ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

1	1.0	INTRODUCTION AND DESCRIPTION	<u>111</u>
2	1.1	Purpose and Scope	<u>11</u> 1
3	1.2	Relationship to Other Documents	2 11
4	1.3	Functional Overview	
5	1.4	Flight Management Computer Description	433
6	1.5	Interchangeability	443
7	1.5.1	General	
8	1.5.1	Interchangeability for the ARINC 702A Flight Management Computer Sys	<u>44</u> 0
_	-	Concretion Interchange ability Considerations	5161114
9	1.5.3	Generation Interchangeability Considerations	
10	1.6	Regulatory Approval	
11	1.7	Integrity and Availability	
12	1.8	Reliability	<u>5</u> 4
13	1.9	Testability and Maintainability	<u>655</u>
14	1.10	Flight Simulators	<u>655</u>
15	2.0	INTERCHANGEABILITY STANDARDS	
15	2.0		
16	2.1	Introduction	<u>/6</u> 6
17	2.2	Form Factor, Connectors, and Index Pin Coding	
18	2.3	Standard Interwiring	
19	2.4	Power Circuitry	<u>76</u> 6
20	2.4.1	Primary Power Input	7 66
21	2.4.2	Power Control Circuitry	8 77
22	2.4.3	The AC Common Cold	
23	2.4.4	The Common Ground	
24	2.4.5	Batteries	
25	2.5	Standardized Signaling	
26	2.5.1	General Accuracy and Operating Ranges	000
27	2.5.2	Resolution	
28	2.5.3	ARINC 429 Data Bus	
29	2.5.4	Standard "Open"	
30	2.5.5	Standard "Ground"	<u>1099</u>
31	2.5.6	Standard "Applied Voltage" Output	<u>1099</u>
32	2.5.7	Standard Discrete Input	
33	2.5.8	Standard Discrete Output	<u>111010</u>
34	2.5.9	Ethernet Interface	
35	2.5.10	Standard Annunciators	12 1010
36	2.6	Environmental Conditions	121111
37	2.7	Cooling	121111
38	2.8	Weights	121111
39	2.9	Grounding and Bonding	121111
39	2.9		
40	3.0	SYSTEM DESIGN CONSIDERATIONS	<u>141212</u>
41	3.1	System Configurations	141212
42	3.1.1	Single System Configuration	141212
43	3.1.2	Single System/Dual MCDU Configuration	
44	3.1.3	Dual System Configuration	
45	3.1.4	Other Configurations	151212
45 46	3.1.4		
		Certification Design Considerations	
47	3.2.1	Partitioning Considerations	<u>151313</u>
48	3.2.2	Operational Functional Independence	<u>1513</u> 13
49	3.2.3	Unit Identification Considerations	
50	3.3	System Response to Power Interrupts	<u>161414</u>

Style Definition: Heading 2
Style Definition: Heading 3: Font: Bold
Style Definition: Heading 5: Font: Bold
Style Definition: Body Text
Style Definition: Caption
Style Definition: Acronym List

ARINC STANDARD 702A TABLE OF CONTENTS

51	3.4	FMC Performance	171515
52	3.4.1	Accuracy, Integrity, and Continuity	
52 53	3.4.1	Response Time	17 13 13
		Dual System Design Considerations	17 10 10
54	3.5	Duai System Design Considerations	<u>10-10-10</u>
55	4.0 I	FLIGHT MANAGEMENT FUNCTIONS	<u>201717</u>
56	4.1	ntroduction	201717
57		Functional Initialization and Activation	
58	4.2.1	Navigation Sensor Initialization	
59	4.2.1.1	IRS Initialization	201717
60	4.2.1.2	IRS Heading Set	
61	4.2.1.3	GNSS Initialization	
62	4.2.2	Flight Plan Initialization and Activation	201717
63	4.2.3	Performance and Predictions Initialization	211818
64	4.2.4	Lateral and Vertical Guidance Activation	
65	4.2.5	Use of Data Link for System Initialization	
66		Functional Description	
67	4.3.1	Navigation	211818
68	4.3.1.1	Multi-Sensor Navigation	222020
	4.3.1.1	Novigation Mades	242020
69	-	Navigation Modes	
70	4.3.1.3	RNP-Based Navigation	
71	4.3.1.3.1	RNP Determination	<u>252221</u>
72	4.3.1.3.1.1		252222
73	4.3.1.3.1.2	·	
74	4.3.1.3.1.3		<u>262323</u>
75	4.3.1.3.1.4		<u>272424</u>
76	4.3.1.3.2	Determination of Navigation System Performance	<u>282524</u>
77	4.3.1.3.3	Navigation Alerting and Display	
78	4.3.1.4	Navaid Data	<u>292625</u>
79	4.3.1.5	Crew Controlled Navigation Options	<u>292625</u>
80	4.3.1.6	VHF Radio Tuning	<u>302727</u>
81	4.3.1.6.1	Automatic Station Selection	<u>302727</u>
82	4.3.1.6.2	Navaid Reasonableness Determination	<u>302727</u>
83	4.3.1.7	Real Time Clock	30 27 27
84	4.3.2	Flight Planning	302727
85	4.3.2.1	Flight Plan States	312828
86	4.3.2.2	Navigation Data Base	
87	4.3.2.3	Supplemental and Temporary NDB Creation and Management	333029
88	4.3.2.3.1	PBD Waypoints	
89	4.3.2.3.2	PB/PB Waypoints	343130
90	4.3.2.3.3	Along Track Fix Waypoints	343130
91	4.3.2.3.4	Lat/Long Waypoints	343130
92	4.3.2.3.5	Lat/Long Crossing Waypoints	343130
93	4.3.2.3.6	Unnamed Airway Intersection	343131
94	4.3.2.3.7	Fix Intersection Waypoints	343131
95	4.3.2.3.8	Runway Extension Waypoints	343131
96	4.3.2.3.9	Dir-To Abeam Waypoints	353231
97	4.3.2.3.10		35 <u>32</u> 31
98	4.3.2.3.11	Suggested Waypoint Naming Convention	353231
99	4.3.2.4	Lateral Flight Planning	
00	4.3.2.4.1	Flight Plan Construction	
01	4.3.2.4.1	Terminal Area Procedures	
υı	4.3.4.4	1 51111111ai Alea Fiuleuuies	∪ ∪∪∪

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

102	4.3.2.4.3	Flight Plan Editing	373433
103	4.3.2.4.3.1	Direct/Intercept Option	373433
104	4.3.2.4.3.2	Entry of Waypoints	37 3433
105	4.3.2.4.3.3	Flight Plan Linking	
106	4.3.2.4.3.4	Flight Plan Delete	383433
107	4.3.2.4.3.5	Procedure Selection	383433
108	4.3.2.4.3.6	Holding Patterns (HM Leg)	<u>3835</u> 34
109	4.3.2.4.3.7	Flight Plan Editing using Data Link	<u>3835</u> 34
110	4.3.2.4.3.8	Flight Plan Editing using a Pointing Device	<u>383534</u>
111	4.3.2.4.4	Flight Planning Support for ATM	
112	4.3.2.4.5	Missed Approach Procedures	
113	4.3.2.4.6	Lateral Offset Construction	
114	4.3.2.4.7	Magnetic Variation	<u>403735</u>
115	4.3.2.5	Vertical Flight Planning	<u>413836</u>
116	4.3.2.5.1	Wind, Temperature, and Atmospheric Model	<u>423937</u>
117	4.3.2.5.2	Waypoint Altitude Constraints	
118	4.3.2.5.3	Waypoint Speed Constraints	<u>454240</u>
119	4.3.2.5.4	Temperature Compensation	
120	4.3.3	Lateral and Vertical Guidance	<u>494642</u>
121	4.3.3.1	Lateral Guidance and Path Construction	
122	4.3.3.1.1	Lateral Reference Path Construction	
123	4.3.3.1.2	Lateral Leg Transitions	
124	4.3.3.1.2.1	Fly-By Turns	
125	4.3.3.1.2.2	Fly-Over Turns	
126	4.3.3.1.2.3	Fix Radius Transitions (FRT)	
127	4.3.3.1.3	Special Lateral Path Construction	
128	4.3.3.1.4	Lateral Guidance Roll Command	
129	4.3.3.1.5	Lateral Guidance Output Parameters	
130	4.3.3.1.6	Lateral Capture Path Construction	
131	4.3.3.1.7	Localizer/MLS Capture	<u>565247</u>
132	4.3.3.2	Vertical Guidance and Trajectory Predictions	
133	4.3.3.2.1	Trajectory Predictions	
134	4.3.3.2.1.1	Takeoff Phase Predictions	<u>595550</u>
135	4.3.3.2.1.2	Climb Phase Predictions	<u>595650</u>
136	4.3.3.2.1.3	Cruise Phase Predictions	<u>615851</u>
137	4.3.3.2.1.4	Descent Phase Path Construction and Predictions	
138	4.3.3.2.1.4.		
139	4.3.3.2.1.4.2		<u>6662</u> 56
140	4.3.3.2.1.5	Approach Phase Path Construction and Predictions	<u>686458</u>
141	4.3.3.2.1.6	Missed Approach Phase Prediction	
142	4.3.3.2.2	Vertical Guidance	
143	4.3.3.2.2.1	Climb Phase Operation	
144	4.3.3.2.2.2	Cruise Phase Operation	<u>7470</u> 62
145	4.3.3.2.2.3	Descent Phase Operation	
146	4.3.3.2.2.4	Selected Altitude Compliance	
147	4.3.3.2.2.5	Altimeter Barometric Correction for Terminal Area Operations	
148	4.3.3.2.2.6	Altitude Constraints	
149	4.3.3.2.2.7	Speed Restrictions	
150	4.3.3.2.3	Estimated Time of Arrival (ETA)	
151	4.3.3.2.4	Required Time of Arrival (RTA)	
152	4.3.3.2.5	Time of Arrival Control (TOAC)	
153	4.3.3.3	Three-Dimensional RNAV Approach	<u>848072</u>

ARINC STANDARD 702A TABLE OF CONTENTS

154	4.3.4	Performance Calculations Function	848072
155	4.3.4.1	Performance Modes	
156	4.3.4.1.1	Climb Mode	85 81 73
157	4.3.4.1.2	Cruise Mode	85 8173
158	4.3.4.1.3		85 81 73
159	4.3.4.2	Maximum and Optimum Altitudes Calculation	86 8273
160	4.3.4.3	Trip Altitude Calculations	
161	4.3.4.4	Alternate Destinations Calculation	
162	4.3.4.5	Step Climb/Descent	
163	4.3.4.6	Cruise Climb	87 83 74
164	4.3.4.7	T/C, T/D, Intermediate T/D Advisories	
165	4.3.4.8	Thrust Limit Data Calculations	
166	4.3.4.9	Takeoff Reference Data	
167	4.3.4.10	Approach Reference Data	
168	4.3.4.11	Reserve Fuel Calculation	
169	4.3.4.12	Engine-Out Performance Calculation	88 8475
170	4.3.4.13	Other Predictions	
171	4.3.4.13.		
172	4.3.4.13.		
173	4.3.4.13.	·	
174	4.3.5	Printer Functions	
175	4.3.6	AOC Function	
176	4.3.7	ATS Datalink	
177	4.3.7.1	Future Air Navigation System 1/A (FANS 1/A)	
178	4.3.7.1.1	Air Traffic Services Facilities Notification (AFN)	
179	4.3.7.1.2	(,	
180	4.3.7.1.3	· · · · · · · · · · · · · · · · · · ·	
181	4.3.7.1.3	Link 2000+	
182	4.3.7.2.1	Context Management (CM)	
183	4.3.7.2.1		
184	4.3.7.3	Baseline 2 (B2)	
185	4.3.7.3.1	Context Management (CM)	
186	4.3.7.3.1		050192
187	4.3.7.3.2		
	4.3.7.3.3	Automatic Dependent Surveillance (ADS-C)	
188 189	4.3.6 4.3.9		
190	4.3.10	Terrain and Obstacle Data Navigation Display Interface	
190	4.3.10	CMU Interface	
191	4.3.11	Predictive Receiver Autonomous Integrity Monitoring (RAIM)	
-	4.3.12	Precision-Like Approach Guidance	00 20 00
193			
194	4.3.13.1	LP/LPV Approach Guidance	
195	4.3.13.2	FMS Landing System (FLS)	
196	4.3.14	Integrity Monitoring and Alerting	<u>1009586</u>
197	4.3.14.1	Sensor Status	
198	4.3.14.2	System Status Alert	
199	4.3.14.3	Self-Test	
200	4.3.14.4	Failure Response	
201	4.4	Training Simulator Support Functions	
202	5.0	STANDARD INTERFACES	
203	5.1	FMC Digital Data Input Ports	
204	5.1.1	VOR Input Ports	1029889

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

205	5.1.2	DME Input Ports	1029889
206	5.1.3	ILS/MMR Input Port	
207	5.1.4	Air Data Input Ports	
208	5.1.5	IRS/AHRS Input Ports	
209	5.1.6	GNSS Input Ports	
210	5.1.7	Flight Control System Input Ports	
211	5.1.8	MCDU Input Ports	1039990
212	5.1.9	Data Loader Input Ports (ARINC 615)	
213	5.1.10	Data Link Input Ports	
214	5.1.11	Intersystem Data Input Port	
215	5.1.12	Propulsion/Configuration Data Input Ports	
216	5.1.13	Electronic Flight Instrument System Input Ports	104990
217	5.1.14	Printer	
218	5.1.15	Digital Clock Input	
219	5.1.16	Maintenance Input	
220	5.1.17	WBS Input	
221	5.1.17		
		Simulator Input	
222	5.1.19	Pointing Device	
223	5.1.20	ASAS Input	
224	5.1.21	Reserved Ports for Growth Inputs	
225	5.2	FMC Digital Data Outputs	
226	5.2.1	FMC Intersystem Output	<u>10510091</u>
227	5.2.2	General Data Output	
228	5.2.3	Primary Display Data Output	
229	5.2.4	MCDU Output Ports	
230	5.2.5	Data Loader Output	<u>10510192</u>
231	5.2.6	Data Link Output Ports	
232	5.2.7	Autothrottle (Reserved)	
233	5.2.8	Printer	
234	5.2.9	Onboard Maintenance	
235	5.2.10	Programmable Data Output	<u>10610192</u>
236	5.2.11	Simulator	
237	5.2.12	Aircraft State and Intent Path Output (Trajectory Bus)	<u>10610293</u>
238	5.2.12.1	Aircraft State Data	<u>10610293</u>
239	5.2.12.2	Trajectory Intent Data	<u>10810495</u>
240	5.2.12.2.		
241	5.2.12.2.		
242	5.2.13	Reserved Ports for Growth	118 114 105
243	5.3	Discrete Inputs and Outputs	
244	5.4	FMC/FMC Intersystem Communications	
245	5.5	Ethernet Interface (ARINC 646)	118 114 105
246	6.0	CONTROL DISPLAY UNIT INTERFACE	
247	6.1	General	
248	6.2	Standby Navigation	
-		Self-Test	
249	6.3		
250	6.4	MCDU Annunciators	
251	6.5	MCDU Alerting	<u>120+16</u> 107
252	6.6	MCDU Color and Font Usage	
253	7.0 7.1	ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE Introduction	
254 255	7.1 7.2	FMC Outputs to EFI	
200	1.4	FIND OURDUS IN ELL	

ARINC STANDARD 702A TABLE OF CONTENTS

256	7.3	FMC Inputs from EFI	121 117108
257	7.4	EFI Design Features	
258	7.4.1	Map	
259	7.4.2	Plan	
260	7.4.3	HSI Mode	
261	7.4.4	Map Scales	
262	7.4.5	Map Projection	
263	7.4.6	Option Selection	
264	7.4.7	Symbol Repertoire	
265	7.4.8	EFI Data Conditioning	124120111
266	7.4.9	Pointing Device	
267	7.4.10	Surface Map Mode	
268	7.5	FMC Design Features	
269	7.5.1	Flight Plans	
270	7.5.2	Map Display Edit Areas	
271	7.5.3	Pointing Device	
272	7.6	Interface Design	
273	7.6.1	General	
274	7.6.2	Map Data Updating	126122112
275	7.6.3	Background Data Prioritizing	
276	7.6.4	Background Data Frioritizing	
277	7.6.5	Mode Change Response	128124115
278	7.6.6	Map Translation and Rotation Data	
279	7.6.7	Resolution	120125116
280	7.6.8	Interface Data Errors	
281	7.6.9	FMC-to-EFI Data Transfer Protocol	
282	7.6.9.1	Data Block Format	120125116
283	7.6.9.2	Data Type Word Formats	
284	7.6.10	EFI-to-FMC Data Transfer	
-			
285	8.0	COMMUNICATIONS MANAGEMENT UNIT INTERFACE	<u>131127118</u>
286	8.1	General	<u>131127118</u>
287	9.0	DATA BASE STORAGE CONSIDERATIONS	132128110
288	9.1	Introduction	
289	9.2	Navigation Data Base	132120110
290	9.3	Airline Modifiable Information (AMI) Data Base	
291	9.4	Performance Data Base	
292	9.5	Magnetic Variation Data Base	
293	9.6	Terrain and Obstacle Data	
294	9.7	Airport Surface Map Data	
295	9.8	Configuration Data Base	
296	10.0	BUILT-IN TEST AND MAINTENANCE PROVISIONS	
297	10.1	General Discussion	
298	10.2	Fault Detection and Reporting	
299	10.2.1	General	<u>137133124</u>
300	10.2.2	Self-Monitoring	
301	10.2.3	Debugging Tools	
302	10.2.4	Failure Rate Monitor	
303	10.2.5	Fault Messaging	
304	10.3	Ramp Maintenance	
305	10.3.1	Return to Service Testing	140 136127

ARINC CHARACTERISTIC 702A TABLE OF CONTENTS

306 307 308 309 310 311 312	10.3.2 Programmable Data Bus Interface 140136127 10.3.3 Data Loading 140136127 10.3.4 Cross Loadable Software 141137128 10.3.5 Data Loading Fault Recovery 141137128 10.4 Provisions for Automatic Test Equipment 141137128 10.4.1 General 141137128 10.4.2 ATE Testing 141137128	
313	ATTACHMENTS	
314 315 316 317 318 319 320 321 322 323 324 325 326 327	ATTACHMENT 1	
328	FILES <u>256252</u> 246	
329 330 331 332 333 334 335	APPENDIX A	

1.0 INTRODUCTION AND DESCRIPTION

1.0 INTRODUCTION AND DESCRIPTION

1.1 Purpose and Scope

This document sets forth the characteristics of an advanced Flight Management Computer System (FMS) specifically designed for installation in new generation aircraft. The system is also intended for retrofit in aircraft that presently use ARINC 700 series equipment. The advanced FMS is expected to provide expanded functional capability beyond that defined in ARINC Characteristic 702, and support the necessary requirements for operation in the future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) operational environment. As described in ARINC Report 660B, Tthis includes extensive use of Global Navigation Satellite System (GNSS), Required Navigation Performance (RNP) based navigation, air to ground data link for communications and surveillance, and the associated crew interface control/display capabilities. The functional requirements defined herein also apply to a Flight Management Function (FMF) in an integrated modular avionics (IMA) architecture with software partitions.

The ICAO Future Air Navigation System (FANS) Standards and Recommended Practices (SARPs) for CNS/ATM are currently evolving and are expected to continue to evolve. The requirements included in this document are intended to support performance based navigation (PBN) and trajectory-based operations (TBO) and be consistent with:

ICAO Doc 9613: Performance-Based Navigation Manual (PBN Manual),

RTCA DO-236();: Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation (RNP MASP), and

-RTCA DO-283();. Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation (RNP MOPS).

and support performance based navigation (PBN) and trajectory-based operations (TBO), represent a best guess at the CNS/ATM related functions to be supported by the advanced FMS.

