALT DATA CODE
037	025	DESCENT WIND DIR/MAG DATA CODE
038	026	TAKEOFF CENTER OF GRAVITY DATA CODE
039	027	RESERVED FOR DEFINITION (B-737)

DEC CODE	HEX CODE	DESCRIPTION
040	028	BLOCK FUEL DATA CODE (PLAN FUEL)
041	029	DESCENT TRANSITION ALTITUDE DATA CODE
042	02A	TAI ON DATA CODE
043	02B	TAI ON/OFF ALTITUDE DATA CODE
044	02C	DESCENT ISA DEV DATA CODE
045	02D	QNH DATA CODE
046	02E	TIME ERROR TOLERANCE DATA CODE
047	02F	MIN CLB CAS DATA CODE
048	030	MIN CLB MACH DATA CODE
049	031	MIN CRZ CAS DATA CODE
050	032	MIN CRZ MACH DATA CODE
051	033	MIN DES CAS DATA CODE
052	034	MIN DES MACH DATA CODE
053	035	MAX CLB CAS DATA CODE
054	036	MAX CLB MACH DATA CODE
055	037	MAX CRZ CAS DATA CODE
056	038	MAX CRZ MACH DATA CODE
057	039	MAX DES CAS DATA CODE
058	03A	MAX DES MACH DATA CODE
059	03B	DEPARTURE AIRPORT DATA CODE
060	03C	DESTINATION AIRPORT DATA CODE
061	03D	COMPANY ROUTE DATA CODE
062	03E	DEPARTURE RUNWAY DATA CODE
063	03F	DEPARTURE BASE PROCEDURE DATA CODE
064	040	DEPARTURE TRANSITION PROCEDURE DATA CODE
065	041	AIRWAY VIA DATA CODE
066	042	INITIAL FIX WAYPOINT DATA CODE
067	043	INITIAL FIX PBD DATA CODE
068	044	INITIAL FIX PBPB DATA CODE
069	045	INITIAL FIX LAT/LON DATA CODE
070	046	DIRECT WPT AFTER SID DATA CODE
071	047	DIRECT PBD AFTER SID DATA CODE
072	048	DIRECT PBPB AFTER SID DATA CODE
073	049	DIRECT LAT/LON AFTER SID DATA CODE
074	04A	DIRECT WAYPOINT AFTER STAR DATA CODE
075	04B	DIRECT PBD AFTER STAR DATA CODE
076	04C	DIRECT PBPB AFTER STAR DATA CODE
077	04D	DIRECT LAT/LON AFTER STAR DATA CODE
078	04E	DIRECT WAYPOINT AFTER APPROACH DATA CODE
079	04F	DIRECT PBD AFTER APPROACH DATA CODE
080	050	DIRECT PBPB AFTER APPROACH DATA CODE
081	051	DIRECT LAT/LON AFTER APPROACH DATA CODE
082	052	DIRECT TO WAYPOINT DATA CODE
083	053	DIRECT TO PBD DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
084	054	DIRECT TO PBPB DATA CODE
085	055	DIRECT LAT/LON DATA CODE
086	056	ENROUTE WAYPOINT DATA CODE
087	057	DIRECT WAYPOINT DATA CODE
880	058	DIRECT PBD DATA CODE
089	059	DIRECT PBPB DATA CODE
090	05A	DIRECT LAT/LON DATA CODE
091	05B	RESERVED FOR DEFINITION (B-737)
092	05C	REF WAYPOINT 2 LAT/LON DATA CODE
093	05D	STAR BASE PROCEDURE DATA CODE
094	05E	STAR TRANS PROCEDURE DATA CODE
095	05F	APPROACH BASE PROCEDURE DATA CODE
096	060	APPROACH TRANSITION PROCEDURE DATA CODE
097	061	DESTINATION RUNWAY DATA CODE
098	062	HOLD ID AND ALT RESTRICTION DATA CODE
099	063	HOLD TARGET SPEED DATA CODE
100	064	HOLD TURN DIRECTION DATA CODE
101	065	HOLD INBOUND COURSE DATA CODE
102	066	HOLD EFC TIME DATA CODE
103	067	HOLD LEG TIME DATA CODE
104	068	HOLD LEG DISTANCE DATA CODE
105	069	ATO WAYPOINT INFORMATION DATA CODE
106	06A	UPLINK REQUESTING DOWNLINK DATA CODE
107	06B	WAYPOINT SPD/ALT RESTRICTION DATA CODE
108	06C	NETWORK ADDRESS DATA CODE
109	06D	COMPANY ROUTING ADDRESS DATA CODE
110	06E	MESSAGE SEQUENCE NUMBER DATA CODE
111	06F	REFERENCE CRUISE WIND ALT DATA CODE
112	070	ENROUTE WIND WAYPOINT ID DATA CODE
113	071	ENROUTE WIND DIR/MAG DATA CODE
114	072	SUPP EFFECT DATE DATA CODE
115	073	SUPP AIRPORT ID DATA CODE
116	074	SUPP AIRPORT LAT DATA CODE
117	075	SUPP AIRPORT LON DATA CODE
118	076	SUPP AIRPORT ELEVATION DATA CODE
119	077	SUPP AIRPORT MAG VAR DATA CODE
120	078	SUPP NAVAID ID DATA CODE
121	079	SUPP NAVAID LAT DATA CODE
122	07A	SUPP NAVAID LON DATA CODE
123	07B	SUPP NAVAID ELEVATION DATA CODE
124	07C	SUPP NAVAID MAG VAR DATA CODE
125	07D	SUPP NAVAID FREQUENCY DATA CODE
126	07E	SUPP NAVAID CLASS DATA CODE
127	07F	SUPP WAYPOINT ID DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
128	080	SUPP WAYPOINT LAT DATA CODE
129	081	SUPP WAYPOINT LON DATA CODE
130	082	SUPP WAYPOINT MAG VAR DATA CODE
131	083	SUPP REF WAYPOINT ID DATA CODE
132	084	SUPP REF WAYPOINT REF LAT/LON DATA CODE
133	085	SUPP REF WAYPOINT RADIAL DATA CODE
134	086	SUPP REF WAYPOINT DISTANCE DATA CODE
135	087	WIND VECTOR MAGNITUDE DIFFERENCE DATA CODE
136	088	WAYPOINT SEQUENCE ID DATA CODE
137	089	ETA CHANGE DATA CODE
138	08A	ETA TO DEST 1 DATA CODE
139	08B	ETA TO DEST 2 DATA CODE
140	08C	ETA TO DEST 3 DATA CODE
141	08D	ETA TO DEST 4 DATA CODE
142	08E	ETA TO DEST 5 DATA CODE
143	08F	RESERVED FOR DEFINITION (B-737)
144	090	RESERVED FOR DEFINITION (B-737)
145	091	ROUTE BUILDING PARAMETER DATA CODE
146	092	ROUTE DATA TYPE CODE
147	093	PERF INIT DATA TYPE CODE
148	094	TAKEOFF REF DATA TYPE CODE
149	095	RTA DATA TYPE CODE
150	096	ALTERNATE INFO DATA TYPE CODE
151	097	SUPP NDB DATA TYPE CODE
152	098	AUTO INSERT DATA TYPE CODE
153	099	ACTIVE WIND DATA TYPE CODE
154	09A	MOD WIND DATA TYPE CODE
155	09B	DESCENT FORECAST DATA TYPE CODE
156	O9C	PERF LIMITS DATA TYPE CODE
157	09D	SPARE DATA TYPE CODE
158	09E	LATERAL OFFSET DIST DATA CODE
159	09F	LATERAL OFFSET START WPT DATA CODE
160	0A0	LATERAL OFFSET END WPT DATA CODE
161-200	0A1-0C8	RESERVED FOR DEFINITION (B-737)
201	0C9	FUEL FLOW FACTOR DATA CODE
202	0CA	DRAG FACTOR DATA CODE
203	0CB	LIMIT TAKEOFF GROSS WEIGHT DATA CODE
204	0CC	THRUST RATING DATA CODE
205	0CD	VTR PERCENTAGE DATA CODE
206	0CE	ALTERNATE FLAPS DATA CODE
207	0CF	ALTERNATE TRIM DATA CODE
208	0D0	ALTERNATE LIMIT TAKEOFF GROSS WEIGHT DATA CODE
209	0D1	TAKEOFF SPEEDS DATA CODE
210	0D2	ALTERNATE TAKEOFF SPEEDS DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
211	0D3	WAYPOINT ALTITUDE/OAT DATA CODE
212	0D4	LATERAL OFFSET DATA CODE
213	0D5	ALONG TRACK OFFSET DATA CODE
214	0D6	WAYPOINT STEP CLIMB DATA CODE
215	0D7	LAT/LON REPORTING POINT DATA CODE
216	0D8	GROUND ADDRESS DATA CODE
217	0D9	DIRECT FIX DATA CODE
218	0DA	HOLD SPEED RESTRICTION DATA CODE
219	0DB	POSITION REPORTING POINT DATA CODE
220	0DC	ENROUTE WIND SEGMENT DATA CODE
221	0DD	ENROUTE SEGMENT DATA CODE
222	0DE	OPEN ENDED AIRWAY DATA CODE
223	0DF	ALTERNATE THRUST RATING DATA CODE
224	0E0	SEQUENCE NUMBER DATA CODE
225	0E1	MINIMUM FUEL TEMPERATURE DATA CODE
226	0E2	COMPANY PREFERRED AIRPORT IDENT DATA CODE
227	0E3	COMPANY PREFERRED PRIORITY DATA CODE
228	0E4	COMPANY PREFERRED WIND DATA CODE
229	0E5	COMPANY PREFERRED ALT/OAT DATA CODE
230	0E6	COMPANY PREFERRED OVERHEAD FIX DATA CODE
231	0E7	COMPANY PREFERRED ALTITUDE DATA CODE
232	0E8	COMPANY PREFERRED SPEED DATA CODE
233	0E9	COMPANY PREFERRED OFFSET DATA CODE
234	0EA	FLIGHT LIST AIRPORT IDENT DATA CODE
235	0EB	FLIGHT LIST WIND DATA CODE
236	0EC	FLIGHT LIST ALT/OAT DATA CODE
237	0ED	ALTERNATE INHIBIT AIRPORT IDENT DATA CODE
238	OEE	ALTERNATE TAKEOFF VTR PERCENTAGE DATA CODE
239	0EF	THRUST REDUCTION ALTITUDE DATA CODE
240	0F0	ACCELERATION ALTITUDE DATA CODE
241	0F1	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
242	0F2	PAGING DATA CODE
243	0F3	INTERCEPT COURSE FROM IDENT DATA CODE
244	0F4	INTERCEPT COURSE FROM COURSE DATA CODE
245	0F5	CRUISE SPEED SEGMENT START WAYPOINT DATA CODE
246	0F6	CRUISE SPEED SEGMENT END WAYPOINT DATA CODE
247	0F7	CRUISE SPEED SEGMENT SPEED DATA CODE
248	0F8	CRUISE SPEED SEGMENT ALTITUDE DATA CODE
249-300	0F9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	PERF FACTOR DATA CODE
302	12E	TAXI FUEL DATA CODE
303	12F	ZERO FUEL WEIGHT CG DATA CODE
304	130	TROPOPAUSE ALTITUDE DATA CODE
305	131	IDLE FACTOR DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
306	132	MEAN WIND DATA CODE
307	133	CLIMB WIND ALTITUDE DATA CODE
308	134	CLIMB WIND DIR/MAG DATA CODE
309	135	ALTERNATE DESTINATION WIND ALTITUDE DATA CODE
310	136	ALTERNATE DESTINATION WIND DIR/MAG DATA CODE
311	137	STAR/ENROUTE TRANSITION DATA CODE
312	138	THRUST REDUCTION ALTITUDE DATA CODE
313	139	ACCELERATION ALTITUDE DATA CODE
314	13A	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
315	13B	ALTERNATE ASSUMED TEMP DATA CODE
316-400	13C-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)
401	191	NOISE ABATEMENT END ALTITUDE DATA CODE
402	192	NOISE ABATEMENT SPEED DATA CODE
403	193	NOISE ABATEMENT DERATED THRUST DATA CODE
404	194	HOLD ALTITUDE DATA CODE
405	195	NOISE ABATEMENT THRUST DATA CODE
406	196	NOISE ABATEMENT START ALTITUDE DATA CODE
407	197	SUPP REF AIRPORT DATA CODE
408	198	SUPP RUNWAY DATA CODE
409	199	SUPP RUNWAY LAT DATA CODE
410	19A	SUPP RUNWAY LON DATA CODE
411	19B	SUPP RUNWAY COURSE DATA CODE
412	19C	SUPP RUNWAY ELEVATION DATA CODE
413	19D	SUPP RUNWAY LENGTH DATA CODE
414	19E	CLIMB TEMPERATURE ALTITUDE DATA CODE
415	19F	CLIMB TEMPERATURE DATA CODE
416	1A0	DESCENT TEMPERATURE ALTITUDE DATA CODE
417	1A1	DESCENT TEMPERATURE DATA CODE