This document does not characterize the requirements for a Control Display Unit (CDU). While the CDU is included in the original version of ARINC Characteristic 702, the capabilities of the Multi-Purpose Control Display Unit (MCDU) are separately defined in ARINC Characteristic 739.

This document defines the functional and interface characteristics of the FMS and assumes that the appropriate MCDU characteristics are defined separately in ARINC Characteristic 739A or elsewhere.

ARINC originated with the airlines and the ARINC documents were created as airline requirements for system implementers. Therefore, the use of the word "should" in this document carries with it the expectation of incorporation. This is especially true in the context of fit, form, interface requirements, and crew indication requirements. In allowing for the various architectures described in this document it is still expected that the functions will operate, at a system level, as described in this document.

422

423

424

1.0 INTRODUCTION AND DESCRIPTION

B81 COMMENTARY 382 End users should be aware that there can be possible differences in 383 hardware and/or tailored implementation of certain functions from 384 ARINC 702A standard so that the FMC may meet fit, form, and 385 intended functional requirements for the particular airframe. 386 Differences may be due to the various airplane architectures, system 387 limitations, and/or specific end user needs which take precedence over complete compliance with ARINC 702A. 388 389 1.2 Relationship to Other Documents 390 391 This document is one of a family of ARINC Characteristics for advanced 392 navigation equipment that includes: 393 ARINC Characteristic 756: GNSS Navigation and Landing Unit 394 ARINC Characteristic 760: GNSS Navigation Unit 395 The functional characteristics of these three systems are very similar, and 396 consequently, significant portions of these three equipment characteristics 397 are highly common. Users of these documents should consider this 398 commonality issue when planning future revisions. 399 The vast majority of military and government specifications for equipment 400 design and construction usually employ specification language; that is, terms 401 such as thou shalt and thou shalt not. However, that type of language makes 402 it difficult to describe preferences which have grown out of airline experience 403 which designers might weigh differently. For this reason, this characteristic, 404 like other AEEC documents, represents guidance material which attempts to 405 acquaint the manufacturer with the need for specific design practices rather than to tell them that they must meet certain requirements under all 406 circumstances. 407 408 A complete list of documents referenced herein can be found in Appendix A. 409 1.3 Functional Overview 410 The FMS provides the following functions: navigation, flight planning, lateral 411 and vertical guidance, performance optimization and prediction, air ground data link, and pilot interfaces via the Electronic Flight Information System 412 413 (EFIS) and MCDU displays or, in newer architectures, a graphical Cockpit Display System (CDS). The following paragraphs provide a summary 414 415 description of these characteristics, with references to their functional descriptions in later sections of this characteristic. 416 417 Navigation (Section 4.3.1) - The navigation function determines the position and velocity of the aircraft using input data from all appropriate sources. The 418 419 outputs include position in terms of altitude, latitude and longitude, and 420 velocity in terms of ground speed and track angle, wind, true and magnetic 421 headings, drift angle, magnetic variation, and inertial flight path angle.

Flight Planning (Section 4.3.2) - This function provides the sequence of

waypoints, airways, flight levels, departure procedures, and arrival procedures to fly from the origin to the destination and/or alternates. The

1.0 INTRODUCTION AND DESCRIPTION

flight plan may be entered manually on the MCDU or automatically by uplink via the air-ground data link. A navigation data base in the Flight Management Computer (FMC) contains the necessary data associated with every flight plan element identifier for the entire aircraft flight domain.

Lateral and Vertical Guidance (Section 4.3.3) - Lateral guidance is computed with respect to great circlegeodesic paths defined by the flight plan, and to transitional paths between the great circlegeodesic paths, or to preset headings or courses. Vertical guidance is computed with respect to altitudes assigned to waypoints, or to paths defined by stored or computed profiles. Speed control along the desired path is provided during all phases of flight.

Trajectory Predictions (Section 4.3.3.2.1) - This function predicts distance, time, speed, altitude, and gross weight at each future waypoint in the flight plan, including computed waypoints such as top-of-climb and top-of-descent.

Performance Calculations (Section 4.3.4) - The objective of this function is to optimize the vertical and speed profiles to minimize the cost of the flight or meet some other criterion, subject to a variety of constraints.

Air-Ground Data Link - Two-way data communication can be provided to the Airline Operations Facility and to Air Traffic Services (ATS). Airline Operational Communication (AOC) data link (Section 4.3.6) is used for flight plans, weather data, takeoff speeds, preflight initializations, etc., from the airline operations facility directly into the FMC. Air Traffic Control (ATC) data link (Section 4.3.7) is used to communicate predefined ATS controller-to-pilot uplink and pilot-to-controller downlink messages via the MCDU.

Pilot Interface via the MCDU (Section 6.0) — In legacy architectures, <code>Tthe MCDU</code> is the pilot interface to the FMS. It transmits button pushes to the FMC and displays data on the MCDU screen in response to transmissions from the FMC. The MCDU may also provide backup functions should both FMCs fail. In newer architectures, the MCDU is replaced by a graphical user interface provided by the Cockpit Display System (CDS). The FMS is a User Application (UA) which requests graphical widgets to be displayed on the display and the CDS provides the FMS with actions performed on those widgets. The CDS interface is documented in ARINC 661.

COMMENTARY

Within this document, references to crew input from the MCDU and display of FMS information on the MCDU should be treated as generic references which also apply to a CDS architecture. It is hoped that future supplement will perform a more comprehensive update to this document relative to a CDS architecture.

Electronic Flight Instrument System Display (Section 7.0) - The FMC generates a variety of outputs—data—in support of a Primary Flight Display (PFD), Navigation Display (ND), and optionally a Vertical Situation Display (VSD). Within this document, the terms Electronic Flight Instrument System (EFIS) and Cockpit Display System (CDS) are used in reference to the display system hardware and associated interfaces; the terms PFD, ND, and VSD are used generically to refer to the various graphical display areas or windows. Based on the interface, the FMC may provide data for use by an

Formatted: Commentary Text

1.0 INTRODUCTION AND DESCRIPTION

external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661. for display on the EFIS for display of command and reference data on the Primary Flight Display (PFD) and for graphic map display of the flight plan on the Navigational Display (ND) as well as display of dynamic data such as ground speed, wind, etc.

Future provisions for Airport Surface Guidance (Section 4.3.8) are included.

COMMENTARY

The airlines wish to avoid the installation of equipment that becomes throw-away when additional related functionality is added. Provisions for growth need to be inherent to the initial configuration of the equipment. The equipment also needs to be designed to support the flexibility that allows the airline to configure the system for the specific capabilities required for different aircraft types and operational needs without incurring unnecessary penalties for unused functionality. The growth and flexibility provisions must allow the system to be easily upgraded after initial installation and certification to accommodate the changes in airline and airspace operational requirements.

1.4 Flight Management Computer Description

The FMC should contain all of the components, electronic circuitry, memory, etc., incident to the functioning of the system. The unit should also contain, as a minimum, sufficient data storage for all required active engine and airplane performance data, all navigation data required to support the active flight plan $_{\bar{1}}$ and any alternate secondary flight plan which may have been entered into the system. The FMC should be capable of storing all data required by the system. The computer should be designed such that normal and abnormal power switching transients and other primary power interruptions as defined in RTCA DO-160() do not cause essential memory contents to be lost. Provisions should be made in the design of the computer to allow for future growth of the system. Expanding the capabilities of the computer should be possible with a minimum of rework and at a minimum cost to the airline customer.

1.5 Interchangeability

1.5.1 General

One of the primary functions of an ARINC Characteristic is to designate, in addition to certain performance parameters, the interchangeability desired for aircraft equipment produced by various manufacturers.

1.5.2 Interchangeability Desired for the ARINC 702A Flight Management Computer System

System interchangeability of the FMC with respect to the standard aircraft installation is desired regardless of the manufacturing source. The standards necessary to ensure this level of interchangeability are set forth in Section 2.0 of this Characteristic.

1.0 INTRODUCTION AND DESCRIPTION

1.5.3 Generation Interchangeability Considerations

The advanced FMS defined by ARINC 702A represents an evolutionary development beyond the FMS defined by ARINC 702. Consequently, general form factors and interwiring are similar, but strict interchangeability is not the intended goal.

The air transport industry desires that future evolutionary equipment improvements and the inclusion of additional functions in new equipment during the next few years do not violate the interwiring and form factor standards set forth in this document. Provisions to ensure forward-looking generation interchangeability (as best can be predicted) are included in this document to guide manufacturers in future developments.

1.6 Regulatory Approval

The equipment should meet all applicable regulatory requirements. This Characteristic does not and cannot set forth the specific requirements that an equipment must meet to be assured of approval. Such information must be obtained from the appropriate regulatory authority.

1.7 Integrity and Availability

Since this equipment is the primary means of navigation on most aircraft, the utmost attention should be paid to the need for integrity and availability in all phases of system design, production, and installation. This equipment should provide the system performance, design and operational integrity, and availability necessary for CNS/ATM and Required Navigation Performance (RNP) operations. Integrity should consider design assurance for reduced risk of operational excursions beyond RNP containment limits, and functional assurance via system capabilities and features consistent with CNS/ATM and RNP operations. The system production and installation processes and methods should be consistent with the required integrity and availability of the system.

1.8 Reliability

The anticipated operational use of the system demands the utmost attention to the need for reliability in all phases of system design, production, installation, and operation of the FMC. It is of paramount importance to the airlines to operate a trouble-free unit with minimum impact on scheduling and maintenance. A special emphasis should be given to total system quality, including built in testing, ramp testing, and shop testing to increase the Mean Time Between Unscheduled Removals (MTBUR). MTBUR has a profound effect on airline operations despite a high MTBF.

COMMENTARY

Airlines have a heightened interest in identifying and correcting the root cause(s) of unnecessary LRU removals, many of which result in a No Fault Found (NFF) disposition. Each NFF occurrence represents an unacceptable additional and excessive cost of ownership to the airline. All efforts in the developmental process to eliminate NFF occurrences will help improve the MTBUR.

1.0 INTRODUCTION AND DESCRIPTION

1.9 Testability and Maintainability

The total system quality should include adequate ability for the operator to test and maintain the FMS effectively. The FMS designer should confer with the user to establish goals and guidelines for testability to minimize unnecessary removals. The use of advanced Built-In Test Equipment (BITE), ramp testing equipment, and adequate documentation will help the operators improve MTBUR. For airline operations, MTBUR is at least as important, perhaps more so, than MTBF. Testability should provide for the rapid identification of the root cause(s) of repeat removals and ultimate elimination of unconfirmed faults.

For shop maintainability, the design of physical access and functional partitioning of the FMS should be such to minimize repair time. Where possible, excessive unit disassembly should not be required for internal component replacement. Full and complete documentation included in a Component Maintenance Manual will also facilitate effective maintainability.

1.10 Flight Simulators

Flight simulators are recognized as an important part of the aviation industry. Airlines depend upon simulators for flight crew and maintenance training. FMS equipment should be designed for use in flight simulators. Airlines typically desire simulators to be available as early as possible to allow for crew training prior to introduction into revenue service. The guidelines of ARINC Report 610B(): Guidance for Use of Avionics Equipment and Software in Simulators apply.

2.0 INTERCHANGEABILITY STANDARDS

2.0 INTERCHANGEABILITY STANDARDS

2.1 Introduction

 This section sets forth the specific form factor, mounting provisions, interwiring, input and output interfaces, and power supply characteristics desired for the Flight Management Computer (FMC). These standards are necessary to ensure the continued independent design and development of both the equipment and the airframe installations. Manufacturers should recognize the practical advantages of developing equipment in accordance with the form factor, interwiring, and signal standards of this document.

2.2 Form Factor, Connectors, and Index Pin Coding

The FMC should comply with the dimensional standards in ARINC Specification 600: Air Transport Avionics Interfaces, for the 8 Modular Concept Unit (MCU) or 4 MCU form factor. The FMC should also comply with ARINC Specification 600 with respect to weight, racking attachments, front and rear projections, and cooling.

The FMC should be provided with a low insertion force, ARINC 600 Size 2 service connector. This connector should be located on the center grid of the FMC rear panel, and index code 04 should be used. The top and center inserts of the connector Top Plug (TP) and Middle Plug (MP) should each provide 150 socket-type contacts. The lower insert Bottom Plug (BP) should provide 11 pin-type contacts and spaces for two small diameter coaxial contacts. Attachment 2 to this document shows the connector arrangement. Attachment 3 shows the pin assignments.

If functions (not assigned pins on the service connector in Attachment 2-2 to this document) are needed to be brought to the outside world to facilitate testing, they should be assigned pins on an auxiliary connector whose type and location is selected by the equipment manufacturer. The manufacturer should refer to ARINC Specification 600 when choosing the location for this connector and note that, other than to accommodate the needs for equipment identification by the ATE described in this document, he is free to make whatever pin assignments he wishes. The airlines do not want the unassigned (future spare) pins of the service connector used for functions associated solely with ATE use.

2.3 Standard Interwiring

The standard interwiring for the FMC is set forth in Attachment 2-2. The interwiring for a given installation needs only to ensure interconnection with those sub-systems actually installed and supported on a particular aircraft type. Wiring associated with alternate sub-systems shown in Attachment 2-2 need not be installed. Equipment manufacturers are cautioned not to rely on special wires, cabling, or shielding for their particular units because they will not exist in an ARINC 702A installation.

2.4 Power Circuitry

2.4.1 Primary Power Input

The FMC should be designed to use 115 volt 400Hz single phase power from a system designed for Category (A) utilization equipment per ARINC Specification 413A.

2.0 INTERCHANGEABILITY STANDARDS

The primary power inputs to the FMC will be protected by a circuit breaker. Installation designers should note that the FMC circuit breaker may need to be capable of handling the current drain of an ARINC 615 or 615A data loader. When such a device is used with the FMC, it may derive its power from the FMC power source.

The equipment designer should be aware that severe switching and other transient interruptions to primary power occur during normal aircraft operations. He should ensure that such interruptions do not cause the computer to lose the contents of its memory or impose the need to provide an external battery to maintain operations. No pilot action should be needed to cause the system to return to normal operation following such normal power interruptions.

Equipment designers should take precautions to prevent anomalous operation of equipment during and after interruptions or transients in the aircraft power system. The equipment should, as a design goal, continue normal operation while sourcing current to all active guidance and flag outputs during power interruptions of up to 200 milliseconds. If the equipment shuts down during a power interruption, normal operation should resume without the need to recycle circuit breakers or clear memories when power is restored.

System response and data retention requirements for primary power interruptions longer than 200 milliseconds are discussed in Section 3.3.

Note: Airframe installation designers should verify that the aircraft power systems satisfy the primary power interruption criteria of ARINC Specification 413A.

2.4.2 Power Control Circuitry

There should be no master on/off power switching within the FMC system.

2.4.3 The AC Common Cold

The wire connected to the FMC connector pin labeled 115 VAC Cold will be grounded to the same structure that provides the dc chassis ground but at a separate ground stud. Airframe manufacturers are advised to keep AC ground wires as short as practicable in order to minimize noise pick-up and radiation.

2.4.4 The Common Ground

The wire connected to the FMC connector pin labeled Chassis Ground should be employed as the DC ground return to aircraft structure. It is not intended as a common return for circuits carrying heavy ac currents, and equipment manufacturers should design their equipment accordingly.

2.4.5 Batteries

If battery devices are used in equipment designs, they should not degrade the MTBF and MTBUR targets for the equipment and should also have a life expectancy greater than the MTBF target.

2.0 INTERCHANGEABILITY STANDARDS

671 COMMENTARY Airline experience has shown that batteries have proven to be 672 673 maintenance problems in avionic equipment. Manufacturers may 674 consider the use of batteries to hold-up memory devices through 675 power transients or long term power outages. Batteries might also be utilized to maintain real time clock circuits or for other purposes. 676 677 However, the airlines encourage the manufacturers to consider other 678 design solutions instead of using batteries for these functions. 679 2.5 Standardized Signaling 680 The desire for interchangeability necessitates standardization of the FMC 681 input and output interface parameters. The FMC should be capable of exchanging data in digital form and as 682 683 discrete inputs and outputs. The characteristics of digital signals and discrete signals are defined herein. These standards should be used as 684 685 design guidelines to assure the desired interchangeability of equipment. 686 Certain basic standards established herein are applicable to all signals. Unless otherwise specified, the signals should conform with the standards 687 688 set forth in the subparagraphs below. 689 2.5.1 General Accuracy and Operating Ranges 690 The accuracies specified herein should apply under all combinations of the environmental conditions referenced in Section 2.5 of this document. 691 Accuracy measurements should be made on the assumption that the inputs 692 693 to the FMC are perfect. Accuracies are specified on the basis of 95% of 694 observations and do not include typical reading inaccuracies of the pilot's 695 instruments. 696 2.5.2 Resolution 697 For the purposes of this Characteristic, the resolution or the function 698 threshold sensitivity is considered to be the maximum cyclic input change 699 (double amplitude) that can occur without detectable change in the output. 700 The specific figures set forth for threshold sensitivity of each function should 701 be made without vibration of any kind being applied and it should be 702 checked approaching the reading with signals from either direction. 703 2.5.3 ARINC 429 Data Bus 704 The FMS equipment utilizes digital signal interfaces defined by ARINC 705 Specification 429: Digital Information Transfer System (DITS). 706 ARINC 429 data bus input labels are defined in Attachment 4 of the document. Material in this document is included for reference purpose only. 707 708 COMMENTARY 709 In the event of conflict between this document and ARINC 710 Specification 429, the equipment designer is encouraged to contact the supplier of equipment sourcing the ARINC 429 data words. 711 712 ARINC 429 data bus output labels sent by the FMS are defined in Attachment 4 of this document. Material in this document is intended to be 713 used by the FMS equipment designer. 714

2.0 INTERCHANGEABILITY STANDARDS

2.5.4 Standard "Open"

 The standard "open" signal is characterized by a resistance of 100,000 ohms or more with respect to signal common.

COMMENTARY

In many installations, a single switch is used to supply a logic input to several Line Replaceable Units (LRUs). One or more of these LRUs may utilize a pull up resistor in its input circuitry. The result is that an open may be accompanied by the presence of +27.5 VDC nominal. The signal could range from 18.5 to 36 VDC.

2.5.5 Standard "Ground"

The standard "ground" signal may be generated by either a solid state or mechanical type switch. For mechanical switch type circuitry, a resistance of 10 ohms or less to signal common would represent the ground condition. Semiconductor circuitry would exhibit a voltage of 3.5 VDC or less with respect to signal common in the ground condition.

2.5.6 Standard "Applied Voltage" Output

The standard "applied voltage" is defined as having a nominal value of +27.5 VDC. This voltage should be considered to be applied when the actual voltage under the specified load conditions exceeds 18.5 VDC (+36 VDC maximum) and should be considered to be not applied when the voltage at the output is 3.5 VDC or less when loaded with no less than 50,000 ohms.

2.5.7 Standard Discrete Input

A standard Discrete Input should recognize incoming signals having two possible states, open and ground. The characteristics of these two states are defined in Sections 2.5.4 and 2.5.5. The maximum current flow in the ground state should not exceed 20 milliamperes.

COMMENTARY

Some older installations use a number of voltage levels and resistances for discrete states. In addition, the assignments of valid and invalid states for the various voltage levels and resistances were sometimes interchanged, which caused additional complications. A single definition of discrete levels is being used in an attempt to standardize conditions for discrete signals. The voltage levels and resistances used are, in general, acceptable to hardware manufacturers and airlines. This definition of discrete is also being used in the other ARINC 700-series characteristics. However, there are few exceptions for special conditions.

The logic sources for the Discrete Inputs to the unit are expected to take the form of switches mounted on the airframe component (flap, landing gear, etc.) from which the input is desired. These switches will either connect the Discrete Input pins on the connector to airframe dc ground or leave an open circuit as necessary to reflect the physical condition of the related components. The unit will, in each case, be expected to provide the DC signal to be switched. Typically, this is done through a pull-up resistor. The

2.0 INTERCHANGEABILITY STANDARDS

equipment input should sense the voltage on each pin to determine the state (open or closed) of each switch.

The selection of the values of voltages and resistances is based on the assumption that the Discrete Input will utilize a ground-seeking circuit. When the circuit senses a low resistance or a voltage of less than +3.5 VDC, current flow from the input will signify a ground state. When a voltage level between +18.5 and +36 VDC is present or a resistance of 100,000 ohms or greater is connected to the input, little or no current should flow. The input should be in a quiescent state. The input should also utilize an internal pullup to provide for better noise immunity when a true open is present at the input.

The probability is quite high that the sensors (switches) will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit from other equipment, especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the ground (less than +3.5 VDC) state of each input. Also, both equipment and airframe suppliers are cautioned concerning the need for isolation to prevent sneak circuits from contaminating the logic. Typically, diode isolation is used in the avionics equipment to prevent this from happening.

2.5.8 Standard Discrete Output

A standard Discrete Output should exhibit two states, open and ground, as defined in Sections 2.5.4 and 2.5.5. The open state of each discrete is defined as a voltage greater than +18.5 VDC (+36 VDC max.), or a resistance of 100,000 ohms or more, from the assigned equipment connector pin to airframe dc ground. The ground state is defined as a voltage less than +3.5 VDC (0 VDC min.) to airframe dc ground at the assigned pin. The maximum current flow through the discrete wire in the ground state should not exceed 20 mA.

COMMENTARY

The probability is quite high that the switches will be providing similar information to a number of users. The probability is also high that unwanted signals may be impressed on the inputs to the unit especially when the switches are in the open condition. For this reason, equipment manufacturers are advised to base their logic sensing on the standard ground (less than +3.5 VDC) state of each input. Avionics suppliers are alerted to the need for isolating diodes in the equipment to prevent sneak circuits from contaminating the logic.

2.5.9 Ethernet Interface

ARINC Specification 646: Ethernet Local Area Network (ELAN) defines the characteristics of this interface. In the event of conflict between this document and ARINC Specification 646, the latter should be assumed to be correct. <<Change to A664>>

843

844

845

2.0 INTERCHANGEABILITY STANDARDS

802 2.5.10 Standard Annunciators 803 A standard annunciator output should exhibit the same characteristics as the 804 standard discrete output described in Section 2.5.8, except the annunciator 805 output should be capable of sinking up to 200 mA when in the ground state. 806 2.6 Environmental Conditions 807 The FMC should meet the requirements of the latest versions of RTCA 808 Document DO-160() and EUROCAE ED-14(). Attachment 5 to this 809 document tabulates the relevant environmental categories. 810 2.7 Cooling 811 The FMC may be designed to utilize, and the airframe installation should 812 provide, cooling air in the manner described in Section 3.5 of ARINC Specification 600. The airflow rate provided to the FMC in the aircraft 813 814 installation should be 44 kg per hour and the pressure drop of the coolant airflow through the equipment should be 25 ± 5 mm of water at this rate. The 815 816 unit should be designed to expend the pressure drop in a manner to maximize the cooling effect within the equipment. Adherence to the pressure 817 drop standard is needed to allow interchangeability of equipment. 818 819 In addition to the above, individual aircraft installations may require operation with loss of cooling air to meet Extended-Range Twin-Engine 820 821 Operations (ETOPS) operating requirements. 822 **COMMENTARY** 823 Current ETOPS rules can require operation up to 180 minutes without cooling air. 824 825 Equipment failures in aircraft due to inadequate thermal management have plagued the airlines for many years. Section 3.5 of ARINC 826 827 Specification 600 provides design guidance for airframe equipment 828 suppliers to prevent such problems in the future. Airlines regard this 829 material as required reading for all potential suppliers of unit and 830 aircraft installations. 831 2.8 Weights 832 System manufacturers should take note of the guidance information on 833 weights contained in ARINC Specification 600. 834 2.9 Grounding and Bonding 835 The attention of equipment and airframe manufacturers is drawn to the 836 guidance material in Section 3.2.4 of ARINC Specification 600 and Appendix 837 2 of ARINC Specification 404A on the subject of equipment and radio rack 838 grounding and bonding. 839 **COMMENTARY** 840 A perennial problem for the airlines is the location and repair of 841 airframe ground connections whose resistance has risen as the 842 airframe aged. A high resistance ground usually manifests itself as a

system problem that resists all usual approaches to rectification, and

invariably consumes a wholly unreasonable amount of time and effort

on the part of maintenance personnel to fix. Airframe manufacturers

2.0 INTERCHANGEABILITY STANDARDS

are urged, therefore, to pay close attention to assuring the longevity of ground connections.

846 847

3.0 SYSTEM DESIGN CONSIDERATIONS

3.0 SYSTEM DESIGN CONSIDERATIONS

3.1 System Configurations

Different configurations of the ARINC 702A Flight Management Computer System, illustrated in ATTACHMENT 1 to this document, are described in this section. The FMC is expected to be capable of operating interchangeably in all configurations. In an IMA architecture, the FMF is analogous to the FMC for the purpose of these system configurations. Single or multiple FMF partitions may be provided in an integrated modular avionics architecture.

3.1.1 Single System Configuration

In this configuration, the system accepts inputs from one, two, or three Inertial Reference System (IRS), Air Data/Inertial Reference System (ADIRS), or Altitude Heading Reference System (AHRS); one or two GNSS Sensors; two each Air Data System, VHF Omni-Range Navigation (VOR), and Distance Measuring Equipment (DME); and one Instrument Landing System (ILS)/Microwave Landing System (MLS) to provide the various navigation and guidance functions. An ARINC 615 and ARINC 615A (growth) data loader input is provided for both software and navigation data base loading. Also, an interface is provided for an ACARS Management Unit (MU) or an ARINC 758 Communications Management Unit (CMU) Mark 2.

Inputs of fuel quantity, fuel flow, and engine/airplane configuration parameters and inputs from the flight control computer (and for some installations, the thrust control computer) combined with the air data inputs are used to provide the performance and prediction functions. Initial condition inputs may be inserted manually using the MCDU, automatically from airplane sensor systems or loaded using the data link function.

The system should be capable of independently driving two flight control computers, two navigation displays, and two communication management units.

3.1.2 Single System/Dual MCDU Configuration

In this configuration, the interface is the same as for the single system, with the addition of a second MCDU. Both MCDUs have the capability of data entry and display independently.

3.1.3 Dual System Configuration

A typical Flight Management System installation is dual, consisting of two MCDUs and two FMCs. The FMCs are linked together via the intersystem bus and both the MCDUs are connected to both FMCs. MCDU button pushes are processed for mode control and display changes. The left and right MCDUs may be operated independently; they can display different data pages and the crew can insert data using either of them to affect the FM operation. The FMCs transmit certain data to each other for comparison and validation. For example, if the computed position between the FMCs differs by more than a set threshold, a message is issued to warn the crew.

Please refer to Section 3.5 for Dual System Design Considerations.

3.0 SYSTEM DESIGN CONSIDERATIONS

3.1.4 Other Configurations

Some installations have provided for a third MCDU since one of the MCDUs is primarily used to manage the data link activity. For this configuration, the third MCDU may be used as a repeater that can be switched in or out as necessary.

Additionally, some installations have provided for a third FMC. This unit is usually not synchronized with the other two FMCs unless it is switched in as a replacement because of a unit failure. At this point the unit is fully synchronized by the remaining FMC and used in the dual configuration.

3.2 Certification Design Considerations

3.2.1 Partitioning Considerations

Manufacturers should carefully consider the internal structure of software in partitioning sub-functions within an overall function. In an integrated architecture, the FMF may be a partition within a system which provides all CNS/ATM airborne functions. The flight management function itself may consist of several sub-functions such as Navigation, Flight Planning, Crew Interface, I/O, etc., which may be separate partitions. As the objectives of software partitioning are efficient design and effective functional allocation, as well as reduced software change costs and lead times, manufacturers must ensure that the software structure eliminates the need to revalidate software partitions and modules that have not been affected by a particular change.

In some configurations, the system may be a mixed criticality unit. In other words, this unit may house software of more than one DO-178B/C level. In these configurations, manufacturers must ensure that partitioning is robust enough to accommodate changes in any lower level software (i.e., less critical software) without mandating the rigors of the more critical software validation, certification, and maintenance.

3.2.2 Operational Functional Independence

While the system makes extensive use of shared resources as a multifunction system (e.g., power supplies, processors), manufacturers may provide for some system functions to be retained during failure conditions.

COMMENTARY

Airlines strongly desire to continue to operate the system even if one or more functions or external interfaces have failed, as long as the aircraft operation is not predicated on the use of the failed sensor or function(s). Therefore, a failure condition unique to one function or sensor should not adversely impact normal operation of any other system functions.

3.2.3 Unit Identification Considerations

COMMENTARY

Avionics and airframe manufacturers are strongly encouraged to implement an FMS unit identification methodology that does not correlate the software version with the basic face plate part number of the unit. The objective is that a software revision should not result

3.0 SYSTEM DESIGN CONSIDERATIONS

in the re-identification – part number roll – of the unit. A further objective is that a common FMS platform (i.e., a single face plate part number) could be used across multiple fleets and airframe manufacturers without re-identification of the unit, even if fleet specific software is required for each fleet type.

With this approach an individual manufacturer's part numbers are assigned and maintained for (1) the FMC hardware, (2) the FMC software, and (3) the overall unit (i.e., face plate part number). In this case, the face plate part number is referred to as the generic or system part number and is not affected by normal revisions to the FMS software (e.g., all software or data that can be loaded into the unit via a data loader will not require a re-identification of the unit).

For this scenario, the operator may stock a given FMC under its system part number. This unit could be effective across multiple fleet types, each with fleet specific software requirements. When an FMC is replaced on an aircraft, the software configuration can be verified from the MCDU. If necessary, the FMC may be loaded with the applicable certified software for that fleet via data loader or system crossload.

This scheme allows the operator to minimize sparing when a given FMC is used on multiple fleet types, even when unique software is required for each fleet. It will also enable new FMC software loads on the aircraft without requiring a revision to the FMC ID plates or the aircraft Illustrated Parts Catalog (IPC).

3.3 System Response to Power Interrupts

An appropriate period of time, usually between 5 and 10 seconds, should be selected to differentiate between inadvertent power loss and normal equipment turn on. The reason for this distinction is to provide a basis for when the system should be reinitialized.

For power outages greater than this time period, the system should automatically perform a power-up test cycle. Failure to complete this test cycle successfully should cause appropriate flight deck annunciation. The system should also reset any flight dependent data such as initial position, flight plan, performance initialization, etc., and prompt the crew for entry of this data. Configuration related data from program strapping, configuration files, or Airplane Personality Module (APM) should be read.

For power outages less than this time period the system should resume normal functions as quickly as possible. The power up test cycle should not be performed and initialization, configuration, and flight plan data should not be reset and the crew should not be prompted for data entry. The crew may be prompted to select the appropriate fly-to waypoint since flight plan points may have been passed during the power outage.

COMMENTARY

Some systems may also make a distinction of being on the ground or in the air. Typically, in-air power ups will be treated as inadvertent power outages regardless of the power outage time period. The system should be designed to protect data from a power interrupt for

3.0 SYSTEM DESIGN CONSIDERATIONS

a period of time consistent with its intended use. Since some methods of protecting data do not ensure data validity indefinitely, data integrity should be checked before it is used after a power outage, especially if the system uses in-air status for determining normal power turn on.

3.4 FMC Accuracy and Performance

3.4.1 Accuracy, Integrity, and Continuity

Accuracy, integrity, and continuity requirements for the lateral navigation_Lateral Guidance function are defined by the RTCA-DO-236(). :- Minimum Aviation System Performance Standards (MASPS) Required Navigation Performance for Area Navigation. RTCA-DD-0-236() also addresses accuracy requirements for the vertical navigationVertical Guidance and trajectory prediction_Trajectory Predictions functions.

The system design should comply with the aeronautical data quality and integrity requirements set forth in RTCA DO-200A() and RTCA DO-201A().

The system should ensure data integrity in all operations such as:

- Dataload of program and databases into system memory.
- Reading of program and databases from memory.
- Input of sensor information into the system
- Entry and edit of information in the flight plan
- Navigation, performance, and guidance computations.
- Output of information to the various external systems and displays

3.4.2 Response Time Standards

Specification of precise response time standards is dependent on the detailed system operational design. This section provides general guidelines that should be considered by system designers in determining computer processing requirements and software architecture.

Unless explicitly stated otherwise, flight plan response times throughout this document are for modifications to the active flight plan. The response times listed below are from the completion of crew action until the output of data on the display.

Requirements and Measurements

Task Description	Max. Response Time
Direct to a Waypoint in the Flight Plan - Lateral Data Display Display	2 seconds
of direct-to lateral path on ND	
Direct to a Waypoint in the Flight Plan - Vertical Data Display	3 seconds
Direct to a Waypoint Not in the Flight Plan - Lateral Data Display	3 seconds
Direct to a Waypoint Not in the Flight Plan - Vertical Data Display	3 seconds
Steering Lateral Guidance Command Output following flight plan	3 seconds
change	

Formatted: Body Text, Left

Formatted: Body Text, Left, Indent: Left: 1.29", Right: 0.51", Bulleted + Level: 1 + Aligned at: 1.29" + Indent at: 1.54"

Formatted: Font: Times New Roman, Italic
Formatted: Font: Times New Roman. Italic

3.0 SYSTEM DESIGN CONSIDERATIONS

Revise Speed or Altitude Constraint in climb or cruise – Time to	3 seconds
display target altitude and target speed	
Revise Speed or Altitude Constraint Restriction at Descent Waypointin	5 seconds
descent (no RTA) (- Time to display target altitude, target speed, and	
of the predicted altitude at the next waypointvertical deviation	
Revise RTA target speed	530 seconds
	(15 seconds typical)
Full Flight Plan Prediction — 4D Trajectory (Note 1)	30 seconds
Vertical Data (performance depends on factors such as flight plan	(15 seconds typical)
length and number of waypoints)	
Background data update in response to a Mode, sScale, or option	1 second
change on the EFISNavigation Display	
Software and Data base Base Loading (Note 2)ref. Section 10.3.3)	gGoal: less Less than 15
Note: may be limited by file size, media, or loader interface	minutes
ATS Uplink Messages	Note 43
ATS Downlink Messages	Note 4 <u>3</u>

Figure 3.4.2-13.4.2-1 Response Time Requirements

Note: NOTES

- 4D Trajectory includes predictions of distance, altitude, airspeed, time, and fuel. The response time depends on many factors such as the number of flight plan waypoints.
- The response time depends on file size, media, and/or data loader interface. Refer to Section 10.3.3 for additional data loader requirements.
- The International Civil Aviation Organization (ICAO)
 CNS/ATM-1 SARPS allocate part of the total system end to
 end response time to the avionics. Further allocation to
 individual avionics subsystems (e.g., FMS, CMU, EFIS) is
 system architecture dependent and beyond the scope of this
 document.

1.3.

3.5 Dual System Design Considerations

Different approaches may be followed in defining the functional architecture of the dual system installation. Design considerations should include operational independence of the two MCDUs, redundancy management, system integrity, functional availability, and failure response mechanisms. The dual FMCs should exchange information so that in the event of a failure or loss of power in one FMC, the second FMC is available for engagement without additional crew input and without significant discontinuity in the outputs.

In a dual synchronous configuration, one of the FMCs is designated as master and the other as slave. The master designation may be based on the FMC operational status, autopilot or flight director engagement logic, and for some installations, a source select switch. The master FMC performs tasks such as directing the slave to tune radios, determining the order of MCDU

3.0 SYSTEM DESIGN CONSIDERATIONS

1049 1050	button push processing, initiating flight plan leg sequencing, and other system events. Otherwise, the FMCs operate independently.
1051 1052 1053 1054 1055	In another possible dual configuration, a master FMC may be designated that directs all FM operations and synchronizes its data with the spare FMC such that the spare FMC can resume FM operations should the master fail or the spare be selected as the master. Other dual system configurations may exist as well.

1056 1057

4.0 FLIGHT MANAGEMENT FUNCTIONS

1058	4.0 FL	IGHT MANAGEMENT FUNCTIONS
1059	4.1 Int	roduction
1060 1061		This section describes the characteristics of the flight management functions.
1062	4.2 Fu	nctional Initialization and Activation
1063	4.2.1	Navigation Sensor Initialization
1064 1065		The system should provide for the initialization of various navigation sensors.
1066	4.2.1.1	IRS Initialization
1067 1068 1069 1070 1071 1072 1073 1074 1075		The system should be capable of initializing up to three ARINC 704 Inertial Reference Systems or ARINC 738 ADIRS when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the system should output on its general data buses a burst of not more than four or less than two initial position latitude/longitude pairs. This data should consist of BCD-encoded set latitude and set longitude words having the labels and data standards defined for these quantities in ARINC Specification 429. Position data can be entered as a latitude/longitude or selected from the navigation data base as an airport and optionally gate, or input from the Global Navigation Satellite System Unit (GNSSU).
1077	4.2.1.2	P. IRS Heading Set
1078 1079 1080 1081 1082 1083 1084		The system should also be optionally capable of setting the IRS magnetic heading output to the value entered by the crew at the MCDU. The system should respond to the set heading command by transmitting a burst of not more than four or less than two BCD-encoded set heading words. ARINC Specification 429 defines the applicable label and data standards. Consult ARINC Specification 704: Inertial Reference System, for further information on initialization and heading set.
1085	4.2.1.3	GNSS Initialization
1086 1087 1088 1089 1090 1091 1092 1093		The system should be optionally capable of initializing up to two ARINC 743A GNSS Sensors when called upon to do so by flight crew action at the MCDU. In response to this initialize command, the navigation system should output on its general data buses, current time and date and a burst of not more than four or less than two initial position of a latitude/longitude pair. This data should consist of BNR encoded current time in Universal Time Coordinated (UTC), and BCD encoded current date, set latitude, and set longitude words.
1094		COMMENTARY
1095 1096		GNSS sensors may be indirectly connected to the navigation system through the IRS or ADIRS.
1097	4.2.2	Flight Plan Initialization and Activation
1098 1099		Once the present position is initialized, a flight plan must be constructed. There are various methods for constructing a flight plan such as:
1100		 Pre-defined company routes

4.0 FLIGHT MANAGEMENT FUNCTIONS

1101		 Entry using FROM/TO format
1102		 Menu selection of procedures <u>and/</u>or airways
1103		 Individual waypoint entry
1104		Flight Plan Copy
1105		AOC/ATC Uplink
1106 1107		Refer to Individual waypoint entry Section 4.3.2.4 for additional details regarding 4.3.2.4, Lateral Flight Planning, details these methods.
1108 1109 1110		This initialization should be performed for every desired flight plan type. Once a flight plan has been constructed facilities should be provided to allow the crew to select a flight plan as the active flight plan or route.
1111	4.2.3	Performance and Predictions Initialization
1112 1113 1114 1115 1116 1117		To initialize performance and trajectory prediction computations, gross weight <u>(or er-zero</u> fuel weight <u>er-and</u> block fuel), cost index, and cruise altitude <u>must be enteredare required</u> as a minimum. Block fuel and zero fuel weight would be used instead of gross weight prior to aircraft fueling. Other vertical flight planning parameters may also be initialized as desired. These are discussed in Section <u>4.3.2.5</u> , <u>Vertical Flight Planning</u> .
1118 1119		The trajectory prediction function also requires a specified flight plan or routing; most of the performance functions do not.
1120	4.2.4	Lateral and Vertical Navigation Guidance Activation
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136		Lateral navigation Guidance computations are activated by position initialization and the presence of an active route. Vertical navigation Guidance computations are activated by crew entry of gross weight, cost index, and cruise altitude. Coupled guidance can be selected using the autoflight systemAFCS control Penale. In most systems, lateral and vertical guidance are independent selections on the AFCS Control Panel though in some. Of those systems with independent selections, lateral guidance iemay or may not be a prerequisite for vertical guidance. Both methods are acceptable. In some systems, vertical guidance managed speed control -(i.e. control to the FMF vertical guidance speed target) speed targets selected by the Flight Management function) can be selected independent of vertical guidance level change control. On other systems, vertical guidance managed speed control requires managed level change control. ean be activated independent of vertical guidance. In other systems, managed speed control is a part of vertical guidance. Both methods are acceptable.
1137	4.2.5	Use of Data Link for System Initialization
1138 1139		The data link function can also be used to provide initialization data as described in Sections 4.2.2 and 4.2.3.
1140	4.3 Functional Description	
1141	4.3.1	Navigation

The navigation function furnishes continuous, real-time, three dimensional solutions to the crew and provides the following navigational outputs:

• Estimated Aircraft Position (latitude, longitude, altitude)

1142 1143 1144

4.0 FLIGHT MANAGEMENT FUNCTIONS

1145	Aircraft Velocity
1146	Drift Angle (optional)
1147	Track Angle
1148	Magnetic Variation (optional)
1149	Wind Velocity and Direction
1150	Time
1151	Required Navigation Performance (RNP)
1152 1153	- and an estimate of Actual Navigation Pactual performance (ANP) or Estimate of Position Uncertainty (EPU)
1154	
1155	COMMENTARY
1 56 1 57 1158 1159	For the purpose of this document, ANP and EPU are intended to mean the same thing. In system architectures utilizing IRS sensors, drift angle and magnetic variation may be provided directly by the IRS and are not required to be computed by the FMS.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1160 Further guidance on GNSS requirements for primary means navigation in 1161 oceanic and remote operations is defined in FAA Notice 8110.60 1162 For vertical navigation aspects, the navigation function provides altitude, 1163 vertical speed and flight path angle. Unless explicitly stated otherw 1164 Aaltitude computations operate upon inputs of smoothed inertial altitude from the Inertial Reference Units (IRUs), Air Data/Inertial Reference Units 1165 1166 (ADIRUs), or Attitude and Heading Reference System AHRS, corrected by 1167 barometric (corrected or uncorrected) pressure altitude from the air data 1168 system. Flight path angle is derived from vertical speed and computed 1169 ground speed. If augmented GNSS altitude is available it may be combined 1170 with the air data altitudes to produce a more accurate and stable altitude 1171 reference.