4874 10.3 Extended Error Codes

Extended error codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	ALL OF MESSAGE TEXT DISCARDED
002	002	REMAINDER OF MESSAGE TEXT DISCARDED
003	003	ALL OF DATA TYPE DISCARDED
004	004	REMAINDER OF DATA TYPE DISCARDED
005	005	ALL OF ELEMENT TEXT DISCARDED
006	006	REMAINDER OF ELEMENT TEXT DISCARDED
007	007	ALL OF LIST DISCARDED
800	800	REMAINDER OF LIST DISCARDED
009	009	ALL OF LIST ELEMENT DISCARDED
010	00A	ALL OF MULTI-PARAMETER ELEMENT DISCARDED
011	00B	ALL OF ROUTE BUILDING PARAMETER DISCARDED
012	00C	ALL APPROACH PROCEDURE RELATED DATA DISCARDED
013	00D	ALL DEPARTURE AIRPORT RELATED DATA DISCARDED
014	00E	ALL ARRIVAL AIRPORT RELATED DATA DISCARDED
015	00F	ALL SID RELATED DATA DISCARDED
016	010	ALL STAR RELATED DATA DISCARDED
017	011	NEXT AIRWAY DISCARDED
018	012	SINGLE ELEMENT DISCARDED
019-100	013-064	RESERVED FOR DEFINITION (B-737)
101	065	ALL OF LIST ENTRY DISCARDED
102	066	ALL OF ENROUTE SEGMENT DISCARDED
103	067	ALTERNATE RUNWAY DATA DISCARDED
104	068	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
105	069	ALL OF ELEMENT TEXT DISCARDED
106-200	06A-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201-300	0C9-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