4.3.1.1 Multi-Sensor Navigation

1172

1173

1174

1175 1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190 1191

1192

1193

1194

1195

1196

1197

1198

1199 1200

1201

The navigational output data is computed using the following:

Inertial Reference Unit (IRU or ADIRU) or <u>Air Data</u> Inertial Reference Unit (IRU or ADIRU) or alternatively, on some aircraft, Attitude and Heading Reference System (AHRS) or Vertical Gyro/Directional Gyro (VG/DG)

- Attitude and Heading
 - o IRU or
 - o ADIRU or
 - o AHRS
- GNSS Receiver
- DME Transponder
- VOR/LOC Receiver
- ILS/MLS Receiver(s)
- Air Data Computer

The navigation function automatically selects the combination of available sensors that provides the best solution for estimating the aircraft position and velocity. Using the sensor accuracy characteristics, sensor raw data, and information about the current conditions, the best combination of position sensors (GNSS, IRU, DME, VOR, etc.) is selected to minimize the position determination error.

COMMENTARY

As a minimum, the navigation function must provide for GNSS data integrated with a heading/attitude sensor and air data system.—Sas some aircraft installations may not include other navigation radios. Adequate navigation availability must be a consideration in any implementation.

While some installations utilize VG/DG sensor inputs, no specific interface provisions are defined in Section 5. VG/DG inputs in these installations are typically provided in ARINC 429 format by an intermediate system such as the autoflight system providing the appropriate data conversion.

Commented [GE1]: Question was raised in Toulouse whether this should be a requirement and moved out of commentary?

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.1.2 Navigation Modes

Available navigation sensor data is validated before it is used for updates to the aircraft position. On aircraft with IRUs installed, the primary mode of operation utilizes IRS heading, attitude, position, and velocity, with IRS position and velocity combined with GNSS or VHF radio data (e.g. from DME, Tactical Air Navigation System (TACAN), VOR, and LOC/MLS). On aircraft without IRUs the primary mode of operation is position and velocity from available sensors with heading and attitude being provided from an AHRS or VG/DG source. The filtering algorithm should give appropriate weighting based on the sensor accuracy and should provide for sensor error modeling such that the navigation solution accuracy can be maintained through short term unavailability of various sensors. The navigation function should behave smoothly regardless of sensor availability or sensor transitions.

COMMENTARY

With the transition to RNP-based navigation, standardized navigation sensor selection logic is not required; however, in some implementations, a navigation mode sensor hierarchy such as the following may be utilized:

- LOC/MLS (approach only)
- GNSS
- DME/DME
- DME/VOR

It may be desirable for non-IRU aircraft to correct heading/attitude sensor data based on the other available sensors to provide for a more accurate coasting mode of operation.

4.3.1.3 RNP-Based Navigation

The navigation function should satisfy the accuracy, integrity, and availability criteria set forth for aircraft systems intended to operate in RNP airspace. The systems criteria are specified in RTCA-DO-236(): Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation.

The capabilities of the system should encompass position estimation, path definition, and path control and tracking, as well as computing position uncertainty. These capabilities, in addition to a means to evaluate and mitigate flight technical error, should form the basis for evaluating and determining total aircraft systems performance for RNP operations. The system should provide design, function, and operational integrity to ensure acceptable, repeatable, and error-free performance. The system should provide for clear and unambiguous indications of the navigation situation, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace.

COMMENTARY

RNP is the required navigation performance necessary for operation within a defined airspace. RNP is specified in terms of accuracy,

4.0 FLIGHT MANAGEMENT FUNCTIONS

containment integrity, containment continuity, and availability of navigation signals and equipment for a particular airspace, route or operation.

The intent of the material in this section is to provide additional insight into the emerging RNP criteria, especially the system and integration considerations.

4.3.1.3.1 RNP Determination

The system should provide the appropriate RNP selection and entry capabilities to support determination of the applicable RNP for a flight plan path terminator (leg), procedure, or environment based upon the following, in order of priority:

- · Manual RNP entry by the crew
- <u>Leg-Based RNP value from As established in the navigation data</u> base for each leg in the flight planor ATS datalink
- The default RNP value

COMMENTARY

RNP flight plans will consist of a limited subset of the path terminators defined in Section 4.3.2.24.3.2.2, Navigation Data Base. These RNP routes and procedures will contain embedded information which establishes the RNP values which apply to the active or next path terminator; in the absence of the embedded RNP information, RNP may be determined or designated by default according to the airspace or environment. In the event, When the system is operated using the default RNP values, the system will require flight phase or navigation environment (e.g. oceanic, enroute, terminal, approach) logic to ensure the proper transition from one RNP default value to another.

For some proposed architectures, the RNP versus actual performance comparisons or the determination of the applicable RNP may be allocated to a different unit. To support these architectures, the FMC should be designed to broadcast the current applicable RNP value on the general purpose output busses every 2 seconds.

The system should output the current RNP and ANP values on the general purposegeneral-purpose output busses.

4.3.1.3.1.1 Manually Selected Entered RNP Values

The system should support manual entry within a range of possible RNP values appropriate for the PBN operation to be flown.

A manually entered RNP value should supersede any pre-programmed RNP value associated with a route, procedure or leg, or any default value. The manually entered RNP value should be clearly distinguishable as a manually entered value. In the event of a manually entered value larger than the value being overridden, an advisory alert or annunciation, as appropriate, should be provided to the crew. When a manual entry is deleted, the system should

4.0 FLIGHT MANAGEMENT FUNCTIONS

return to the appropriate RNP value based upon its priority. Unless deleted by the crew, the manual entry should remain the active RNP value.

COMMENTARY

The annunciation and alerting requirement for manually entered RNP values which exceed the active RNP value may be applied in various ways. One instance is upon entry of the value; this assures pilot awareness of his action relative to overriding limits applicable to the route, procedure, leg, or airspace, and which form the basis for separation. However, conditions such as NOTAMs or diversions due to weather may be among the reasons why a manual entry is made. Once accepted, the system should also actively monitor the manual entry relative to the RNP for the procedure, route, leg or default, in the event they change to a smaller value. Advance annunciation or alerting would also be advisable in this case.

4.3.1.3.1.2 Preplanned RNP Values

When an RNP approach procedure offers multiple lines of minima, the system should allow the flight crew to specify or pre-select the desired RNP value for the final approach segment.

COMMENTARY

Some RNP Authorization Required (AR) approaches are designed with multiple lines of minima corresponding to the respective RNP requirement. For these approaches, ARINC 424 specifies that the least restrictive "level of service" be coded in the primary record of the approach procedureNDB. Additional lines of minima are contained in the approach continuation records. For RNP approaches designed with multiple RNP values associated with lines of minima, the flight crew may desire a more restrictive RNP value than the one coded in the NDB. The system should provide a means for the flight crew to specify or pre-select the RNP value to use on the final approach segment prior to commencing the procedure.

4.3.1.3.1.24.3.1.3.1.3 Navigation Data BaseLeg-Based RNP Values

The system should provide the capability to retrieve RNP values from the NDB. The format of the NDB records should be as specified in ARINC Specification 424.

The system should support the definition of an RNP on a leg-by-leg basis. The Leg-Based RNP value should be initialized to the navigation database value associated with the leg upon insertion of the navigation procedure into the flight plan. Uplink of a Leg-Based RNP Value via ATS datalink should be supported as part of dynamic RNP operations.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1332 COMMENTARY

The system designer may need to consider that although an RNP value may be specified for individual leg(s) of a procedure (SID, STAR, Airway, Approach, Transition, etc.), one is not required. The procedure planner_designer_may develop procedures where the RNP value is designated leg by leg, or possibly for only selected flight legs. In this case, where nothing is specified, the system default value would captly.

On some routes and terminal procedures, restrictions along the route (e.g., terrain, airspace, environmental) may require that RNP values be placed on individual legs. These values may be other than the default values (for the respective phase of flightnavigation environment), and the values may decrease as the aircraft proceeds along the route. This RNP structure is referred to as the "Scalable RNP" element of Advanced RNP. It is assumed that published procedures which employ the Scalable RNP element will retrieve the respective RNP value for each leg from the NDB. In addition to the values coded in the NDB, RNP values may be transmitted via ATS datalink for dynamic operations.

When the RNP value is provided on downpath legs, the system should provide an indication to the flight crew when the RNP performance cannot be met at the next waypoint. The indication should be provided sufficiently early such that the flight crew can take action to resolve the situation.

4.3.1.3.1.3<u>4.3.1.3.1.4</u> Stored Default Values

The system should provide the capability for stored default RNP values for the various navigation environments (e.g., oceanic, enroute, terminal, approach). These values may be established as pre-programmed values and/or loadable into the system.

<u>Please refer to ICAO Doc 9613: Performance-Based Navigation Manual for the appropriate default values for the various navigation environments.</u>

Point to ICAO PBN. The default values should be one of the PBN values.

COMMENTARY

The system design may establish the stored defaults with preprogrammed default values which can be overridden by loadable values via a separately loadable data file. As an alternative, the default values may be established by the loadable data file only. The approach taken will be influenced by the system built-in test design for faults and response, as well as the system design integrity.

4.3.1.3.2 The two-step approach of hard coded values which can be overridden by loadable values offers the petential to compensate for a corrupted file or non-valid RNP values; supposedly the system could be used with the hard

4.0 FLIGHT MANAGEMENT FUNCTIONS

coded defaults and avoid any delays in service or operation due to the corrupted file or non-valid RNP value. The loadable file only approach avoids the potential for erroneous selection of default values. The RNP file could be adequately protected with an error detection and correction code to ensure fault detection and correction of the data. In addition, the procedures for establishing the defaults should provide assurance of the correctness and validity of the RNP defaults, along with verification prior to and during development of the file.

4.3.1.3.34.3.1.3.2 Determination of Navigation System Performance

Navigation system performance should be evaluated considering position estimation error, path definition error, and flight technical error, which are the key elements of total system error. The total system error components in the cross-track and along track directions should be less than the RNP value 95% of the flying time.

COMMENTARY

The complete set of criteria for evaluating navigation system performance should be as set forth in the RNP MASPSDO-236(). It should be noted that while all system integrators will need to evaluate their systems using the same standards and criteria, the systems implementations will vary and will dictate the acceptable operating modes and systems configurations. In one method, the system operation will be predicated on a design which relies upon comparisons of the systems' estimate of position uncertainty versus RNP, while at the same time evaluating integrity. However, this may carry with it restrictions on the mode of system operation (e.g. flight director mode or coupled with autopilot for RNP 1) necessary to achieve and assure consistent performance. In another method, the system operation will be predicated upon a real-time evaluation of all factors in total system error such that mode limitations or restrictions may not apply.

4.3.1.3.44.3.1.3.3 Navigation Alerting and Display

The system should provide for clear and unambiguous indications of the state of the aircraft navigation system, including situational awareness information and alerts.

COMMENTARY

The system should provide information which allows the determination that the equipment is functioning properly. In addition, indications should be provided which allow the operator to determine the navigation sensors in use and the actual level of navigation performance. The system should also provide annunciations and alerting of unacceptable degradation in navigation performance, including alerting to the flight crew when the navigation system does not comply with the requirements of the RNP airspace, routes, and procedures. Some solutions for this could include indications and alerts when the system estimate of position uncertainty exceeds the RNP value. In others, the estimate of position uncertainty and flight technical error may have correlated indications and alerts.

4.0 FLIGHT MANAGEMENT FUNCTIONS

Additional display and alerting requirements relative to manually entered RNPs and determination of navigation system performance are described in Sections 4.3.1.3.1.1 and 4.3.1.3.2.

4.3.1.4 Navaid Data

In support of the navigation function, the system must contain an extensive navigation data base. This database typically includes the enroute, terminal, and approach procedures (including RNP criteria) along with applicable RNP requirements, the navigation aid ground station information, and the procedure recommended navaid information required for flight in the area in which the aircraft operates. See Section 9.2 for additional details regarding the navigation database9.0 Reference the Data Base Storage Considerations section for further detail.

4.3.1.5 Crew Controlled Navigation Options

Some sensor inputs to the navigation function should be capable of being blocked by pilot action. Localizer updates should always occur when in approach with an ILS approach selected as part of the flight plan. DME, VOR, and GNSS updating may be stopped by manual selection on the MCDU. Additionally, DME and VOR navaids may be individually blocked from the navigation solution by entering their identifiers on the MCDU or by data link. This manual blockage of individual navaids should be cleared at flight completion.

Capability may also be provided for navigation override where the operator can force the navigation position to coincide with a selected navigation sensor or reference position, (e.g., takeoff runway threshold or intersection point). This position shift action aligns the system position to the selected sensor. Override of the navigation position to a manual reference point (i.e., overfly fix) is inconsistent with RNP operation.

4.0 FLIGHT MANAGEMENT FUNCTIONS

These options are intended as backup options for use in the event that a system generated message, such as verify position, alerts the crew to a problem in the navigation that the system cannot correct itself.

Facilities should be provided to accommodate manual tuning by the crew of the DME/VOR radios. If a receiver is being manually tuned, the navigation function should continue to auto tune any available channels with station selection as specified for auto tuning. If insufficient channels remain for satisfactory auto-tuning, then the navigation function may utilize the manually tuned stations if appropriate.

4.3.1.6 VHF Radio Tuning

4.3.1.6.1 Automatic Station Selection

When the navigation VHF radio receivers are available for automatic tuning, the navigation function should select and tune appropriate ground radio navigation facilities and use their position fixing data to refine the current navigation position. The navaids considered to be available for selection should be those contained within a usable distance from the estimated current aircraft position. This group of navaids, combined with any additional navaids defined by crew entry, should make up the set of navaids from which the best navigation aids can be drawn.

With scanning DME installations, up to five frequencies can be allocated to tune each interrogator and, depending upon the aircraft, may be designated for multiple DME range measurements, VOR/DME position fixing, ILS/DME or procedure-specified or pilot-selected navaids. If a procedure being flown has a specified navaid associated with it, then that navaid must be tuned and used for navigation purposes.

Station selection criteria should be designed to limit station switching activity to a minimum.

4.3.1.6.2 Navaid Reasonableness Determination

DME range measurements received by the navigation function should be compared with that of the expected radio range measurement as a reasonableness test. When the comparison is outside of a reasonable tolerance, the data should be rejected and should not be used in the position computations.

4.3.1.7 Real Time Clock

The system should receive real time (UTC) clock data from the GNSS. For back up purposes, the system should utilize a GNSS-updated (or manually synchronized) on-board clock (See Section 5.1.15), or provide an internal UTC time clock capability which is synchronized with the external input or may be manually initialized. In the event of loss of the external input, the internal time clock should maintain UTC within a ± 1 second accuracy over the duration of the flight.

4.3.2 Flight Planning

The flight planning facilities provide for the assembly, modification, and selection of active and secondary flight plans. Data can be extracted from the navigation data base that contains airline-unique company flight plans,

4.0 FLIGHT MANAGEMENT FUNCTIONS

navigational aids, airways, waypoints, published departure and arrival procedures, approaches along with associated missed approach procedures, etc. The selection of flight planning data is done through the MCDU, through the data link function or optionally with the pointing device via a graphical user interface. Flight plan capacity should be a minimum of 1950 waypoints in each flight plan. For longer range aircraft, a minimum of 200 waypoints in each flight plan is highly encouraged.

COMMENTARY

Various system implementations <u>use different flight plan</u> designations such as active, modified, temporary, primary, and secondary. Within this document, the following designations are used: Active, Modified, and Secondary. With respect to a flight plan, the terms Primary and Alternate are also used and refer to the series of waypoints in an active, modified, or secondary flight plan associated with the route to the primary and alternate destination respectively.

provide for differing flight planning designations, such as active, modified, temporary, primary, secondary, inactive, Route 1, or Route 2. These are all acceptable, and are referred to generically herein as active, modified, and secondary flight plans.

4.3.2.1 Flight Plan States

Once a route is entered or selected as the active flight plan, it becomes the basis from which all guidance and advisory data is referenced. The secondary flight plan can have the same terminus or can be completely different with no shared waypoints.

It should be possible to make modifications to the active flight plan and review the impact of those modifications without affecting the active flight plan. For crew review and evaluation, the <code>EFIS-ND</code> (optional)-should show the modified flight plan together with the unmodified active flight plan, with unique symbology to differentiate between them. <code>Performance</code> (tTrajectory) predictions should be available on the MCDU for the modified flight plan. During this modification process, all guidance and advisory data is still referenced to the unmodified active flight plan.

This modification process may should use a separate modified flight plan. If a separate modified flight plan is used, then www. Then all the desired changes have been made, the crew must invoke the modified flight plan to replace the active flight plan. This action will replace the active flight plan and terminate the existence of the modified flight plan. All guidance and advisory data will immediately be referenced to the newly invoked flight plan.

Facilities should be provided to access the independent secondary flight plan and to copy this flight plan into the active flight plan when requested by the crew. These facilities will also be used in modifying the active flight plan if the manufacturer has opted to use this method to preview flight plan changes, rather than having a separate modified flight plan.

Commented [BM(AU2]: Change to graphical

1584

1585

VA

۷D

4.0 FLIGHT MANAGEMENT FUNCTIONS

1543 **COMMENTARY** 1544 In defining how the FMS should provide the preview capability for the active flight 1545 plan, manufacturers should take into account the need to use the secondary flight 1546 plan for other purposes. Airlines have expressed a desire to retain the content of this flight plan when flight plans received from Air Traffic Control (ATC) are being 1548 1549 4.3.2.2 Navigation Data Base 1550 The Navigation Data Base (NDB) contains enroute, terminal, and airline 1551 custom defined data needed to support the flight management functions. It should be packed in a format to efficiently use available memory and to 1552 1553 provide rapid access to the data. The format of the source data for the 1554 navigation data base is defined in ARINC 424. The supplier of the data, 1555 packing format, and maintenance of the data is to be specified by the 1556 supplier. 1557 Section 9.2 of this document provides a more complete description of the 1558 content of the navigation data base. 1559 Each navigation data base is valid for a specific effectivity period and is 1560 updated typically on a 28-day cycle. The effectivity dates for a set of data 1561 are displayed for reference on the system's configuration definition page. 1562 The navigation data base effectivity period should be compared 1563 automatically with the current date and discrepancies annunciated. 1564 The system should be capable of defining a flight path based on standard 1565 ARINC 424 path terminators as shown below: 1566 DME Arc to a Fix 1567 CA Course to an Altitude 1568 CD Course to a Distance 1569 CF Course to a Fix 1570 CI Course to an Intercept 1571 CR Course to Intercept a Radial 1572 DF Direct to a Fix 1573 FA Course from Fix to Altitude 1574 FC Course from Fix to Distance 1575 FD Course from Fix to DME Distance 1576 FM Course from Fix to Manual Term 1577 НΑ Hold to an Altitude 1578 HF Hold, Terminate at Fix after 1 Circuit 1579 НМ Hold, Manual Termination 1580 IF Initial Fix 1581 Ы Procedure Turn 1582 RF Constant Radius to a Fix 1583 TF Track to Fix

Heading to Altitude

Heading to Distance

4.0 FLIGHT MANAGEMENT FUNCTIONS

1586	VI Heading to Intercept next leg		
1587	VM Heading to Manual Termination		
1588	VR Heading to Intercept Radial		
1589	COMMENTARY		
1590 1591 1592 1593 1594	Even though it is expected that in the future only a limited set of these terminator types will be used, as defined (*) above and as specified in the RTCA RNP MASPSDO-236(), the advanced system should continue to support this list as long as procedures exist that use these terminator types.		
1595	4.3.2.3 Supplemental and Temporary NDB Creation and Management		
1596 1597 1598	Besides waypoints and navaids contained in the data base, new waypoints that can be used in flight plan construction may be created in a number of ways.		
1599	The system should support creation of new waypoints in the following ways:		
1600	 Point Bearing/Distance (PBD) 		
1601	 Point Bearing/Point Bearing (PB/PB) 		
1602	 Along Track Fix 		
1603	 Latitude/Longitude 		
1604	Dir-To Abeam Waypoint(s)		
1605			
1606			
1607	The system may support creation of new waypoints in the following ways:		
1608	 Latitude/Longitude Crossing 		
1609	 Unnamed Airway Intersection 		
1610	• Fix Intersection		
1611	 Runway Extension 		
1612	 FIR/SUA Intersection 		
1613			
1614	These waypoints should be stored in the temporary navigation database.		
1615 1616 1617 1618	Waypoints may be created using Point Bearing/Distance (PBD), PB/PB, Along Track Offset (ATO), Lat/Long, crossinge, airway intersections, runway extensions, or ABEAM facilities, and are stored in the temporary navigation data base. These capabilities are optional as defined below.		

4.0 FLIGHT MANAGEMENT FUNCTIONS

1619 Optional capability may be provided to allow waypoints, navaids, and 1620 1621 airports to be directly created by the crew (or data link function) using a 1622 supplemental navigation data base facility. The supplemental NDB is retained indefinitely (until deleted). The temporary data base is retained until 1623 flight complete (deleted automatically after touchdown). A supplemental and 1624 1625 temporary navigation data base summary facility is provided for the crew to 1626 inspect, review, and select the current contents of these data bases. 1627

4.3.2.3.1 PBD Waypoints

1628

1629

1630 1631

1632

1633

1634

1635

1636 1637

1638

1639 1640

1641

1642

1643

1644

1645

1646

1647 1648

1649

1650

1651

1652 1653

1654

1655

1656

1657

1658

1659

1660

1661

Waypoints can be created as bearing/distance off existing named waypoints, navaids or airports.

4.3.2.3.2 PB/PB Waypoints

Waypoints can be created as the intersections of bearings from two defined waypoints.

4.3.2.3.3 ATO Along Track Fix Waypoints

Waypoints can be created by an Along Track Offset (ATO)Distance from an existing flight plan waypoint. The waypoint that is created is located at the distance entered and along the current flight plan path from the waypoint used as the fix. A positive distance results in a waypoint after the fix point in the flight plan while a negative distance results in a waypoint before the fix point.

4.3.2.3.4 Lat/Long Waypoints

Waypoints can be created by entering in the latitude/longitude coordinates of the desired waypoint.

4.3.2.3.5 Lat/Long Crossing Waypoints

Waypoints can be created by specifying a latitude or longitude. In this case, a waypoint will be created where the active flight plan crosses that latitude or longitude. Latitude or longitude increments can optionally be specified in which case several waypoints are created that correspond to where the flight plan crosses the specified increments of latitude or longitude.

4.3.2.3.6 Unnamed Airway Intersection of Airways

Waypoints can be created as the intersection of two airways. Waypoints will be created at all points where the airways cross.

4.3.2.3.7 Fix Intersection Waypoints

Waypoints can be created by using a Fix Reference MCDU page. Reference information includes creation of abeam waypoints and creation of waypoints where the intersections of a specified radial or distance from a specified fix intersects the current flight plan is computed.

4.3.2.3.8 Runway Extension Waypoints

Runway extension waypoints may be created by selecting a distance from a given destination runway. The new waypoint will be located that distance from the runway threshold along the reciprocal runway of the runway heading.

4.0 FLIGHT MANAGEMENT FUNCTIONS

		4.01 EIGITT	WANAGEWIEN	TONCTIONS		
1662	4.3.2.3.9 <u>Di</u>	r-To_Abeam Waypoints				
1663 1664 1665 1666 1667 1668		If a direct-to is performed, facilities should be provided to retain intervening waypoint information (such ase.g. speed/altitude constraints, waypoint wind data, etc.). If the abeam facility is selected, then temporary waypoints will be created at their abeam point on the direct to path. Any waypoint information associated with the original waypoint will be transferred to the new waypoints.				
1669			COMMEN	TARY		
1670 1671 1672 1673		waypoint function sir	nce other effe t-to path and	mplementation of the abeam ects such as inappropriate course inclusion of abeam points in some ndesirable.		
1674	4.3.2.3.10	FIR/SUA Intersection Way	points			
1675 1676 1677		The system should define was Region (FIR) boundaries an navigation data base in cons	d Special Us			
1678	4.3.2.3.11	Suggested Waypoint Nam	ing Conven	tion		
1679 1680		Flight plan waypoints create flight plan identifiers in acco		above capabilities should be given the following conventions:		
1681		Place/Bearing/Distar	nce	wptnn		
1682		Place-Bearing/Place	-Bearing	wptnn		
1683		Along Track Waypoi	nt	wptnn		
1684		Latitude/Longitude		wxxyzzz or_xxwzzzy		
1685		Crossing Fix		wxx or yzzz		
1686		Airway Intercept		Xawy		
1687		<u>Dir-To</u> Abeam Wayp		wptnn		
1688		Radial or abeam inte	ercept	wptnn		
1689		Runway extension	_	RXrwyhdg FIRnn or SUAnn		
1690		FIR/SUA intersection	-			
1691 1692		Upper case indicates actual variable content as follows:	characters u	used, and lower case indicates		
1693		nn	FMS-deter	mined sequence number		
1694		awy	Full identifi	er of airway following the intersection		
1695		wpt	First 3 cha	racters of the base waypoint identifier		
1696		W	N or S as a	appropriate		
1697		у	E or W as	appropriate		
1698		XX	degrees of	latitude		
1699		ZZZ	degrees of	longitude		

two-digit nominal runway heading

rwyhdg**ŧ**

1700

1701

Commented [GE3]: Should this be a may or a should?

Formatted: Indent: Left: 0"

4.0 FLIGHT MANAGEMENT FUNCTIONS

<< Advice on avoiding naming convention which results in NDB procedure waypoint names.>>

703	
704	4.3.2.4 Lateral Flight Planning
705	4.3.2.4.1 Flight Plan Construction
706	Flight plans can be constructed in a variety of ways:
707	NDB-Terminal Area procedures
708	Airways
709	 Pre-stored company routes
710	 Waypoints
711	 Navaids
712	 Runways
713	 Supplemental/Temporary waypoints
714	 Combinations thereof
715 716 717	These selections may be strung together by menu selection from the NDB or by specific edit actions. Flight plans can also be constructed and edited through the data link function.
718 719 720	Computation of flight plan magnetic courses should utilize an internal magnetic variation model utilizing a magnetic variation data base as defined in Section 9.5.
721	4.3.2.4.2 NDBTerminal Area Procedures
722	The following navigation data-base procedure types should be supported:
723	 Standard Instrument Departure (SID)
724	Engine-⊖Out SID
725	 Standard Terminal Arrival Route (STAR)
726 727	 FMS/Area Navigation (RNAV/RNP) Approach including LP/LPV (SBAS)
728	 GPS (GNSS) Approach Global Positioning System (GPS)/GNSS
729	 ILS/MLS ILS/LOC Approach
730	 MLS Approach
731	GLS (GBAS) Approach
732	•
733 734	The following navigation data-base approach procedure types may be supported based on individual system or customer requirements:
735	 RNP Authorization Required (RNP-AR)
736	• VOR
737	 Non-Directional Beacon
738	 Localizer Directional Aid (LDA)
739	Instrument Guidance System (IGS)

4.0 FLIGHT MANAGEMENT FUNCTIONS

•	RNAV Visual Flight Procedure (RVFP) / Visual Guidance Appro
	(VGA)

- Circling Approach
- Visual Prescribed Track (VPT)

COMMENTARY

In the future, with the anticipated widespread introduction of precision FMS and GPS/GNSS approach procedures based on the RNP navigation concept, the use of traditional non-precision approach procedures is expected to diminish.

The following navigation database SID procedure types may be supported based on individual system or customer requirements:

• RNP Authorization Required (RNP-AR)

Some of these procedures may have an associated RNP value to be used for the navigation function while flying these procedures.

4.3.2.4.3 Flight Plan Editing

The flight planning function offers various ways to modify the flight plan at the crew's discretion. These are described in the following sections.

4.3.2.4.3.1 Direct/Intercept Option

The direct/intercept feature allows the crew to select any fixed waypoint as the active waypoint and for the intercept option, to select the desired course into this waypoint. If the direct-to option is selected, the waypoint becomes the active waypoint and the flight plan that results goes direct from the current aircraft position to that waypoint. Any waypoints in the flight plan before that waypoint are deleted from the flight plan. Whenever the intercept option is selected on a given fixed waypoint, either the direct-to course or an entered course can be selected as the course to that waypoint.

4.3.2.4.3.2 Entry of Waypoints

Waypoints may be entered at any point in the flight plan provided it results in a valid leg combination. Refer to ARINC 424 for valid leg combinations. These waypoints may be from the navigation data base, supplemental data base, or temporary data base. It is possible that more than one waypoint uses the same identifier. Therefore, facilities must be provided to display the coordinates for all selections and allow the crew to make the choice, or alternatively to provide logic for automatic selection.

4.3.2.4.3.3 Flight Plan Linking

Facilities should be provided to select portions of the flight plan and re-link that portion with another portion of the flight plan.

Commented [GE4]: Should this last part be kept?

4.0 FLIGHT MANAGEMENT FUNCTIONS

1780	4.3.2.4.3.4 Flight Plan Delete
1781 1782	Facilities should be provided to allow the use of a delete function to remove unwanted portions of a flight plan.
1783	4.3.2.4.3.5 Procedure Selection
1784 1785 1786 1787	Selecting procedures from the data base will replace a previous procedure selection, retaining the active waypoint if it was part of the previous procedure selection and optionally retaining constraints previously sent by the ATC on waypoints part of the selected procedure.
1788	•
1789	4.3.2.4.3.6 Holding Patterns (HM Leg)and Procedure Turns
1790 1791 1792 1793 1794	Holding patterns and optionally procedure turns can be defined by data base procedure or manually specified at the current position or at any selected waypoint. All parameters for holding patterns or procedure turns are editable including ontry inbound course, turn direction, and leg time/length, otc. flyover/flyby, hold speed,
1795 1796	<< Add Conventional Hold versus RNP Hold in Lateral Path Construction section and point to DO-283()>>
1797	COMMENTARY
1798 1799 1800	In the future, with the anticipated widespread introduction of precision FMS and GPS/GNSS approach procedures the use of procedure turns as part of traditional approach procedures is expected to diminish.
1801	4.3.2.4.3.7 Flight Plan Editing using Data Link
1802 1803 1804 1805	Facilities should be provided to perform flight plan construction and editing using both AOC and ATC data link. If a flight plan data link is received, then a message is issued to the crew of the pending request. Facilities to review and to accept or reject the data link action must be provided.
1806	4.3.2.4.3.8 Flight Plan Editing using a Pointing Device
1807	[Deleted by Supplement 5]
1808 1809	Recommendations for this function will be provided in a future Supplement to this Characteristic.
1810	4.3.2.4.4 Flight Planning Support for ATM
1811	[Deleted by Supplement 5]

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.2.4.5 Missed Approach Procedures

 The flight planning function also allows missed approach procedures to be included in the flight plan. These missed approach procedures can either come from the navigation data base where the missed approach is part of a published procedure, in which case they will be automatically included in the flight plan. Additional waypoints can be added beyond the MAP to be flown in the event of a missed approach. Alternatively, or they a missed approach can be manually constructed by entry through the MCDU. In either case, and to missed approach. Use of RNP-based FMS and GPS/GNSS approach procedures may not allow manually constructed missed approach procedures.

4.3.2.4.6 Lateral Offset Construction

The flight planning function can create a parallel flight plan by specifying a direction (left or right of path) and distance (up to 99 nm). Capability may be optionally provided to allow selection of a start and end waypoint for an active flight plan. A complete lateral path for the offset will be generated to ensure guidance and other advisories, consistent with the requirements for RNP navigation and the RTA function.

COMMENTARY

Designers should ensure that flyable offset paths are created. Series of offset waypoints that create course reversals or unflyable paths should be avoided. Transition paths to and from the offset path should also be defined.

The flight planning function should support the creation of a parallel offset path via specification of a direction (left or right of path) and distance. For the offset distance, the system should support a maximum value of at least 20 NM with a resolution of 0.1 NM for at least the first 10 NM. Multiple preplanned parallel offsets may be supported but are not required.

The system should allow initiation of the parallel offset at the current aircraft position or at a specified downpath waypoint.

The system should allow termination of the parallel offset: immediately when commanded by the crew, at a specified downpath waypoint, or automatically:

- at the first fix of an instrument approach procedure (IAF, IF or FAF);
 or
- when a leg type other than TF, CF, DF, RF is encountered; or
- when the offset path is not flyable (i.e. when a combination of ground speed, track change geometry and waypoint proximity forces course reversals); or
- when reaching a lateral discontinuity

When transitioning to and from the offset path, a 30-degree intercept angle should be used by default. Entry or selection of another intercept angle may be optionally provided.

The system should provide the capability to offset predefined curved paths such as Fixed Radius Transitions (FRT) and optionally, RF legs.

4.0 FLIGHT MANAGEMENT FUNCTIONS

When executing a parallel offset, all performance requirements and constraints of the original path should be applicable to the offset path.

Guidance parameters (e.g. cross-track deviation, distance-to-go) should be referenced to the offset path and offset waypoints. The system should provide a means for display of both the parallel offset path and the original path. Display of the transition paths between the original path and the parallel path is highly recommended.

Refer to DO-236() and DO-283() for additional lateral offset requirements.

4.3.2.4.7 Magnetic Variation

The system should have the capability of assigning a magnetic variation (MagVar) at any fix/location when operations are conducted relative to Magnetic North. The MagVar value may be retrieved from the NDB, or in the absence of an NDB-specified value, computed using an internal magnetic reference.

COMMENTARY

DO-283() provides requirements for the treatment of MagVar on terminal procedures, airports, leg types, en route areas and an internal set of magnetic variation tables.

ARINC 424 specifies NDB requirements for MagVar on certain leg types. Additionally, ARINC 424-19 introduced the concept of a Procedure Design MagVar (PDMV) which attempts to relieve the confusion on which MagVar value to use (when the various options conflict) by coding an appropriate MagVar value on the respective instrument procedure or individual procedure legs.

The system should incorporate a hierarchy to determine the use of MagVar sources in the following order (note that 1, 2 and 3 will be coded in the NDB):

- If the leg is part of a navigation database terminal area procedure, the MagVar to be used is the PDMV for the procedure or individual procedure legs, when available.
- If the leg is part of a navigation database terminal area procedure and the the PDMV is not specified and a recommended VHF navaid magnetic declination exists for the leg, -the MagVar to be used is the MagVar of record for the airport or the recommended VHF navaid magnetic declination of the leg.

. if specified.

 If the leg is part of a navigation database terminal area procedure and the PDMV is not specified and a recommended VHF navaid magnetic declination does not exist for the leg, the MagVar to be used is the MagVar of record for the airport.

4.0 FLIGHT MANAGEMENT FUNCTIONS

1902 1903 1904 1905 1906 1907 1908 1909		 4. If the leg is not part of a procedure and the terminating fix is a VOR, the MagVar to be used is the station declination of the VOR. 5. If the leg is not part of a procedure and the terminating fix is not a navaid, the MagVar to be used is defined by the system using an internal model (See Section 9.5).
1910		
1911	4.3.2.5	Vertical Flight Planning
1912 1913 1914 1915 1916		Vertical flight planning consists of entry and deletion consists of specification of altitude and speed and altitude constraints at waypoints (Section 4.3.2.5.2 and 4.3.2.5.3) as well as other parameters (listed below) which are used by the Vertical Guidance, Trajectory Predictions, and Performance Calculations functions.
1917 1918 1919		including At, At or Above, At or Below, and Window constraints), step climbs, (optional) step descents, (optional) cruise climb, tactical changes of speed and altitude and winds at waypoints, and during descent.
1920 1921 1922		Facilities The system should be provide provided for entry and modification of the following performance parameters: crew selection and entry of various performance constraints:
1923		 Zero Fuel Weight (or Gross Weight)
1924		Block Fuel
1925		 Cost Index
1926		Cruise Altitude
1927		 Climb Mode (Section 4.3.4.1.1)
1928		 Cruise Mode (Section 4.3.4.1.2)
1929		 Descent Mode (Section 4.3.4.1.3)
1930		 Hold Pattern Leg Time/Distance/Speed
1931		 Airport Sepeed LimitRestriction
1932		 Thrust Reduction Altitude/Height
1933		 Climb Acceleration Altitude/Height
1934		 Performance correction factors such as Drag
1935		Factor and Fuel Flow Factor
1936		• Cost Index
1937 1938		 RTA waypoint yaypoint, time, and time-Totelerance (Section 4.3.3.2.4 & 4.3.3.2.5)
1939		 Climb and dDescent WWinds and ATemperatures (Section 4.3.2.5.1)
1940 1941		Cruise Wind at Waypoint (Section 4.3.2.5.1) waypoint winds/temperatures
1942		• Temperature
1943		Tropopause altitude Transition Altitude/Level

Destination QNH

1944

.