4875

4876 4877 4880

4881

4882

4883

ATTACHMENT 7 FMC/DATALINK INTERFACE

10.4 Triggers, Stimulus Code, and Report Stimulus Codes

Triggers, stimulus codes and report stimulus codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

001 001 4R INIT REF 002 002 4L SUPP NAV DATA INDEX 003 003 4R SUPP NAV DATA INDEX 004 004 5R PERF INIT 005 005 5L PERF LIMITS 006 006 5R PERF LIMITS 007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
003 003 4R SUPP NAV DATA INDEX 004 004 5R PERF INIT 005 005 5L PERF LIMITS 006 006 5R PERF LIMITS 007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
004 004 5R PERF INIT 005 005 5L PERF LIMITS 006 006 5R PERF LIMITS 007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
005 005 5L PERF LIMITS 006 006 5R PERF LIMITS 007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
006 006 5R PERF LIMITS 007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
007 007 4L TAKEOFF REF 1/2 008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
008 008 6R MOD LEGS EXTENDED DATA 009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
009 009 6L ALTERNATE DEST 010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
010 00A 1L DATA LINK 011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
011 00B 2L DATA LINK 012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
012 00C 3L DATA LINK 013 00D 4L DATA LINK 014 00E 5L DATA LINK
013 00D 4L DATA LINK 014 00E 5L DATA LINK
014 00E 5L DATA LINK
O1E OOE 1D DATA LINIZ
015 00F 1R DATA LINK
016 010 2R DATA LINK
017 011 3R DATA LINK
018
019 013 5R DATA LINK
020 014 6R DATA LINK
021 015 1R MAINT BITE INDEX
022 016 2R MAINT BITE INDEX
023 017 3R MAINT BITE INDEX
024 018 4R MAINT BITE INDEX
025 019 5R MAINT BITE INDEX
026 01A 6R MAINT BITE INDEX
027 01B 6R FMCS BITE INDEX
028 01C 6R FMCS SENSOR STATUS 2/2
029 01D 6R FMCS ANALOG DISCRETES
030 01E 6R IRS MONITOR
031 01F 6R FMCS INFLIGHT FAULTS 3/3
032 020 6R FMCS FLIGHT SELECT
033 021 6R FMCS FLIGHT 'N'
034 022 3R ROUTE
035 023 6R ACT LEGS EXTENDED DATA
036 024 5L PROGRESS 3/3
037 025 5R PROGRESS 3/3
038 026 6L PROGRESS 3/3
039 027 6R PROGRESS 3/3

DEC CODE	HEX CODE	DESCRIPTION
040	028	DES FORECAST
041	029	TIME TO DESTINATION 1
042	02A	TIME TO DESTINATION 2
043	02B	TIME TO DESTINATION 3
044	02C	TIME TO DESTINATION 4
045	02D	TIME TO DESTINATION 5
046	02E	CHANGE IN DESTINATION ETA
047	02F	CHANGE IN DESTINATION AIRPORT
048	030	CHANGE IN ARRIVAL RUNWAY
049	031	EFC ENTRY
050	032	WIND DISCREPANCY
051	033	WAYPOINT SEQUENCE
052	034	POS SHIFT TO IRS LEFT
053	035	POS SHIFT TO IRS RIGHT
054	036	POS SHIFT TO IRS CENTER
055	037	POS SHIFT TO RADIO
056	038	POS SHIFT TO GPS LEFT
057	039	POS SHIFT TO GNSS RIGHT
058	03A	VERIFY POSITION MESSAGE
059	03B	INSUFFICIENT FUEL MESSAGE
060	03C	MOD PLAN EXECUTION
061	03D	CRUISE ALTITUDE CHANGE
062	03E	RTA UNACHIEVABLE MESSAGE
063	03F	HOLDING PATTERN EXIT
064	040	HOLDING PATTERN ENTRY
065	041	FMC FAULT
066	042	SENSOR FAILURE
067	043	BAD NAVAID
068	044	INAIR
069	045	COMPANY UPLINK TEXT ERROR
070	046	ATC UPLINK TEXT ERROR
071	047	COMPANY UPLINK ACKNOWLEDGE
072	048	ATC UPLINK ACKNOWLEDGE
073	049	COMPANY ROUTE DATA ACCEPTED
074	04A	ATC ROUTE DATA ACCEPTED
075	04B	COMPANY ROUTE DATA ACCEPTED WITH EDIT
076	04C	ATC ROUTE DATA ACCEPTED WITH EDIT
077	04D	COMPANY ROUTE DATA REJECTED
078	04E	ATC ROUTE DATA REJECTED
079	04F	COMPANY RTA DATA ACCEPTED
080	050	ATC RTA DATA ACCEPTED
081	051	COMPANY RTA DATA ACCEPTED WITH EDIT
082	052	ATC RTA DATA ACCEPTED WITH EDIT
083	053	COMPANY RTA DATA REJECTED

DEC CODE	HEX CODE	DESCRIPTION
084	054	ATC RTA DATA REJECTED
085	055	COMPANY WIND TEMP DATA ACCEPTED
086	056	ATC WIND DATA ACCEPTED
087	057	COMPANY WIND TEMP DATA ACCEPTED WITH EDIT
088	058	ATC WIND DATA ACCEPTED WITH EDIT
089	059	COMPANY WIND TEMP DATA REJECTED
090	05A	ATC WIND DATA REJECTED
091	05B	COMPANY DESCENT FORECAST DATA ACCEPTED
092	05C	ATC DESCENT FORECAST DATA ACCEPTED
093	05D	COMPANY DESCENT FORECAST DATA ACCEPTED WITH EDIT
094	05E	ATC DESCENT FORECAST DATA ACCEPTED WITH EDIT
095	05F	COMPANY DESCENT FORECAST DATA REJECTED
096	060	ATC DESCENT FORECAST DATA REJECTED
097	061	COMPANY PERF INIT DATA ACCEPTED
098	062	ATC PERF INIT DATA ACCEPTED
099	063	COMPANY PERF INIT DATA ACCEPTED WITH EDIT
100	064	ATC PERF INIT DATA ACCEPTED WITH EDIT
101	065	COMPANY PERF INIT DATA REJECTED
102	066	ATC PERF INIT DATA REJECTED
103	067	COMPANY PERF LIMIT DATA ACCEPTED
104	068	ATC PERF LIMIT DATA ACCEPTED
105	069	COMPANY PERF LIMIT DATA ACCEPTED WITH EDIT
106	06A	ATC PERF LIMIT DATA ACCEPTED WITH EDIT
107	06B	COMPANY PERF LIMIT DATA REJECTED
108	06C	ATC PERF LIMIT DATA REJECTED
109	06D	RESERVED FOR DEFINITION (B-737)
110	06E	RESERVED FOR DEFINITION (B-737)
111	06F	RESERVED FOR DEFINITION (B-737)
112	070	RESERVED FOR DEFINITION (B-737)
113	071	RESERVED FOR DEFINITION (B-737)
114	072	RESERVED FOR DEFINITION (B-737)
115	073	UPLINK REQUESTING A DOWNLINK
116	074	TIME TO TOP OF DESCENT 1
117	075	TIME TO TOP OF DESCENT 2
118	076	TIME TO TOP OF DESCENT 3
119	077	TIME TO TOP OF DESCENT 4
120	078	TIME TO TOP OF DESCENT 5
121-200	079-0C8	RESERVED FOR DEFINITION (B-737)
201-300	0C9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	MULTI-LEVEL WIND TEMP DATA ACCEPTED
302	12E	MULTI-LEVEL WIND TEMP DATA REJECTED
303-400	12F-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

4885	ATTACHMENT 8	CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES	
4886			
4887		[Deleted by Supplement 5]	
4888 4889			

APPENDIX A REFERENCE DOCUMENTS

4890	APPENDIX A REFERENCE DOCUMENTS
4891	The latest versions of the following documents apply:
4892 4893	ARINC Specification 413A : Guidance for Aircraft Electrical Power Utilization and Transient Protection
4894	ARINC Specification 424: Navigation System Data Base
4895	ARINC Specification 429: Digital Information Transfer System (DITS)
4896	ARINC Specification 600: Air Transport Avionics Equipment Interfaces
4897	ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment (BITE)
4898	ARINC Report 607: Design Guidance for Avionic Equipment
4899	ARINC Report 608A: Design Guidance for Avionics Test Equipment
4900	ARINC Report 610B: Guidance for Use of Avionics Equipment and Software in Simulators
4901	ARINC Specification 615: Airborne Computer High Speed Data Loader
4902	ARINC Specification 615A: Software Data Loader with High Density Storage Medium
4903	ARINC Specification 618: Air-Ground Character-Oriented Protocol Specification
4904	ARINC Specification 622: ATS Data Link Applications Over ACARS Air-Ground Network
4905	ARINC Report 624: Design Guidance for Onboard Maintenance System
4906	ARINC Report 625: Industry Guide for Component Test Development and Management
4907	ARINC Report 626: Standard ATLAS Language for Modular Test
4908	ARINC Specification 646: Ethernet Local Area Network (ELAN)
4909	ARINC Report 651: Design Guidance for Integrated Modular Avionics
4910	ARINC Specification 653: Avionics Application Software Standard Interface
4911	ARINC Report 660B: CNS/ATM Avionics Architectures Supporting NextGen/SESAR Concepts
4912	ARINC Specification 661: Cockpit Display System Interfaces to User Systems
4913	ARINC Specification 664: Aircraft Data Network
4914	ARINC Characteristic 701: Flight Control Computer System
4915	ARINC Characteristic 704: Inertial Reference System
4916	ARINC Characteristic 705: Attitude and Heading Reference System
4917	ARINC Characteristic 706: Subsonic Air Data System
4918 4919	ARINC Characteristic 708A: Airborne Weather Radar with Forward Looking Windshear Detection Capability
4920	ARINC Characteristic 709: Airborne Distance Measuring Equipment
4921	ARINC Characteristic 710: Mark 2 Airborne ILS Receiver
4922	ARINC Characteristic 711: Mark 2 Airborne VOR ILS Receiver
4923	ARINC Characteristic 724B: Aircraft Communication Addressing and Reporting System (ACARS)
4924	ARINC Characteristic 725: Electronic Flight Instruments (EFI)
4925	ARINC Characteristic 737: On-Board Weight and Balance System
4926	ARINC Characteristic 738: Air Data and Inertial Reference System (ADIRS)
4927	ARINC Characteristic 739A: Multi-Purpose Control and Display Unit
4928	ARINC Characteristic 740: Multiple-Input Cockpit Printer
4929	ARINC Characteristic 743A: GNSS Sensor
4930	ARINC Characteristic 743B: GNSS Landing System Sensor Unit (GLSSU)

APPENDIX A REFERENCE DOCUMENTS

- 4931 ARINC Characteristic 744: Full-Format Printer
- 4932 ARINC Characteristic 744A: Full-Format Printer with Graphics Capability
- 4933 ARINC Characteristic 745: Automatic Dependent Surveillance
- 4934 ARINC Characteristic 755: Multi-Mode Landing System Digital
- 4935 ARINC Characteristic 756: GNSS Navigation and Landing Unit (GNLU)
- 4936 ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2
- 4937 **ARINC Characteristic 760:** *GNSS Navigation Unit (GNU)*
- 4938 **EUROCONTROL SPEC-0116**: EUROCONTROL Specification on Data Link Services (DLS)
- 4939 ICAO Doc 4444: Procedures for Air Navigation Services Air Traffic Management
- 4940 ICAO Doc 8168 Vol 1: Aircraft Operations Flight Procedures
- 4941 ICAO Doc 9613: Performance-Based Navigation Manual
- 4942 ICAO Doc 10037: Global Operational Data Link (GOLD) Manual
- 4943 RTCA DO-160/EUROCAE ED-14: Environmental Conditions and Test Procedures for Airborne
- 4944 Equipment
- 4945 RTCA DO-178/EUROCAE ED-12: Software Considerations in Airborne Systems and Equipment
- 4946 Certification
- 4947 RTCA DO-200/EUROCAE ED-76: Standards for Processing Aeronautical Data
- 4948 RTCA DO-201/EUROCAE ED-77: Standards for Aeronautical Information
- 4949 RTCA DO-219: Minimum Operational Performance Standards for ATC Two-Way Data Link
- 4950 Communications
- 4951 RTCA DO-229: Minimum Operational Performance Standards for Global Positioning
- 4952 System/Satellite-Based Augmentation System Airborne Equipment
- 4953 RTCA DO-236/EUROCAE ED-75: Minimum Aviation System Performance Standards: Required
- 4954 Navigation Performance for Area Navigation
- 4955 RTCA DO-257B: Minimum Operational Performance Standards for the Depiction of Navigational
- 4956 Information on Electronic Maps.
- 4957 RTCA DO-258/EUROCAE ED-100: Interoperability Requirements for ATS Applications Using
- 4958 ARINC 622 Data Communications
- 4959 RTCA DO-264/EUROCAE ED-78: Guidelines for Approval of the Provision and Use of Air Traffic
- 4960 Services Supported by Data Communications
- 4961 RTCA DO-280/EUROCAE ED-110: Interoperability Requirements Standard for Aeronautical
- 4962 Telecommunication Network Baseline 1
- 4963 RTCA DO-283: Minimum Operational Performance Standards for Required Navigation
- 4964 Performance for Area Navigation
- 4965 RTCA DO-290/EUROCAE ED-120: Safety and Performance Requirements Standard for Air Traffic
- 4966 Data Link Services in Continental Airspace
- 4967 RTCA DO-305/EUROCAE ED-154: Future Air Navigation Systems 1/A Aeronautical
- 4968 Telecommunication Network Interoperability Standard (FANS 1/A ATN B1 Interop Standard)
- 4969 RTCA DO-306/EUROCAE ED-122: Safety and Performance Standard for Air Traffic Data Link
- 4970 Services in Oceanic and Remote Airspace (Oceanic SPR Standard)
- 4971 RTCA DO-308: Operational Services and Environment Definition (OSED) for Aeronautical
- 4972 Information Services (AIS) and Meteorological (MET) Data Link Services
- 4973 RTCA DO-324: Safety and Performance Requirements (SPR) for Aeronautical Information
- 4974 Services (AIS) and Meteorological (MET) Data Link Services