962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972 1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1984

4.0 FLIGHT MANAGEMENT FUNCTIONS

1945	• Takeoff Derate(s)
1946	Climb Derate
1947	
1948 1949 1950	All of these items parameters should be considered in generating the trajectory predictions the vertical trajectory aand performance function computations.
1951 1952 1953	The <u>system may provide for entry and modification of the following additional parameters may also be considered in developing the vertical trajectory</u> :
1954	Maneuver Margin
1955	Min Cruise Time
1956	 Min Rate of Climb (ClbAll-Engine - Max Climb thrust rating)
1957	 Min Rate of Climb (GrzAll-Engine - Max Cruise thrust rating)
1958	 Min Rate of Climb (EngineOut — Max Continuous thrust rating)
1959	 <u>Drag Factor and Fuel Flow Factor</u>
1960	•Anti-ilce bBands

Tropopause Altitude

---Minimum

- Optimal Step Climb Climb sSize and eEnterable dDefault
- Preplanned Cruise Altitude Step(s)
- Optimal Cruise Altitude Step(s)
- Cruise-Climb Block Altitude (Drift-Up Cruise)
- Preplanned Cruise Speed Changes
- Multiple Cruise Winds at Waypoints (Section 4.3.2.5.1)
- Cruise Temperature at Waypoints (Section 4.3.2.5.1)

When supported, these parameters should be considered in the trajectory predictions and performance function computations.

4.3.2.5.1 Wind, Temperature, and Atmospheric Model

Wind and temperature may be entered via the MCDU or data link. The wind model for the climb segment phase should be a set of wind magnitudes and bearings that are entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed wind.

The temperature model for the climb segment phase should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.

Wind models for use in the cruise segment phase should allow for the entry of one or more winds (altitude, magnitude, and bearing) at a waypoint; a single value or multiple wind/altitude pairst. Systems should merge these

Commented [BM(AU5]: Clarify

4.0 FLIGHT MANAGEMENT FUNCTIONS

entries with current winds obtained from sensor data in a method which gives a heavier weighting to sensed winds close to the aircraft.

Temperature models for use in the cruise segmentphase may allow for entry of a temperature and altitude at a waypoint or an ISA deviation at a waypoint. As a minimum, the system should allow for entry of a single cruise temperature or ISA deviation value that applies throughout cruise. Systems should merge these entries with current temperature (ISA deviation) obtained from sensor data in a method which gives a heavier weighting to sensed values close to the aircraft.

The cruise temperature data may be entered associated with flight plan waypeints and/or as a single value that applies throughout the flightcruise

The wind model used for the descent segment-phase should be a set of wind magnitudes and bearings entered for different altitudes. The value at any altitude should then be computed from these values, and merged with the current sensed wind.

The temperature model for the descent <u>segment-phase</u> should be temperature values entered for different altitudes. The value at any altitude is then computed from these values and merged with the current sensed temperature.

A more advanced representation of wind data in the FMC is the use of a grid wind model which may be up to a four-dimensional definition of wind. The grid winds would not be tied to waypoints in the flight plan, but associated with latitude longitude regions similar to a magnetic variation model. It is expected that grid winds would only be uplinked and not manually entered.

Temperature should be based on the International Standard Atmosphere (ISA) with an offset (Δ ISA) obtained from pilot entries or the actual sensed temperature. The temperature data may be entered associated with flight plan waypoints or as a single value that applies throughout the flight. Likewise, the tropopause altitude (altitude at which constant temperature begins) may be crew enterable (with 36,089 ft. as default).

4.3.2.5.2 Waypoint Altitude Constraints

The system should allow insertion of AT, AT or ABOVE, AT or BELOW, and WINDOW (i.e. both an AT or ABOVE and AT or BELOW) altitude constraints at waypoints in the flight plan. Waypoint altitude constraints may be inserted directly via crew entry or indirectly via selection of a procedure in the navigation database. The system should allow for entry and modification of WINDOW altitude constraints.

COMMENTARY

Historically, crew entry and modification of WINDOW altitude constraints was not possible on some systems. On such systems, WINDOW constraints could only be inserted via selection of a navigation database procedure. Per DO-236(), the system is required to support crew entry of each type of altitude constraint.

4.0 FLIGHT MANAGEMENT FUNCTIONS

The system should avoid automatic deletion of altitude constraints above cruise altitude.

COMMENTARY

Upon cruise altitude modification or procedure insertion, some systems will automatically delete altitude constraints that are above cruise altitude. This design has led to airline and ATC complaints as it is susceptible to order of operation and situational awareness issues. System designs where altitude constraints are retained and ignored and/or where altitude constraints are retained and the cruise altitude modified are preferable.

The system should designate altitude constraints as either CLIMB constraints or DESCENT constraints. The system should designate an altitude constraint on a waypoint in the departure or missed approach procedure as a CLIMB constraint. The system should designate an altitude constraint on a waypoint in the arrival or approach procedure as a DESCENT constraint. The system may incorporate additional rules to designate an altitude constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.

The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4.3.2.5.2-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4.3.2.5.2-1 below. Table 4.3.2.5.2-1 Altitude Constraint Applicability

Altitude	Altitude Constraint Phase/Applicability	
Constraint Type	CLIMB	DESCENT
AT or BELOW	Do not exceed PRIOR to and AT	Do not exceed AT and AFTER
AT or ABOVE	Do not go below AT and AFTER	Do not go below PRIOR to and AT
AT	Do not exceed PRIOR to, cross AT, do not go below AFTER	Do not go below PRIOR to, cross AT, do not exceed AFTER
WINDOW	Do not exceed upper bound PRIOR to and AT Do not go below lower bound AT and AFTER	Do not exceed upper bound AT and AFTER Do not go below lower bound PRIOR to and AT

Field Code Changed

Table 4.3.2.5.2-1 Altitude Constraint Applicability

4.0 FLIGHT MANAGEMENT FUNCTIONS

2061 2062 **COMMENTARY** 2063 PRIOR to, AFTER, and AT in Table 4.3.2.5.2-1 refer to sequence of 2064 the waypoint with the altitude constraint. 2065 2066 The descent path is typically constructed using a series of straight 2067 line segments. For waypoints with a descent AT constraint, the 2068 descent path will typically cross at the specified altitude. When flown 2069 using the Vertical Guidance function, some systems may cross above 2070 or below the altitude constraint value due to a vertical fly-by 2071 transition. DO-236() and DO-283() define the acceptable altitude 2072 deviation for a vertical fly-by transition. 2073 2074 Upon procedure selection, most systems combine common waypoints 2075 between departure, arrival, and/or approach segments. In rare situations, 2076 the altitude constraint coded in one procedure differs from the altitude 2077 constraint coded in the other procedure (e.g. STAR and APPROACH). 2078 When this occurs, systems may use different logic to meld the altitude constraints; however, upon subsequent selection by the crew of a different 2079 2080 procedure (e.g. same approach with a new STAR or runwayapproach 2081 transition) where the common waypoint is retained, the system should 2082 ensure the altitude constraint on the (former/current) common waypoint 2083 originateds from one of the currently selected navigation procedures 2084 (provided the crew did not modify the altitude constraint). 2085 2086 The system should provide a means to initiate a vertical direct-to to a 2087 vertically (altitude) constrained fix. 2088 **COMMENTARY** 2089 This allows the aircraft to proceed from present altitude direct-to a 2090 specified altitude in the flight plan. If there are altitude constraints 2091 prior to the vertical direct-to fix, the altitude constraints are deleted. 2092 the altitude constraint on the common waypoint should be re-assessed. 2093 2094 4.3.2.5.3 Waypoint Speed Constraints 2095 The system should allow insertion of AT, AT or ABOVE, and AT or BELOW 2096 speed constraints at waypoints in the flight plan. Waypoint speed constraints 2097 may be inserted directly via crew entry or indirectly via selection of a 2098 procedure in the navigation database. 2099 2100 The system should designate speed constraints as either CLIMB constraints or DESCENT constraints. The system should designate a speed constraint 2101 2102 on a waypoint in the departure or missed approach procedure as a CLIMB 2103 constraint. The system should designate a speed constraint on a waypoint in

the arrival or approach procedure as a DESCENT constraint. The system

2104

Formatted: Commentary Text, Indent: Left: 0", Right: 0"

4.0 FLIGHT MANAGEMENT FUNCTIONS

may incorporate additional rules to designate a speedn altitude constraint as either a CLIMB or DESCENT constraint when the constraint is on a waypoint which is not part of a procedure listed above.

The system should apply CLIMB constraints to the takeoff and climb phases of flight in accordance with Table 4.3.2.5.3-1 below. The system should apply DESCENT constraints to the descent and approach phases of flight in accordance with Table 4.3.2.5.3-1 below.

Speed Constraint	Speed Constraint Phase/Applicability		
Type	CLIMB	DESCENT	
AT or BELOW	Do not exceed PRIOR to	Do not exceed AT and	
	and AT	AFTER	
AT or ABOVE	Do not go below AT and	Do not go below PRIOR to	
	AFTER	and AT	
AT	Do not exceed PRIOR to,	Do not go below PRIOR to,	
	cross AT, do not go below	cross AT, do not exceed	
	AFTER	AFTER	

Table 4.3.2.5.3-1 Speed Constraint Applicability

COMMENTARY

PRIOR to, AFTER, and AT in Table 4.3.2.5.3-1 refer to sequence of the waypoint with the altitude constraint.

In accordance with Table 4.3.2.5.3-1, the system should apply ABOVE climb speed constraints after sequence of the speed constraint waypoint until transition to the climb MACH or transition to cruise flight phase. The system should apply ABOVE descent speed constraints upon transition to the descent CAS (from the cruise flight phase or descent MACH) until sequence of the speed constraint waypoint.

BELOW constraints may be applied in cruise flight phase in accordance with Table 4.3.2.5.3-1. This is recommended for missed approach and low(er) cruise altitude scenarios where procedural waypoint speed constraints may operationally be encountered while in cruise.

Upon procedure selection, most systems combine common waypoints between departure, arrival, and/or approach segments. In rare situations, the speed constraint coded in one procedure differs from the speed constraint coded in the other procedure (e.g. STAR and APPROACH). When this occurs, systems may use different logic to select or meld the speed constraints; however, upon subsequent selection by the crew of a different procedure (e.g. same approach with a new approach transition)

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

2140 where the common waypoint is retained, the system should ensure the
2141 speed constraint on the common waypoint originates from one of the
2142 currently selected navigation procedures (provided the crew did not modify
2143 the speed constraint).

however, upon subsequent selection by the crew of a different procedure (e.g. STAR or runway transition), the system should ensure the speed constraint on the (former/current) common waypoint originated from the currently selected navigation procedures.

21492150 4.3.2.5.4 Temperature Compensation

For Baro-VNAV approach operations, unless compensated for temperature, the system can only be used within the temperature limitations (if any) for temperature-published on approach procedure charts. To enable baro-VNAV approach operations outside published temperature limits or operations in non-ISA temperature environments, the preferred method is for the system to correct for the effects of temperature on the barometric altitude upon crew entry of a destination temperature. Systems providing automatic temperature compensation to the baro-VNAV guidance must comply with DO-236() aAppendix H and DO-283() aAppendix H.

COMMENTARY

The barometric altimeter indication is influenced by temperature variations. During cold temperature operations (below ISA), the airplane's true altitude is lower than the indicated altitude. Similarly, during hot temperature operations (above ISA), the airplane's true altitude is higher than the indicated altitude. This results in an aircraft flying a vertical path angle shallower than (or steeper than for hot temperature) the designed vertical path angle (or gradient) without an indication in the flight deck.

Temperature compensation corrects altitude constraints and vertical angles to those intended by the procedure designer. When the aircraft flies the compensated altitudes, the aircraft is actually flying the intended descent/approach path. However, the indicated altitude will be different than the charted value.

4.0 FLIGHT MANAGEMENT FUNCTIONS

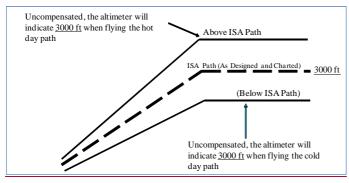


Figure 4.3.2-14.3.2-14.3.3-18 Temperature Effects on Altimetry

The system should use a flight crew-entered temperature and standard temperature lapse rate to compute altitude and flight path angle corrections accounting for the bias in the barometric altimetry system indications caused by deviations from ISA at the aerodrome's field elevation. The temperature compensation method used should be within 10% of the "accurate method" as described in DO-283(). These corrections should be applied, at a minimum, to the altitudes and flight path angles contained in any approach procedure selected from the navigation database from the initial approach fix (IAF) through the missed approach procedure up to and including the missed approach holding point (MAHP), and including altitude-terminated legs in the missed approach segment. For all approach types (including SBAS, GLS, ILS, MLS) temperature compensation should be applied to all segments where vertical guidance is dependent on barometric altimetry, including the FAF altitude.

When temperature compensation has been applied, altitudes that are manually entered into a procedure by the flight crew should not be temperature compensated. The system should clearly differentiate the display of temperature compensated altitudes from uncompensated altitudes.

Since the MDA/DA is not an assigned altitude, this procedural altitude is eligible for temperature compensation. When the system loads the uncompensated MDA/DA from the database or the flight crew enters it, the system should provide a means to determine and display the temperature compensated MDA/DA.

The system should respect all constraints in the uncompensated path while approaching the compensated path. When temperature compensation adjusts the vertical path, the system should ensure that the path construction precludes the insertion of a climb path-segment in athe descent path. This will typically apply when transitioning from a path segment based upon uncompensated fix altitudes to a path segment whose altitudes have been compensated for temperature. When temperature compensation

4.0 FLIGHT MANAGEMENT FUNCTIONS

results in such an altitude conflict, the system should provide an annunciation suitable to prompt flight crew action.

2213

2214

2216

2217 2218

2219 2220

2221 2222

2223

2224

2225 2226

2227 2228

2229

2230

2231

2211

2212

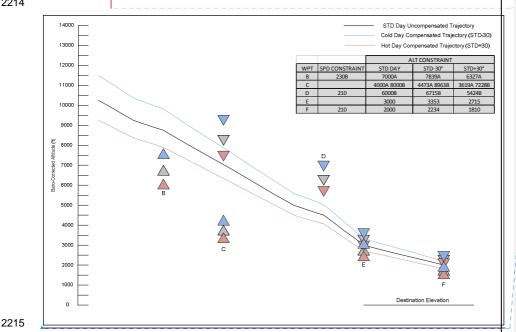


Figure 4.3.2-2: Temperature-Compensated Trajectory

When an interface has not provisioned for output of both a compensated and uncompensated altitude constraint value, the compensated altitude constraint value should be output.

COMMENTARY

The ACARS, Intent Bus, ADS-C EPP, and EFIS interfaces are all examples of interfaces that output altitude constraint information.

4.3.3 Lateral and Vertical Navigation Guidance

The system should provide fully automatic, performance optimized, guidance along two, three, or four-dimensional paths, defined by the sequence of waypoints specified in the active flight plan. Lateral guidance requires an active flight plan. Vertical guidance requires, as a minimum, an input of gross weight, cost index, and cruise altitude. ATC constraints may

Commented [BM(AU6]: Hot constraint on C, Table number, Y-axis "Baro-Corrected Altitude"

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

be entered along the flight plan which in turn will constrain the lateral and vertical flight paths. Guidance commands should be generated and available to drive the Flight Control Computers.

The integrated FMS should provide facilities for the crew to easily override the current guidance commands (without amending the flight plan) for rapid response to tactical situations. Some of the intervention overrides are:

- Altitude target
- · Speed target
- · Course/Heading target
- Vertical Speed target

This temporary override should replace the applicable guidance output until the override is terminated at which point the internally generated guidance commands should resume.

COMMENTARY

Different autoflight system implementations may allocate these intervention modes to the FMF, while others may accomplish these modes through a combination of FMF and AF $\underline{\mathbb{C}}$ S functions.

4.3.3.1 Lateral Navigation Guidance and Path Construction

The lateral guidance of the aircraft is performed using the position data derived by the navigation function and a guidance-lateral reference path. For the active plan, generated by the lateral guidance function. The lateral steering guidance function generates a roll command based on the above data to guide the aircraft to straight-geodesic leg segments between entered waypoints and to transitional paths at the leg intersections. The roll commands generated are constrained by limits imposed by ATC, the flight plan, the automatic flight control system, and operational flight characteristics of the aircraft. Special procedural paths such as holding patterns (HM), procedure holds (HF), procedure turns (PI), missed approach procedures, and lateral offset paths are automatically flown along with the transitional paths into and out of these procedures.

The aircraft's progress along each path segment is continually monitored to determine when a path transition must be initiated. Direct-to guidance is also available from the aircraft's present position to any waypoint or to intercept a course to or from a waypoint to accommodate modified ATC clearances.

LNAV guidance is provided for enroute, terminal, and approach area operations including Standard Instrument Departures (SIDs) and Standard Terminal Arrival Routes (STARs), approaches, holding patterns, lateral offsets, procedure turns, Direct To a Waypoint, missed approaches, etc.

4.3.3.1.1 Lateral Reference Path Construction

The lateral function computes independent continuous lateral paths for all existing flight plans. This computation should be fully integrated with the vertical trajectory in that the turn conics should be based on the predicted speeds at the leg transitions. Proper construction for all ARINC 424 defined

Formatted: Heading 5

4.0 FLIGHT MANAGEMENT FUNCTIONS

waypoint/leg types and the corresponding transitional paths between them should be generated and flown by the system.

COMMENTARY

Altitude terminated legs are unique in that the termination criteria for the leg is based on altitude instead of a lateral location. This implies a further coupling to the vertical profile in the construction of the reference path for these leg types.

4.3.3.1.2 Lateral Leg Transitions

Leg-to-leg transitions should provide for a continuous path between legs and generally should be determined by the course change between the legs, the type of next leg, waypoint overfly requirement, bank angle limitations, and the predicted speeds for the transition. Leg transition paths must be constructed within the airspace limitations specified in DO-283() the RNP MASPS for operation within RNP airspace.

When a lateral path transition cannot be constructed per the leg definition, the system should provide an indication to the crew.

There are three categories of turns recognized in the RNP MASPSDO-236():

- Fly-by turns- Subdivided into 2 categories, high altitude (≥>FL195) and low altitude (<FL195)
- Fly-over turns-Specified as part of leg definition in the NDB, low altitude only (<FL195)

2.

3. Fixed radius transitions

COMMENTARY

The RNP MSPS_DO-283() assumes that course changes at a fly-by fix will not exceed 120 degrees for low altitude operation (<FL195) and 70 degrees for high altitude operation (≥>FL195). While this assumption is reasonable for a database-defined individual procedure and enroute definitions, flight crew modifications to the route may make this assumption impractical due to factors such as aircraft performance, course, change, and leg length.procedure linking and editing make this assumption unenforceable.

4.3.3.1.2.1 Fly-By Turns

DO-283() provides the requirements for the fly-by leg transition. DO-283() relates the radius of the turn to ground speed and bank angle and results in a theoretical transition area within which the aircraft should remain throughout the turn. Remaining within the transition area is dependent upon the course change assumptions noted above and the area may not apply if the course change is exceeded. In such exceedance cases, the path to be flown should be displayed to the flight crew. For normal (i.e. course changes less than 135 degrees)-fly-by transitions (i.e. course changes less than 135 degrees), the fix should sequence at the lateral bisector.

Commented [BM(AU7]: Give preference to DO-283 over DO-236

4.0 FLIGHT MANAGEMENT FUNCTIONS

COMMENTARY

When situations are encountered outside these <u>DO-283()</u> assumptions <u>noted above</u>, the following guidelines are offered:

For fly-by turns with track changes less than 135 degrees, a circular transition path should be constructed tangential to the current and the next legs. The leg transition should occur at the bisector. If the airspace limitation requirements for fly-by turns cannot be met, then the crew should be informed that this condition exists. For track changes greater than 135 degrees, a circular path should be constructed to be tangential to the current leg and a line normal to the current leg emanating from the waypoint. This path should be extended to provide a 40- to 50-degree intercept to the next leg. This construction is similar to fly over turns. The crew should be informed if this construction is used for a fly by turn.

See Figure 4.3.3-1 below.