APPENDIX A REFERENCE DOCUMENTS

4975 4976	RTCA DO-350/EUROCAE ED-228: Safety and Performance Standard for Baseline 2 ATS Data Communications
4977 4978	RTCA DO-351/EUROCAE ED-229: Interoperability Requirements Standard for Baseline 2 ATS Data Communications
4979 4980	RTCA DO-352/EUROCAE ED-230: Interoperability Requirements Standard for Baseline 2 ATS Data Communications, FANS 1/A Accommodation
4981 4982	RTCA DO-353/EUROCAE ED-231: Interoperability Requirements Standard for Baseline 2 ATS Data Communications, ATN Baseline 1 Accommodation

4983	APPENDIX B	ACRONYMS
4984	ACARS	Aircraft Communications Addressing and Reporting System
4985	ACK	Acknowledgement
4986	ADC	Air Data Computer
4987	ADIRS	Air Data/Inertial Reference System
4988	ADIRU	Air Data/Inertial Reference Unit
4989	ADS	Automatic Dependent Surveillance
4990	ADS-B	Automatic Dependent Surveillance – Broadcast
4991	ADS-C	Automatic Dependent Surveillance – Contract
4992	AEEC	Airlines Electronic Engineering Committee
4993	AF	Arc to a Fix
4994	AFM	Airplane Flight Manual
4995	AFN	ATS Facilities Notification
4996	AFCS	Auto Flight Control System
4997	AHRS	Altitude Heading Reference System
4998	AMI	Airline Modifiable Information
4999	ANP	Actual Navigation Performance
5000	AOC	Airline Operational Communication
5001	APM	Airplane Personality Module
5002	ASAS	Aircraft Separation Assurance System
5003	ATC	Air Traffic Control
5004	ATM	Air Traffic Management
5005	ATN	Aeronautical Telecommunications Network
5006	ATS	Air Traffic Services
5007	ATO	Along Track Offset
5008	ATS	Air Traffic Services
5009	BITE	Built-In Test Equipment
5010	BP	Bottom Plug
5011	CAS	Computed Air Speed
5012	CDTI	Cockpit Display of Traffic Information
5013	CCITT	Comité Consultatif International Téléphonique et Télégraphique
5014	CDA	Continuous Descent Approach
5015	CDO	Continuous Descent Operation
5016	CDU	Control Display Unit
5017	CF	Course to a Fix
5018	CMU	Communications Management Unit
5019	CNS	Communications, Navigation and Surveillance
5020	CPDLC	Controller/Pilot Data Link Communication
5021	CRC	Cyclic Redundancy Check
5022	CTS	Clear to Send
5023	DA	Decision Altitude

5024	DITS	Digital Information Transfer System
5025	DLIC	Data Link Initiation of Communications
5026	DME	Distance Measurement Equipment
5027	EFC	Expected Further Clearance
5028	EFIS	Electronic Flight Information System
5029	EIS	Electronic Information System
5030	ELAN	Ethernet Local Area Network
5031	EMD	Electronic Map Display
5032	EPU	Estimated Position Uncertainty
5033	ETA	Estimated Time of Arrival
5034	ETE	Estimated Time Enroute
5035	ETOPS	Extended-range Twin-engine Operations
5036	ETP	Equal-Time Point
5037	EUROCAE	European Organization for Civil Aviation Electronics
5038	FAF	Final Approach Fix
5039	FANS	Future Air Navigation System
5040	FAS	Final Approach Segment
5041	FASDM	Final Approach Segment Data Message
5042	FCOM	Flight Crew Operations Manual
5043	FEP	Final End Point
5044	FIR	Flight Information Region
5045	FLS	FMS-based Landing System
5046	FMC	Flight Management Computer
5047	FMCS	Flight Management Computer System
5048	FMF	Flight Management Function
5049	FMS	Flight Management System
5050	FRT	Fixed Radius Transition
5051	GBAS	Ground Based Augmentation System
5052	GLS	GNSS-based Landing System
5053	GLSSU	GPS/SBAS Landing System Sensor Unit
5054	GNLU	GNSS-based Navigation and Landing Unit
5055	GNSS	Global Navigation Satellite System
5056	GNSSU	Global Navigation Satellite System Unit
5057	GPS	Global Positioning System
5058	HSI	Horizontal Situation Indicator
5059	IAF	Initial Approach Fix
5060	ICAO	International Civil Aviation Organization
5061	IF	Initial Fix
5062	IFR	Instrument Flight Rules
5063	IGS	Instrument Guidance System
5064	ILS	Instrument Landing System

5065	IMI	Imbedded Message Identifier
5066	IPC	Illustrated Parts Catalog
5067	IRS	Inertial Reference System
5068	IRU	Inertial Reference Unit
5069	ISA	International Standard Atmosphere
5070	LDA	Localizer Directional Aid
5071	LDU	Link Data Unit
5072	LNAV	Lateral Navigation
5073	LOC	Localizer
5074	LP	Localizer Performance
5075	LPV	Localizer Performance with Vertical Guidance
5076	LRC	Long Range Cruise
5077	LRU	Line Replaceable Unit
5078	LSB	Least Significant Bit
5079	LTP	Landing Threshold Point
5080	MAHP	Missed Approach Holding Point
5081	MAP	Missed Approach Decision Point
5082	MASPS	Minimum Airborne System Performance Standards
5083	MCDU	Multi-Purpose Control Display Unit
5084	MCU	Modular Concept Unit
5085	MDA	Minimum Decision Altitude
5086	MDH	Minimum Decision Height
5087	MEA	Minimum Enroute IFR Altitude
5088	MLS	Microwave Landing System
5089	MMO	Maximum Operating Mach
5090	MMR	Multi-Mode Receiver
5091	MOCA	Minimum Obstruction Clearance Altitude
5092	MOPS	Minimum Operational Performance Standards
5093	MORA	Minimum Off-Route Altitude
5094	MP	Middle Plug
5095	MSB	Most Significant Bit
5096	MTBF	Mean Time Between Failure
5097	MTBUR	Mean Time Between Unit Removal
5098	MU	Management Unit
5099	NAK	Negative Acknowledgement
5100	ND	Navigational Display
5101	NDB	Non-Directional Beacon or Navigation Data Base
5102	NFF	No Fault Found
5103	PBD	Point Bearing/Distance
5104	PBN	Performance-Based Navigation
5105	PDC	Predeparture Clearance

510	6 PDMV	Procedure Design Magnetic Variation
510	7 PFD	Primary Flight Display
510	8 PVT	Position Velocity and Time
510 511		Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above the station
511 511		Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above mean sea level
511	3 RAIM	Receiver Autonomous Integrity Monitoring
511	4 RF	Constant Radius Arc to a Fix
511	5 RNAV	Area Navigation
511	6 RNP	Required Navigation Performance
511	7 RTA	Required Time of Arrival
511	8 RTS	Request to Send
511	9 RVSM	Reduced Vertical Separation Minima
512	0 SARPS	Standards and Recommended Practices
512	1 SBAS	Satellite Based Augmentation System
512	2 SDI	Source Destination Identifier
512	3 SID	Standard Instrument Departure
512	4 STAR	Standard Terminal Arrival Route
512	5 SUA	Special Use Airspace
512	6 TACAN	Tactical Air Navigation System
512	7 TAI	Thermal Anti-Ice
512	8 TAWS	Terrain Awareness and Warning System
512	9 TCC	Thrust Control Computer
513	0 TOAC	Time of Arrival Control
513	1 TP	Top Plug
513	2 TTE	Total Time Error
513	3 UIR	Upper Flight Information Region
513	4 UTC	Universal Time Coordinated
513	5 VFR	Visual Flight Rules
513	6 VMO	Maximum Operating Speed
513	7 VNAV	Vertical Navigation
513	8 VOR	VHF Omni-Range Navigation
513	9 VORTAC	Co-Located VOR and TACAN
514	0 VSD	Vertical Situation Display
514	1 VTR	Variable Thrust Rating
514	2 WBS	Weight and Balance System

5143	APPENDIX C	GLOSSARY
5144 5145		ARS – Aircraft Communications Addressing and Reporting System A digital datalink network providing connectivity between aircraft and ground end
5146		systems (command and control, air traffic control, etc.).
5147		uracy – Navigation
5148		The degree of conformance between calculated position and true position.
5149	ADS	S-B – Automatic Dependent Surveillance-Broadcast
5150		A vehicle or object will broadcast a message on a set regular basis which includes
5151		its position (such as lat, long, altitude), velocity, and possibly other information.
5152 5153		These position reports are based on accurate navigation systems. There are three accepted links, ADS-B: 1090 Extended Squitter (see also 1090 Extended Squitter),
5154		Universal Access Transceiver (see also UAT), and VDL-4 (see also VDL-4). Military
5155		aircraft will use 1090 ES with few exceptions.
5156	ADS	G-C – Automatic Dependent Surveillance-Contract
5157		A datalink application that provides a means for a ground facility to establish an
5158		agreement with the aircraft navigation system(s), via data link, specifying under
5159	,	what conditions ADS-C reports will be initiated, and what data will be contained in
5160		the reports.
5161	Airw	vay
5162		A control area or portion thereof established in the form of a corridor equipped with
5163		radio navigation aids.
5164	Altit	ude
5165		The vertical distance of a level, a point or an object considered as a point, measured
5166		from mean sea level (MSL).
5167	AOC	C – Airline Operational Control (Aeronautical Operational Control)
5168		Operational messages used between aircraft and dispatch centers to support flight
5169		operations. This includes, but is not limited to, flight planning, flight following, and
5170		the distribution of information to flights and affected personnel.
5171	ATN	Aeronautical Telecommunications Network
5172		A network architecture that allows ground/ground, air/ground, and avionic data
5173		subnetworks to interoperate by using common interface services and protocols.
5174	ATS	U – Air Traffic Services Unit
5175		A facility established for the purpose of receiving reports concerning air traffic
5176		services. It is a generic term meaning air traffic control center, flight information
5177 5178		center, or air traffic service reporting office. Within this document, the term is used as defined above and not to be confused with an onboard avionics unit.
5179	Λναί	ilability – Navigation
5179		It is the percentage of the time that the required accuracy and integrity are useable
5181		to meet a specified flight phase.

5182 5183 5184	BCD – Binary Coded Decimal ARINC 429 data format where each decimal digit is represented by a fixed number of bits, usually four or eight. Refer to ARINC 429 for additional details.
5185 5186 5187	Bearing The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point through 360 degrees.
5188 5189 5190	BNR – Binary Number Representation ARINC 429 data format where data bits represent a binary number. Refer to ARINC 429 for additional details.
5191 5192 5193 5194 5195	CMU – Communication Management Unit The CMU performs two important functions: it manages access to the various datalink sub-networks and services available to the aircraft and hosts various applications related to datalink. It also interfaces to the flight management system (FMS) and to the crew displays.
5196 5197 5198 5199 5200	CNS/ATM – Communication, Navigation, Surveillance/Air Traffic Management CNS/ATM is a system based on digital technologies, satellite systems, and enhanced automation to achieve a seamless global Air Traffic Management in the future. Modern CNS systems will eliminate or reduce a variety of constraints imposed on ATM operations today.
5201 5202 5203 5204	Containment A set of interrelated parameters used to define the performance of an RNP RNAV navigation system. These parameters are containment integrity, containment continuity, and containment region.
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214	Continuity The continuity of a system is the capability of the total system (comprising all elements necessary to maintain aircraft position within the defined airspace) to perform its function without nonscheduled interruptions during the intended operation. The continuity risk is the probability that the system will be unintentionally interrupted and not provide guidance information for the intended operation. More specifically, continuity is the probability that the system will be available for the duration of a phase of operation, presuming that the system was available at the beginning of that phase of operation. See the definition of containment continuity for how this parameter applies to RNP airspace.
5215 5216 5217	Coordinates The intersection of lines of reference, usually expressed in degrees / minutes / seconds of latitude and longitude, used to determine a position or location.
5218 5219 5220	Course 1. The intended direction of flight in the horizontal plane measured in degrees from north.
5221 5222	The ILS localizer signal pattern usually specified as the front course or the back course.

5223	3. The intended track along a straight, curved, or segmented MLS path.
5224	CPDLC – Controller-Pilot Data Link Communications
5225	The CPDLC application provides for the exchange of flight planning, clearance, and
5226	informational data between a flight crew and air traffic control. This application
5227	supplements voice communications and in some cases will likely supersede it in the
5228	future.
5229	Cross-Track Error
5230	The perpendicular deviation that the airplane is to the left or right of the desired
5231	path. This error is equal to the cross-track component of the total system error.
5232	

5233	Curvilinear Optimum Path
5234	A vertical flight path composed of multiple straight segments that enable improved
5235	flight efficiency through the specification of a path optimized for aircraft
5236	performance.
5237	Defined Path
5238	The output of the FMS' path definition function.
5239	Desired Path
5240	The path that the flight crew and air traffic control can expect the aircraft to fly, given
5241	a particular route leg or transition.
5242	Direct
5243	Geodesic track between two navigational aids, fixes, points or any combination
5244	thereof. When used by pilots in describing off-airway routes, points defining direct
5245	route segments become compulsory reporting points unless the aircraft is under
5246	radar contact.
5247	Distance-To-Go
5248	The distance between the aircraft present position and the waypoint to which the
5249	aircraft is flying. In the case of an aircraft flying a parallel offset, the distance-to-go is
	• • • • • • • • • • • • • • • • • • • •
5250	measured to the offset reference point.
5251	Dynamic RNP
5252	Advanced RNP concept whereby ATS datalink may be used to uplink procedural
5253	waypoints and assign RNP values to them.
5254	EFIS – Electronic Flight Instrumentation System
5255	Digital display that combines aircraft attitude and performance data from different
5256	sources on a single display.
5257	EGNOS – European Geostationary Navigation Overlay Service
5258	Europe's SBAS implementation (see also SBAS).
5259	Estimate of Position Uncertainty (EPU)
5260	A measure based on a defined scale in nautical miles or kilometers which conveys
5261	the current position estimation performance.
5262	Estimated Position
5263	The output of the FMS' position estimation function.
5264	Estimated Time of Arrival (ETA)
5265	The time at which the FMS predicts that a fix will be crossed.
5266	FANS-1/A – Future Aircraft Navigation System 1/A
5267	A set of operational capabilities which make use of the ACARS network and are
5268	centered around direct datalink communications between the flight crew and air
5269	traffic control.
0200	tranio control.