The fly-by leg transition reduces track miles while also enhancing ride quality. However, enroute air traffic controllers have noted that some aircraft begin the turn initiation earlier than expected and in some cases have conflicted with other traffic. The criteria specified in DO-283() are minimum requirements and can result in a generous theoretical transition area. It is recommended that equipment manufacturers give ample consideration to airspace consumption when selecting nominal bank angles.

4.0 FLIGHT MANAGEMENT FUNCTIONS

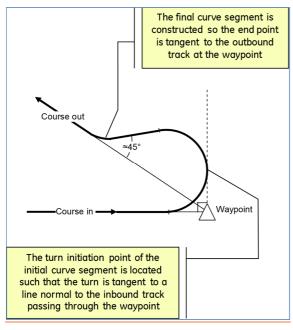


Figure 4.3.3-14.3.3-1 Fly-By Turn > 135 Degrees

4.3.3.1.2.2 Fly-Over Turns

When a fly-over waypoint is specified, the leg transition should occur at the waypoint prior to transitioning to the next leg. For fly-over waypoints, the next leg type should define the transition path. When the fly-over waypoint is sequenced, the lateral guidance function should command an intercept to capture the next leg. The intercept should be based upon aircraft performance and geometry parameters such as ground speed, leg length, and bank angle limitations.

COMMENTARY

For RNP operations, DO-283() discourages the use of fly-over waypoints since the subsequent path is not repeatable and airspace protection cannot follow the RNP containment cannot be assuredeencept. It is recognized, however, that some terminal area operations may require the use of fly-over waypoints followed by a defined leg to the next waypoint.

For fly-over waypoints, the next leg should define the transition path. All leg transitions should occur at the fix which is overflown prior to transitioning to

4.0 FLIGHT MANAGEMENT FUNCTIONS

the next leg. If the airspace limitation requirements for fly-over turns cannot be met, then the crew should be informed that this condition exists.

In all cases the turn transition conics should be constructed so that the resulting trajectory is flyable by the aircraft.

4.3.3.1.2.3 Fix Radius Transitions (FRT)

The FRT is intended to define a fixed radius transition path between airway legs in the enroute sector when parallel routes are closely spaced at the transition waypoint and the fly-by turn is not compatible with separation criteria. DO-283() specifies the geometry and method of computing the fixed turn radius. The FRT is defined in terms of the track change, turn radius, and lead distance. For those enroute airways using an FRT, the turn radius is coded in the ARINC 424 navigation database for the respective airway where the FRT is specified.

COMMENTARY

ICAO Doc 9613:_τ Performance-Based Navigation Manual, lists two possible radii, 22.5 NM for high altitude routes (≥FL 195) and 15 NM for low altitude routes. Although these radii are suggested and the actual radii coded in the navigation database could vary, it is expected that airspace designers will abide by these guidelines so that aircraft bank angle limitations in current systems will be respected.

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.3.1.44.3.3.1.3 Special Lateral Path Construction

All procedural paths such as hold patterns, procedure turns and procedure holds should be continuous paths that allow accurate reference paths to be dene-constructed for the complete flight plan. The construction of these paths must meet the airspace limitation and path geometry requirements specified in DO-236()the RNP MASPS.

For hold pattern entries, these paths contain all the <u>straight geodesic</u> and curved segments of the entry (including transition from the prior leg) and may optionally be displayed on the <u>EFIS-ND</u> before <u>and during</u> the entry maneuvers. After the entry is complete, subsequent path updates should account for changes in airspeed, wind speeds and altitude of the airplane. Hold entry paths must conform to the airspace limitations specified in <u>DO-236()RNP MASPS</u>.

For holding pattern exits which require a sequence of the hold fix, the lateral path should be updated to include the appropriate fly-by transition to the following leg and the paths must conform to the airspace limitations specified in $\underline{\text{DO-236()}}$ RNP MASPS for hold exits. For other holding pattern exits (e.g., a direct-to) the lateral path should be updated accordingly, without a return to the hold fix, and should comply with airspace limitations specified in RNP MASPS for those types of maneuvers.

Similar path construction and path prediction techniques are used when procedure turns and procedure holds are part of the flight plan.

4.3.3.1.54.3.3.1.4 Autopilot Lateral Guidance Roll Command

Based on the aircraft current state provided by the navigation function and the stored reference path, lateral guidance should produce-compute a roll steering command to the autopilot that is both magnitude and rate limited. This roll command is computed to capture and track the straight-geodesic and curved path segments that comprise the reference path as displayed on the EFISND.

4.3.3.1.64.3.3.1.5 <u>Lateral Guidance Output Parameters Lateral Path Reference Displays</u>

Besides generating the roll command, the ILateral guidance/lateral steering function should also provide compute and output the following parametersoutputs related ing-to the active flight planvarious flight plans for display on the MCDU and the Horizontal Situation Indicator (HSI)/EFIS. Some of these outputs may include:

- Roll command
- Distance to go (active waypoint)
- Bearing to go (active waypoint)
- Desired TrackCommanded course with respect to the leg being flown
- Downstream leg distances and courses
- Track angle and track angle error
- Cross track error

Commented [BM(AU8]: Search and replace

Formatted: Heading 5

4.0 FLIGHT MANAGEMENT FUNCTIONS

- Track angle error
 - Bearings to various waypoints
 - Lateral track change alert indicators
 - This function also supplies data in the form of a complete lateral path to the EFIS such that the flight plan can be displayed in its entirety as defined in Section 7.

4.3.3.1.74.3.3.1.6 Lateral Capture Path Construction

At engagement, a capture path should may be constructed that guides the airplane to the active leg. This capture path should capture the active guidance leg such that smooth path acquisition occurs without excessive roll activity or turns in the wrong direction.

4.3.3.1.84.3.3.1.7 Localizer/MLS Capture

[Deleted inby Supplement 5]

4.3.3.2 Vertical Navigation Guidance and Trajectory Predictions

The vertical function should facilitate vertical navigation to a computed aircraft trajectory that includes all phases of flight. This should be accomplished by providing to the crew, the information necessary for them to monitor and control the aircraft vertically as it progresses along the lateral path defined by the flight plan, and (in the case where managed vertical control is selected), providing the flight control computer with the vertical guidance control targets and commands necessary for it to control the aircraft to the flight management computed trajectory.

4.3.3.2.1 Trajectory Predictions

The Trajectory Predictions function computes and stores a 4D trajectory which represents a prediction of the aircraft state (e.g. distance, altitude, distance, airspeed, fuel, time) at various points in the flight plan which is used for display and downlink. Trajectory Predictions also computes a reference descent and approach trajectory which is used by Vertical Guidance for control in descent and approach.

The system should compute a complete aircraft trajectory prediction along the specified lateral route. When in preflight and a destination exists in the flight plan, the trajectory should include a takeoff segment, a climb segment, a cruise segment which may include cruise altitude changes (cruise steps), a descent segment, and an approach segment to the destination. When enroute, the trajectory should include segments for the remaining phases of flight. The trajectory may include predictions of the missed approach when included in the flight plan. The trajectory should be continuous from the departure airport (or present position if enroute) to the destination airport. The takeoff, climb, and cruise segments should be a prediction (i.e. model) of how LNAV and VNAV will guide the aircraft from present position along the specified route toward the cruise altitude. The descent and approach segments should be defined in two parts: (a) a reference descent and approach path that defines a Top of Descent location as well as reference

Formatted: Heading 4

4.0 FLIGHT MANAGEMENT FUNCTIONS

altitudes and airspeeds for all points between Top of Descent and the destination and (b) a prediction of how VNAV will guide the aircraft to acquire and track this descent and approach reference path (both altitude and airspeed) once the aircraft is in descent or approach.

COMMENTARY

The descent/approach may be thought of as two separate trajectories, one which is a reference and defines *path* altitudes and speeds (i.e. where the aircraft should be) and one which is a prediction based on the aircraft present position and defines *predicted* altitudes and speeds (i.e. where the aircraft will be if prediction assumptions are valid). It should be noted that some systems display the predicted descent altitudes and speeds while others display the reference path altitudes and speeds.

The system should compute a vertical trajectory for the following flight plans:

Active

- Modified
- Secondary

For each point in the vertical trajectory predictions, the following data should be computed, stored, and made available to other functions:

- Predicted Altitude
- Predicted Speed
- Estimated Time of Arrival (ETA) or Estimated Time Enroute (ETE)
- Predicted Fuel Remaining

Refer to Section 4.3.3.2.3 for accuracy requirements related to the ETA.

In addition, for each point between Top of Descent and the destination (inclusive), the following data should be computed, stored, and made available to other functions:

- Path Altitude
- Path Speed

The vertical trajectory predictions should include points at:

- the lateral sequence point of each waypoint in the primary flight plan
- speed change points (start and end of an acceleration/deceleration)
- Crossover Altitude
- Top of Climb

4.0 FLIGHT MANAGEMENT FUNCTIONS

۷.	010
	519
2	520
	521
2	522
2	523
2	524
2	525
2	526
	527
2	528
2	529
	530
2	531
	532
	533
2	534
	535
2	536
	537
2	538 539
_	555
	540
	541
2	542
2	543
2	544
2	545
2	546
2:	547
_	
	770
2	549
2	550

2552

2553

2554

2556

2557

2519

- Step Climb
- End of Descent
- Top of Descent
- Intermediate Level-Offs
- Descent Path Intercept Point (when off-path in descent)

COMMENTARY

The above points are the minimum required to support display and datalink requirements including ADS-C Extended Projected Profile. Additional points may be necessary to support specific capabilities or to obtain a desired accuracy via linear interpolation at any arbitrary point in the vertical trajectory.

The vertical trajectory predictions should be based on the following inputs:

- Lateral flight plan elements (Section 4.3.2.4)
- Vertical flight plan elements (Section 4.3.2.5)
- Measured and forecast winds/temperatures (Section 4.3.2.5.1)
- Lateral path including curved transitions between legs, holding pattern entries and lateral offsets (Section 4.3.3.1)
- Models of the airframe lift and drag characteristics
- Models of airframe speed and altitude limitations (e.g. stall, buffet, VMO, MMO)
- Models of the engine thrust and fuel flow characteristics
- Aircraft weight and center of gravity
- Crew selected and preselected guidance modes

The vertical trajectory predictions should be updated when an edit is made to a flight plan element or other input into vertical trajectory predictions. Refer to Section 3.4.2 for specific response time requirements related to these modifications.

The vertical trajectory predictions should be updated on a periodic basis to account for tactical interventions as well as wind, temperature, and other modeling errors.

The vertical trajectory should be integrated with the lateral trajectory such that the climb rate and lateral leg distances used to compute the vertical trajectory account for smooth (curved) transitions between lateral legs.

COMMENTARY

The above requirement is not intended to preclude assumptions in the vertical trajectory when lateral discontinuities and manually terminated legs (i.e. HM, VM, and FM legs) are encountered in the

4.0 FLIGHT MANAGEMENT FUNCTIONS

flight plan. In these situations, the lateral trajectory is ill-defined and the vertical and lateral trajectory assumptions may differ in order to provide a more reasonable prediction of destination time and fuel.

Users of 3D/4D trajectory information should keep these scenarios in mind when using the trajectory information and designing interfaces.

The vertical predictions should comply with all waypoint altitude and speed constraints as specified in Sections 4.3.2.5.2 and 4.3.2.5.3. When this is not possible due to aircraft performance or a conflict in the constraints, appropriate indications should be provided to inform the crew of the specific issue. As with vertical guidance, vertical trajectory predictions should prevent a descending maneuver in a climbing segment in order to satisfy a climb altitude constraint. Likewise, it should prevent an ascending maneuver in a descending segment in order to satisfy a descent altitude constraint. Similarly, vertical predictions should produce a speed profile that is monotonic during a single phase of flight in the presence of speed constraints. The predicted speed profile should remain within the operating envelope of the specific aircraft. It should take into account the aircraft/engine performance, flap configuration changes, selected speed schedules, and speed constraints/limits. The trajectory predictions and associated advisories should be consistent with the vertical guidance when the vertical guidance function is engaged.

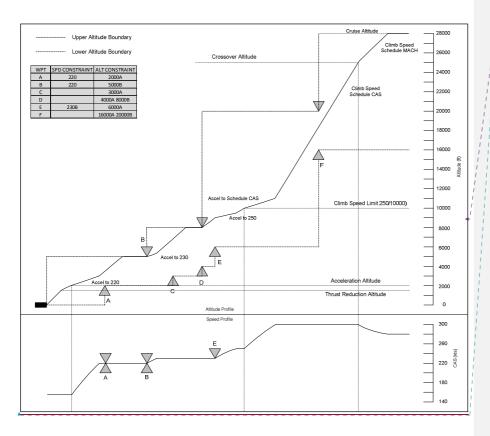
Refer to DO-236() and DO-283() for specific VNAV performance and operational requirements.

4.3.3.2.1.1 Takeoff Phase Predictions

The takeoff phase may be constructed based on a simple model or more complex first principle models using takeoff thrust, flap setting and other vertical flight plan parameters including derated takeoff off thrust, thrust reduction height/altitude and acceleration height/altitude. The takeoff model should support the overall accuracy requirements and system level advisories.

Refer to Climb Phase Predictions for an example of a typical takeoff segment.

4.3.3.2.1.2 Climb Phase Predictions


The climb phase is typically predicted based on climb thrust which may be a derated and/or noise abatement climb thrust and a speed schedule for optimized operations. When constraints are encountered as part of the vertical flight plan, these constraints take precedence over the optimal climb profile. Waypoint altitude constraints are referenced to baro altitude.

Formatted: Heading 6

4.0 FLIGHT MANAGEMENT FUNCTIONS

Predictions may assume a transition to STD pressure at the transition altitude. AT or BELOW and AT altitude constraints apply as an upper limit altitude before the associated waypoint. AT or ABOVE and AT altitude constraints apply as a lower limit altitude after the associated waypoint. Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as an upper and/or lower speed limit. AT or BELOW and AT waypoint speed constraints apply as an upper speed limit before the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a lower speed limit after the associated waypoint until climb mach is achieved or cruise altitude is captured. A series of identical "AT" speed constraints forms a constant speed segment in the climb speed profile. Altitude associated speed restrictions are referenced to calibrated airspeed and apply below the specified altitude.

Figure 4.3.3-2 depicts an example of a climb phase prediction.

Formatted: Indent: Left: 0.25"
Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

Figure 4.3.3-24.3.3-2 Climb Phase Prediction Example

2623 COMMENTARY

In this example, the predicted climb profile with the selected thrust limits and climb speeds meets all the ABOVE altitude constraints. However, factors such as aircraft characteristics and actual wind conditions may cause an ABOVE altitude constraint violation. If an ABOVE altitude constraint cannot be satisfied with the selected thrust limits and climb speeds, the crew should be informed of the situation prior to committing to the procedure so a different thrust/speed climb can be attempted. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of departure procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during a departure so the aircraft can perform a Continuous Climb Departure (CCD) for fuel/time efficient climb operation.

4.3.3.2.1.3 Cruise Phase Predictions

The cruise phase is typically predicted based on an optimal speed profile at a specified cruise altitude. When a step climb is active or the aircraft is in cruise below the cruise altitude, the system should predict a climb to cruise altitude assuming engagement of the vertical guidance function. Likewise, when a step descent is active or the aircraft is in cruise above the cruise altitude, the system should predict a descent to cruise altitude assuming engagement of the vertical guidance function. The system may provide for one or more preplanned and/or optimal cruise steps. Preplanned cruise steps may be a climb/descent at a specified waypoint or an optimal step where the system determines the optimal location and/or altitude to change cruise altitude. Similarly, the system may provide for a drift up cruise capability ("cruise/climb mode" in ARINC 660B) which allows the system to perform a drift up maneuver within a specified altitude block to better achieve optimal operation as fuel is burned off and aircraft weight decreases. When present, these preplanned maneuvers should be reflected in the cruise predictions.

The cruise speed is based on the selected cruise performance mode. When an active RTA exists in the flight plan, the cruise speed profile should reflect the speeds that will be flown in an attempt to achieve the RTA. Similar to preplanned cruise steps, the system may provide for one or more preplanned cruise speed or performance mode changes (e.g. constant mach segments). When present, these preplanned cruise speed changes should be reflected in the cruise predictions.

The system should provide an indication when a destination exists in the flight plan and predictions determine the cruise altitude is unachievable due to aircraft performance limitations and/or insufficient route distance.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2667 2668

4.3.3.2.1.4 Descent Phase Path Construction and Predictions

For the descent phase, the system should construct a reference descent path that vertical guidance can use as a target path. During the descent phase, tactical situations may divert the aircraft from the descent reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).

2674 2675 2676

2677

2678

4.3.3.2.1.4.1 Descent Phase Path Construction

2686

2687

2688

2689

2690

2691

2692

2693

The descent path should be constructed based on idle or near idle thrust and a speed schedule for optimized operations. When altitude constraints are encountered in the vertical flight plan and the idle path does not satisfy one or more constraints, the constraints take precedence over the optimal descent profile and a geometric descent path constructed. The resultant vertical trajectory should be flyable by the aircraft. When this is not possible, appropriate indications should be provided. Waypoint altitude constraints are referenced to baro altitude and apply at the associated waypoint. A series of altitude constraints form a geometric boundary that the descent path must stay within beyond the first constrained waypoint, excluding small excursion for idle path decelerations (see Figure 3). Similarly, waypoint speed constraints are referenced to calibrated airspeed and apply as an upper and/or lower speed limit. AT or BELOW and AT waypoint speed constraints apply as an upper speed limit after the associated waypoint. AT or ABOVE and AT waypoint speed constraints apply as a lower speed limit before the associated waypoint but do not apply to the descent mach and/or extend into the cruise phase. A series of identical AT speed constraints forms a constant speed segment in the descent speed profile. Altitude associated speed restrictions are referenced to calibrated airspeed and apply below the specified altitude. To honor these constraints, the vertical path must

2698

waypoint/altitude. When conflicts exist between different types of constraints or the aircraft performance cannot satisfy all constraints, the descent path construction should give priority to one constraint over another as follows:

anticipate the altitude/speed constraint prior to reaching the associated

2703

2704

1. Altitude constraints

2. Vertical angle (FPA) constraints Speed constraints

Time constraints (RTA)

2705 2706 2707

COMMENTARY

2709 2710 2711

2708

A conflict between an altitude constraint and an FPA constraint can only exist for an ABOVE altitude constraint. In the case of a BELOW constraint, a level segment should be inserted to satisfy both constraints (see Figure 4.3.3-9). An altitude constraint should never cause construction of the vertical path for the leg to be shallower than

4.0 FLIGHT MANAGEMENT FUNCTIONS

the FPA constraint. The above requirement does not preclude insertion of a vertical discontinuity as a means to ensure some measure of speed control and/or minimum deceleration capability.

Figure 4.3.3-3 depicts an example of a descent path construction.

2713

2714

2715

27162717

2718

27192720

2721

27222723

2724

2725

2726 2727

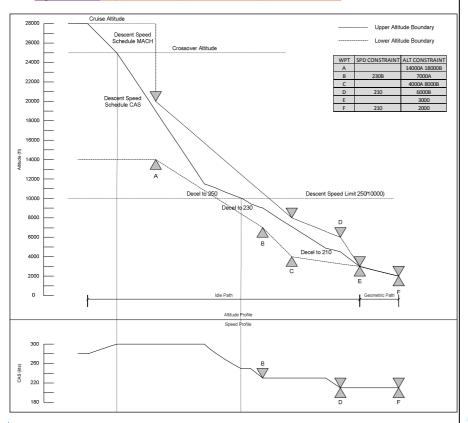


Figure 4.3.3-34.3.3-3 Descent Path Construction Example #1

COMMENTARY

In this example, the descent path fits within the constraint boundaries. There may be procedures or conditions where the descent path follows a boundary. In some cases, factors such as aircraft characteristics and meteorological conditions may dictate if a descent path is flyable (per the rules) for a given aircraft on a given

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

day. When a continuous, flyable descent path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew. It is assumed that procedure designers will take aircraft performance and meteorological variation into account in the design of arrival procedures. It is highly desirable to impose as few constraints and/or ATC interventions as is possible during an arrival so the aircraft can perform a Continuous Descent Operation (CDO) for fuel/time efficient descent operation.