5270

5271	Fix
5272	A fix is a generic name for a geographical position. A fix is referred to as a fix,
5273	waypoint, intersection, reporting point, etc.
5274	Flight Level (FL)
5275	A surface of constant atmospheric pressure which is related to a specific pressure
5276	datum, 1013.2 hPa (29.92 in Hg) and is separated from other surfaces by specific
5277	pressure intervals.
5278	Flight Path Angle
5279	The angular displacement of the vertical flight path from a horizontal plane that
5280	passes through a reference datum point. The specified angle is from the TO fix or
5281	reference datum point.
5282	Flight Technical Error (FTE)
5283	The accuracy with which the aircraft is controlled as measured by the indicated
5284	aircraft position with respect to the indicated command or desired position. It does
5285	not include blunder errors.
5286	FMF – Flight Management Function
5287	A single instance of the flight management system software where the software may be
5288	hosted as a single executable in a federated system or as one or more partitions in an
5289	ARINC 653 partitioned operating system.
5290	FMS – Flight Management System
5291	A specialized computer system that automates a variety of functions to enhance the
5292	efficiency of an aircraft and reduce workload on the flight crew. The functions
5293	typically include: position determination, navigation, flight planning, performance
5294	planning, lateral and vertical guidance, database management and others.
5295	GBAS – Ground-Based Augmentation System
5296	The ICAO defines GBAS as a system that augments ground systems (typically at an
5297	airport) with equipment similar in functionality to a GPS satellite. This augmentation
5298	allows an aircraft to determine its vertical/lateral position to very great accuracy. The
5299	ultimate goal is CAT IIIC operation.
5300	Geodesic Line
5301	A line of shortest distance between any two points on a mathematically defined
5302	surface (i.e. WGS-84).
5303	Geometric Path
5304	A vertical flight path defined by a straight line between two points or based upon a
5305	specified flight path angle from a reference datum point.
5306	GLS – GNSS Landing System
5307	A safety-critical system consisting of the hardware and software that augments the
5308	GNSS position to provide for precision approach and landing capability (much like
5309	the ground-based ILS does now). The positioning service provided by GNSS is
5310	insufficient to meet the integrity, continuity, accuracy, and availability demands of

5311	precision approach and landing navigation. The GLS augments the basic GNSS
5312	position data in order to meet these requirements. These augmentations are based
5313	on differential GNSS concepts.
5314	GNSS – Global Navigation Satellite System
5315	GNSS is the ICAO recognized term for space-based navigation systems that
5316	provide enroute/terminal navigation with non-precision approach and precision
5317	approach capabilities. When receiving signals from at least four satellites, a GNSS
5318	receiver can determine latitude, longitude, altitude and time. Examples of GNSS
5319	systems include Galileo, GPS, GLONASS, and BeiDou.
5320	GPS – Global Positioning System
5321	The United States' GNSS System.
5322	Heading
5323	The direction in which the longitudinal axis of an aircraft is pointed, usually
5324	expressed in degrees from North (true, magnetic, compass or grid).
5325	Holding Procedure
5326	A predetermined maneuver which keeps an aircraft within specified airspace while
5327	awaiting further clearance.
5328	Host Track/Route
5329	The track or route defined by the waypoints in the flight plan.
5330	Integrity – Navigation
5331	The ability of a system to provide timely warnings to users when the system should
5332	not be used for navigation. In RNP navigation, it refers to the measure of confidence
5333	in the estimated position expressed as a probability that the system will detect and
5334	annunciate the condition where total system error is greater than the cross-track
5335	containment limit.
5336	IRS – Inertial Reference System
5337	A navigation aid that uses a computer, motion sensors (accelerometers), rotation
5338	sensors (gyroscopes), to continuously calculate the position, orientation, and
5339	velocity (direction and speed of movement) of a moving object (aircraft) without the
5340	need for external references.
5341	Leg
5342	A leg is a segment of the flight plan consisting of a path type (e.g., Track, Course,
5343	Heading) and a termination type (e.g., fix, altitude). In an RNP environment, a leg is
5344	typically a path over the earth terminating at a fixed waypoint.
5345	LNAV – Lateral Navigation
5346	FMS function which calculates, displays, and provides guidance to the computed
5347	lateral path.

Magnetic Variation

5348

5349 5350 5351	The angle between the magnetic and geographic meridians at any location, expressed in degrees and minutes east or west to indicate the direction of magnetic north from true north. Also called magnetic declination.
5352	MASPS – Minimum Aviation System Performance Standards
5353	Standards produced by RTCA/EUROCAE that establish minimum system
5354	performance characteristics.
5355	MMR – Multi-Mode Receiver
5356	An integrated avionics unit that contains multiple functions such as ILS, VOR, MLS,
5357	and GNSS functions.
5358	Multi-Sensor Navigation
5359	An FMS function where aircraft position is determined using data derived from two
5360	or more independent sensors, each of which is useable (i.e., meets required
5361	navigation performance including accuracy, availability and integrity) for airborne
5362	navigation.
5363	MOPS – Minimum Operational Performance Standards
5364	Standards produced by RTCA/EUROCAE that describe typical equipment
5365	applications and operational goals and establish the basis for required performance.
5366	Definitions and assumptions essential to proper understanding are included as well
5367	as installed equipment tests and operational performance characteristics for
5368	equipment installations. MOPS are often used by certification authorities as a basis
5369	for certification and system approval.
5370	Navigation Performance Accuracy
5371	Total navigation accuracy based on the combination of the navigation sensor error,
5372	airborne receiver error, path definition error and flight technical error. Also called
5373	system use accuracy. This performance accuracy is the uncertainty of the horizontal
5374	total system error.
5375	NextGen
5376	U.S. next generation air traffic control infrastructure modernization program.
5377	NOTAM – Notice to Air Men
5378	A notice containing information concerning the establishment, condition or change in
5379	any aeronautical facility, service, procedure or hazard, the timely knowledge of
5380	which is essential to personnel concerned with flight operations.
5381	Offset Distance
5382	The lateral distance, measured in nautical miles left or right, that the offset track
5383	center line is offset from the host track centerline.
5384	Offset Track/Route
5385	The track or route that describes a flight path that is offset from the host track as
5386	defined by the waypoints in the active flight plan. The offset track/route is defined by
5387	the offset reference point computed by the navigation system.

5388 5389 5390 5391 5392 5393	Offset Reference Point The computed offset reference point is located on the line that bisects the track angle between route segments. The location of the offset reference point for each waypoint of the host track/route is computed by the navigation system so that it lies on the intersection of the lines drawn parallel to the host track/route at the desired offset distance and the line that bisects the track change angle.
5394 5395 5396 5397	Parallel Offset A lateral path defined by one or more offset reference points computed by the navigation system to form a route parallel to the host route. The magnitude of the offset is defined by the offset distance.
5398 5399 5400	Path Definition Error The difference between the defined path and the desired path at a specific point and time.
5401 5402 5403	Path Steering Error (PSE) This error is determined by the difference between the defined path and the estimated position. The PSE includes both FTE and display error.
5404 5405 5406 5407 5408 5409 5410 5411 5412	PBN – Performance Based Navigation A navigation concept based on the use of Area Navigation (RNAV) systems that defines required performance in terms of accuracy, integrity, continuity and availability. The defined performance includes descriptions of how this capability is to be achieved in terms of aircraft and crew requirements. The general capabilities are defined in International Civil Aviation Organization (ICAO) Doc 9613, Performance Based Navigation Manual Implementation Guidance for National Airspace System (NAS) through Federal Aviation Administration Advisory Circulars (ACs).
5413 5414	Position Estimation Error The difference between true position and estimated position
5415 5416 5417	Position Uncertainty A measure that bounds the magnitude of an unknown position estimation error at a specific confidence level (e.g., 95%)
5418 5419 5420	P-RAIM – Predictive RAIM Determines RAIM availability for the ETA at any location, typically the destination airport.
5421 5422 5423	RAIM – Receiver Autonomous Integrity Monitoring A technology developed to assess the integrity of global positioning system (GPS) signals in a GPS receiver system.
5424 5425 5426	RNAV – Area Navigation A method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the

5466

APPENDIX C GLOSSARY

5427 capability of self-contained aids, or a combination of these. Note that the desired path can be designated by any point(s) in a common reference coordinate system. 5428 **RNP – Required Navigation Performance** 5429 5430 Prescribes the RNAV system performance necessary for operation in a specified airspace, based on its required accuracy (RNP value). The basic accuracy 5431 5432 requirement for RNP-X airspace is for the aircraft to remain within X nautical miles of the cleared position for 95% of the time in RNP airspace. Note that there are 5433 5434 additional requirements, beyond accuracy, applied to a particular RNP type. 5435 **RNP Airspace** 5436 Generic term referring to airspace, route(s), leg(s), where minimum navigation 5437 performance requirements (RNP) have been established and aircraft must meet or exceed that performance to fly in that airspace. 5438 RNP-AR – RNP Authorization Required 5439 5440 Special authorization to conduct RNP approaches/missed approaches designated 5441 as such. Operators can be authorized for any subset of these characteristics: (1) 5442 ability to fly a published arc (also referred to as a RF leg); (2) reduced lateral obstacle evaluation area on the missed approach (also referred to as a missed 5443 approach requiring RNP less than 1.0). RNP AR is designated for approaches 5444 5445 where the final approach segment procedure requires RNP values less than 0.3 5446 NM. 5447 **RTA** 5448 Control mode that modulates the VNAV speed target such that the aircraft will be 5449 controlled to arrive at any specified waypoint in the primary flight plan at a specified 5450 arrival time (RTA). 5451 SBAS – Satellite Based Augmentation System A complex infrastructure of ground-based monitors and control centers that 5452 augments the satellite-based position measurement system to meet accuracy, 5453 availability, and integrity requirements for navigation systems. Examples of SBAS 5454 5455 systems include WAAS (U.S.), EGNOS (Europe), and MSAS (Japan). Scalable RNP 5456 5457 Advanced RNP concept that which allows assignment of atypical RNP values to the legs of a procedure such that the RNP scales from one typical RNP value (RNP 2) 5458 to another typical RNP value (RNP 1). 5459 5460 SESAR – Single European Sky ATM Research 5461 European next generation air traffic control infrastructure modernization program. 5462 TAWS – Terrain Awareness Warning System 5463 Generic term for systems that provide situational awareness relative to Controlled Flight Into Terrain (CFIT) and protection by providing three functions: Forward-5464 5465 Looking Terrain-Avoidance (FLTA), Premature Decent Alert (PDA) and Ground

Proximity Warning (GPW).

5467 5468 5469 5470 5471	TOAC – Time of Arrival Control Performance-based RTA operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs based on entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models.
5472 5473	This function supports the spacing and metering associated with air traffic management and will be used for NextGen and SESAR operations.
5474 5475 5476 5477	Total System Error The difference between true position and desired position. This error is equal to the vector sum of the Path Steering Error (PSE), Path Definition Error (PDE) and Position Estimation Error (PEE).
5478 5479 5480	Track The projection on the earth's surface of the path of an aircraft, the direction of which is usually expressed in degrees from north (true, magnetic or grid).
5481 5482 5483	Transition Altitude The altitude at or below which the vertical position of an aircraft is controlled by reference to altitudes.
5484 5485	Transition Level The lowest flight level available for use above the transition altitude.
5486 5487 5488	VNAV – Vertical Navigation FMS function which calculates, displays, and provides guidance to the vertical flight plan and/or computed vertical path.
5489 5490 5491 5492	Vertical Flight Technical Error The accuracy with which the aircraft is controlled as measured by the indicated aircraft position with respect to the indicated vertical command or desired vertical position. It does not include blunder errors
5493 5494 5495	Vertical Path Definition Error The vertical difference between the defined path and the desired path at a specific point and time
5496 5497 5498	Vertical Path Steering Error The distance from the estimated vertical position to the defined path. It includes both FTE and display error (e.g., vertical deviation centering error).
5499 5500 5501 5502 5503	Vertical Total System Error The difference between true vertical position and desired vertical position. This error is equal to the vector sum of the vertical path steering error, path definition error, and altimetry system error. Barometric altitude correction setting error is not included.
5504	VGA – Visual Guidance Approach (or RNAV Visual Procedure)

5505	A charted RNAV approach procedure requiring visual conditions to continue the
5506	approach after a published position known as the Visual Guided Approach Decision
5507	Point (VGADP). It is typically established for environmental or noise considerations
5508	or when necessary to improve safety and efficiency. Such approach procedures
5509	depict prominent landmarks, terrain features, tracks, waypoints and recommended
5510	altitudes to specific runways
5511	VPT – Visual Maneuvering with Prescribed Track
5512	A charted VGA procedure that prescribes a specific track for visual maneuvering to
5513	a runway. Following the VGADB, the prescribed track is flown while maintaining
5514	visual reference to the terrain until intercept of a downwind leg or intercept of the
5515	runway course.
5516	Waypoint
5517	A predetermined geographical position used for route definition and/or progress
5518	reporting purposes that is defined by latitude/longitude.
5519	WGS-84 – World Geodetic System 1984
5520	Developed by the US for world mapping, WGS 84 is an earth fixed global reference
5521	frame. It is the ICAO standard