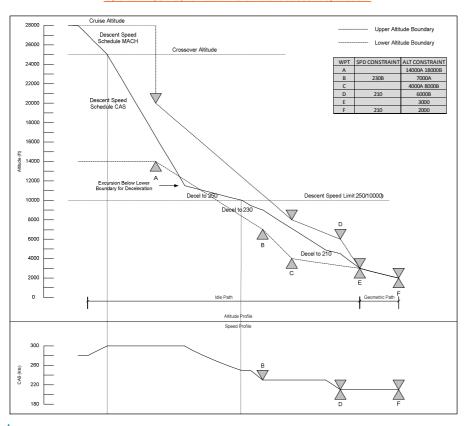


Figure 4.3.3-44.3.3-4 Descent Path Construction Example #2

COMMENTARY

In this example, a shallow idle deceleration segment is constructed to facilitate a short, efficient deceleration to the descent speed limit. Per DO-283(), to facilitate decelerations within curvilinear (idle)

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

paths, small excursions below the lower altitude boundary are allowed and expected when an idle path is constructed to satisfy a series of AT or BELOW, AT or ABOVE, and WINDOW constraints. Excursions below the lower altitude boundary for step-down or dive-and-drive descent path strategies (Figure 4.3.3-5) or above the upper altitude boundary for stay-high descent path strategies (Figure 4.3.3-6) are prohibited.

The descent path is typically constructed using a series of straight line segments which comply with the altitude boundary rules as described above. When the descent path is flown using the Vertical Guidance function, systems may cross above or below the altitude constraint value due to a vertical fly by transition. DO 236() defines the acceptable altitude deviation for a vertical fly by transition.

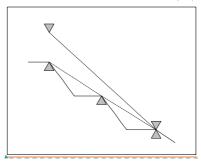


Figure 4.3.3-54.3.3-5 Step-Down Idle Descent (Prohibited)

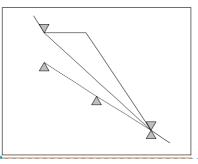


Figure 4.3.3-64.3.3-6 Stay-High Idle Descent (Prohibited)

The descent path is typically constructed using a series of straight line segments which comply with the altitude boundary rules as described above. When the descent path is flown using the Vertical Guidance function, systems may cross above or below the altitude constraint value due to a vertical fly-by transition. DO-236() defines the acceptable altitude deviation for a vertical fly-by transition.

Formatted: Don't keep with next

Field Code Changed

Formatted: Don't keep with next

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

When the crew initiates a vertical direct-to to a vertically constrained fix, the system should construct a geometric descent path from the aircraft position to the vertically constrained fix.

COMMENTARY

The above requirement is not intended to take precedence over normal geometric path construction rules. In other words, the system is not required to build an unflyable descent path nor one that violates a vertical angle constraint.

4.3.3.2.1.4.2 Descent Phase Predictions

During the descent phase situations, such as not being cleared to descend at the predicted top of descent, being instructed to descend prior to the top of descent, unforecasted meteorological conditions and flight plan edits can divert the aircraft from the desired reference path/speed profile. The system should provide vertical predictions (altitude, speed, ETA) that model how vertical guidance will attempt to capture and track the descent reference path. These predictions should be available for display and datalink in order to support situational awareness and advisories to the crew. When descent predictions determine that a constraint will be violated, appropriate indications should be given to the crew.

Formatted: List Paragraph, Indent: Left: 1.5", Right: 0.64"

4.0 FLIGHT MANAGEMENT FUNCTIONS

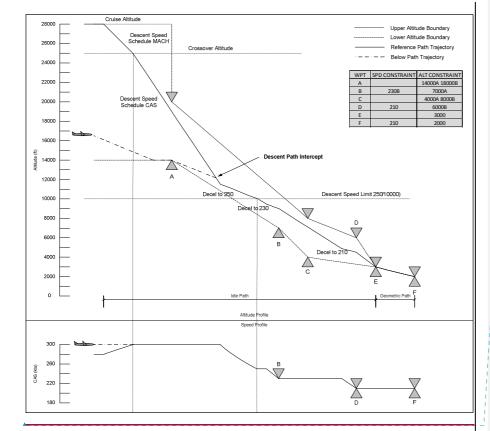


Figure 4.3.3-74.3.3-7 Below-Path Descent Prediction Example

COMMENTARY

In this descent scenario, predictions model the vertical guidance below-path descent control strategy. A level-off is performed at 14000 feet to honor the ABOVE altitude constraint at WPT A. Upon sequence of WPT A, a partial power descent resumes until intercept of the descent reference path.

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

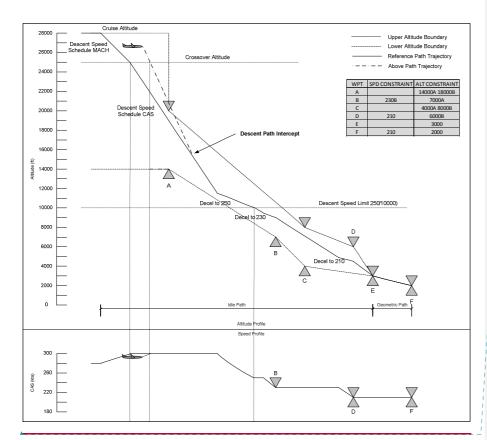


Figure 4.3.3-84.3.3-8 Above-Path Descent Prediction Example

COMMENTARY

In this descent scenario, predictions assume vertical guidance will attempt to recapture the descent reference path by descending steeper than the planned descent rate. The above-path descent predictions predict the aircraft will cross WPT A at 19000 feet and violate the 18000 BELOW constraint.

4.3.3.2.1.5 Approach Phase Path Construction and Predictions

Similar to descent phase, the system should construct an approach path for use by vertical guidance as a reference or target path. As with takeoff, the approach path may be constructed using a simple model or more complex

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

first principle models using idle thrust, aeroconfiguration setting, and other vertical flight plan parameters. The approach model should support the overall accuracy requirements and system level advisories.

During approach phase, tactical situations may divert the aircraft from the reference path, so the system should provide vertical predictions that model how vertical guidance will attempt to capture and track the reference path (altitude and speed).

The vertical approach path consists of two portions: -an intermediate initial approach pertion path followed by a final approach path. In the initial approach path, where the aircraft decelerates from a flaps-up target speed toward a configured approach landing speed. The initial approach path terminates upon reaching the start of the final approach path. until it reaches a final approach capture point followed by a The final approach pertion path which extends from the final approach capture point (intercept of final approach vertical angle) to the destination and is typically constructed at a constant landing configuration speed and flight path vertical angle.

The final approach path should be constructed based on the vertical angle coded on the destination runway, Missed Approach Decision Point (MAP), or Final End Point (FEP). In the case of a MAP beyond the ILanding Threshold pPoint (LTP), the system may compute the FEP and associated angle or may obtain the FEP and angle from navigation database source. Refer to ARINC 424 for additional details and non-precision approach codings. For the final approach or vertical angle leg, the system should not construct a vertical path shallower than the specified vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). A few typical final approach path geometries are illustrated in Figure 4.3.3-9 and Figure 4.3.3-10 below. A final approach path which ends at a FEP coded in the navigation database is illustrated in Figure 4.3.3-11 below.

4.0 FLIGHT MANAGEMENT FUNCTIONS

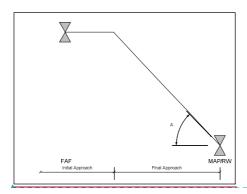


Figure 4.3.3-94.3.3-9 Typical Final Approach #1

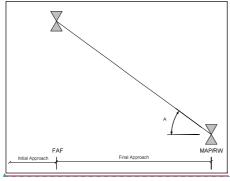


Figure 4.3.3-104-3.3-10 Typical Final Approach #2

Figure 4.3.3-11 4.3.3-11 MAP Beyond Landing Threshold Point

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: Caption, Left

2859

2853 2854

2855

2856 2857

2858

4.0 FLIGHT MANAGEMENT FUNCTIONS

 In the presence of vertical angle constraint, the initial approach path for the vertical angle leg should be constructed using the vertical angle. The system may construct a vertical path steeper than the specified vertical angle(s) in order to satisfy an ABOVE altitude constraint. The above statements are not intended to preclude temperature compensation of the altitude constraints and vertical angle(s). In the absence of a FPAvertical angle constraints, the intermediateinitial approach path may be constructed as a stepdown or "dive and drive" approach in accordance with VFR flight rules as shown in Figure 4.3.3-12Figure 4.3.3-12Figure 4.3.3-11. However, it is preferable the intermediateinitial approach path be constructed as a "Continuous Descent Approach" (CDA) path as shown in Figure 4.3.3-13Figure 4.3.3-13Figure 4.3.3-14Figure 4.3.3-14Figure 4.3.3-13. Als is a more stabilized and fuel efficient approach path and generally safer. It aligns with industry recommendations and trends. In either case, when a continuous, flyable approach path which satisfies all constraints cannot be constructed, the system should provide appropriate indications to the crew.

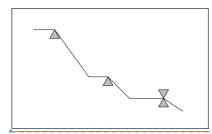


Figure 4.3.3-124.3.3-12 Step-Down Intermediate Initial Approach

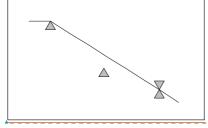


Figure 4.3.3-134.3.3-13 Continuous Descent Approach #1

Field Code Changed

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

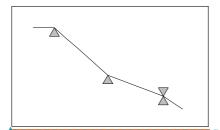


Figure 4.3.3-144.3.3-144.3.3-13 Continuous Descent Approach #2

<< Add Step Down Fixes as an optional feature (according to AC20-138D): Step down fixes are waypoints with an 'at or above' altitude constraint and are part of an

approach procedure defined in the navigation database. Step down fixes are used to avoid obstacles or to prevent the aircraft from descending prematurely in the approach phase. The pilot is not allowed to modify the altitude constraint at the step down fix.

4.3.3.2.1.6 Missed Approach Phase Prediction

The system may provide a missed approach prediction aligned with the lateral missed approach path. If a vertical trajectory is predicted it should be based on go around thrust limits and flap placard speeds and is predicted much like the climb profile. Typically, the prediction starts at the missed approach point or when the crew initiates the missed approach and terminates at an altitude constraint defined in the missed approach procedure. Any remaining descent path altitude and speed constraints are ignored.

COMMENTARY

Typically, the missed approach speed is limited by flap configuration. In the case where the aircraft is in a clean configuration, the speed target should not be released to the airport altitude speed restriction. It is recommended that the speed should be limited to a minimum clean speed or low altitude best hold speed.

4.3.3.2.2 Vertical Guidance

The Vertical Guidance function defines vertical guidance targets and, when in descent, reference parameters to be used by the autopilot and autothrottle to fly the vertical flight plan.

When vertical guidance is engaged, depending on the aircraft architecture, the vertical guidance function should request or select a control mode for the elevator and throttle and generate altitude, airspeed, thrust, vertical speed,

Field Code Changed

Formatted: Body Text, Indent: Left: 0", Right: 0"

4.0 FLIGHT MANAGEMENT FUNCTIONS

pitch targets, and/or load factors in accordance with the requested and selected control mode(s). An alternative design may provide vertical segment(s) and/or capture trajectory as part of vertical parameters.

Depending on the autopilot interface, these targets and parameters are used by control laws in either the FMS or the autopilot to generate pitch and thrust commands.

In addition, Vertical Guidance is responsible for automatically updating the phase of flight and providing vertical situational awareness in the form of vertical deviation and advisory messages.

When the autopilot interface is a target interface, the system should provide the requested elevator control mode to the autopilot and provide targets for the both the requested and selected (i.e. engaged) elevator control mode. With this interface, vertical guidance requests and targets are analogous to the crew mode and target selections on the AFCS Control Panel.

When the autopilot interface is a pitch command, the system should compute a pitch command in accordance with the selected internal control mode. With this interface, vertical guidance always computes a pitch command whether the internal control mode is speed on elevator, vertical speed, altitude hold, or (descent) path on elevator. When the autopilot interface is a pitch command, the system should also perform the mode transition and path capture of the vertical guidance altitude target.

The system should provide a requested autothrottle control mode along with an EPR/N1 command (if appropriate).

When a managed mode of vertical guidance is selected, the flight management system should provide commands of pitch, pitch rate, and thrust control to the parameters of target speeds, target thrusts, target altitudes, and target vertical speeds (or alternately may provide only the targets depending on the selected vertical mode and the flight management/flight control architecture of the particular aircraft). Vertical guidance should also provide mode commands for the flight control computer and thrust management functions as well as automatic flight phase switching. The vertical profile upon which the vertical guidance is based should be the trajectory prediction defined above.

FIne vertical guidance functions should provide for auto switching of the flight phase during a flight. This flight phase should be used as the basis for altitude, speed, and thrust target selection and should be made available to the flight control computerAFCS. At a minimum, the system should provide logic for the automatic transition between flight phases for of preflight, climb, cruise, and descent. The preflight flight phase should apply when the aircraft is on the ground. When in preflight, the system and should allow for access to and entry of all route and performance flight management initialization data. After liftoff, the flight phase should switch to climb and the climb phase should remain active until the aircraft reaches the top of climbacquires the initial cruise altitude, at which point the phase should switch to cruise. The flight phase should then switch from cruise to descent when the aircraft reaches the top of descent and the descent phase should remain active for the remainder of the flight.

4.0 FLIGHT MANAGEMENT FUNCTIONS

2967 COMMENTARY

The logic discussed above is general and applies to a minimum set of flight phases. In general, systems will provide more additional flight phases to facilitate specific functionality defined for a particular phase aspect of the aircraft's operation. Some of the additional phases which should be considered are Takeoff, Approach, Go-Around, and Done. The specific logic for the transition between phases is implementation dependent since the conditions are generally application specific and are a function of the flight control system modes, aircraft dynamics and performance characteristics and aircraft operations.

4.3.3.2.2.1 Climb Phase Operation

The system should provide for guidance to the selected performance mode speed schedule applied to the climb trajectory and should provide the appropriate speed target and thrust command (or target) required to achieve the associated trajectory. In addition, an altitude command (or target) for the next target altitude (level off) in the vertical trajectory should be provided. The target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude. The ETA and distance to the next flight plan altitude constraint should be displayed as advisory information. If the RTA performance mode is selected, then a time error advisory is also displayed. The top of climb point is displayed on the map display. The profiles are constrained by the altitude selected by the pilot on the AFCS controller Control Panel, cruise altitude, and waypoint altitude constraints.

4.3.3.2.2.2 Cruise Phase Operation

The system should provide for guidance to the selected performance speed mode applied to the cruise phase of the flight and should provide the appropriate speed target and altitude command (or target). The target altitude should be the cruise altitude or step altitude. The ETA and distance to the top of descent are displayed as advisory information. If the RTA performance mode is selected, then a time error is displayed. Entry of a higher or lower cruise altitude results in a step climb or step descent respectively, with guidance commands consistent with the selected operation.

The system should may also provide vertical guidance for a drift-up cruise climb mode when ATC has provided a block altitude clearance or when operating in a free flight environment with no altitude constraints.

4.3.3.2.2.3 Descent Phase Operation

The system should provide for guidance to the selected performance mode speed schedule applied to the descent trajectory and should provide, through the use of both a path and speed (airmass) mode of control, the appropriate speed target, thrust command (or target), pitch command, or vertical speed command (or target) required to achieve the associated trajectory. In addition, an altitude command (or target) for the next target altitude in the vertical trajectory should be provided. The target altitude should be a function of the flight plan altitude constraints and the crew selected (clearance) altitude.

4.0 FLIGHT MANAGEMENT FUNCTIONS

For the case of the economy performance mode, where the vertical trajectory is optimized resulting in a computed path (altitude and speed profile as a function of distance from the destination). When tracking the descent path, a pitch command (or target) or vertical speed command (or target) should be computed to allow capture and track of the reference descent path. Oeverspeed protection in the form of vertical mode reversion logic should be provided to enable guidance to switch from path control to speed control if conditions are such that both altitude path and speed cannot be maintained. Annunciation may also be provided prior to mode reversion for predicted overspeed or speed/altitude constraint violations.

Should-When the crew initiate-causes a transition to descent flight phase a descent before prior to reaching the planned <code>I_op_of_dD</code>escent point, the system should default to its early-below-path descent scenariocontrol strategy. The sSystems typically command a shallow rate of descent until the flight planreference descent path is intersected, at which time the originally planned descent profile is resumed.

The system should switch the speed target to the approach speed at a point that is either, constructed in the trajectory and displayed to the crew, or as a result of the crew selection of an approach configuration. Once targeted, the approach speed should be limited to the speed related to the current configuration of the aircraft, switching to the landing speed when landing configuration is selected.

Vertical deviation information based on the difference between the computed-verticalreference descent/approach_trajectory-path and the actual aircraft altitude should be provided throughout the descent/<a href="mailto:approach_approa

4.3.3.2.2.4 Selected Altitude Compliance

Since altitude clearances are difficult to pre-plan using flight plan altitude constraints, a crew selected altitude, usually provided by the flight controls panel, should be used as a tactical altitude limiter by the flight management function. The aircraft, under vertical guidance control, should not be allowed to ascend through the selected altitude during a climb, or descend through the selected altitude during a descent. During approach operations, this general rule may be suspended to allow the crew to pre-select the altitude clearance to arm a missed approach. The selected altitude may also be used to arm an automatic transition to descent or to enable step climbs and descents during cruise phase operations.

4.3.3.2.2.5 Altimeter Barometric Correction for Terminal Area Operations

Generally, altimeter barometric settings are utilized during terminal area operations to account for the local pressure deviation in the air data system, making the barometric altitude a more accurate ground reference. The vertical function should not generate a vertical deviation nor related path capture maneuver as a result of this barometric adjustment activity. Any discontinuity in the altitude reference created by this activity should be smoothly applied without violation of specified altitude constraints and limits.

Commented [BM(AU9]: Annunciation for Level-Changes and Speed Changes

4.0 FLIGHT MANAGEMENT FUNCTIONS

Moreover, the local altitude reference may be either Altimeter sub-scale setting to obtain elevation when on the ground (QNH) or atmospheric pressure at runway (QFE) based (sea level equals zero for QNH, runway elevation equals zero for QFE). Vertical guidance should accept an indication of which reference is being used and apply the appropriate adjustments.

4.3.3.2.2.6 Altitude Constraints

3b71

The Vertical Guidance function of the system should prevent the aircraft, when in takeoff or climb and under vertical guidance control, from ascending through the upper bound of a climb AT, AT or BELOW, or WINDOW altitude constraint. Likewise, it should prevent the aircraft, when in descent or approach and under vertical guidance control, from descending through the lower bound of a descent AT, AT or ABOVE, or WINDOW altitude constraint. Aside from altitude captures, it should be a basic philosophy that the Vertical Guidance function should never descend in takeoff or climb flight phase in order to satisfy an altitude constraint; likewise, it should never ascend in descent or approach in order to satisfy an altitude constraint.

Refer to 4.3.2.5.2 for the definition of climb and descent altitude constraints.

COMMENTARY

In takeoff or climb, upon engagement or insertion of a flight plan with an altitude constraint below the aircraft, the Vertical Guidance function may find the aircraft is in violation to (i.e. above) a subsequent BELOW climb altitude constraint. The Vertical Guidance behavior in this situation differs between systems. Some systems will prevent engagement of Vertical Guidance into an altitude constraint violation while others allow engagement into a violation. Some systems prevent engagement into a violation and also disengage when a violation occurs while the Vertical Guidance function is engaged. On those systems where Vertical Guidance can engage or be engaged in a violation condition, some will provide an indication and level-off to minimize the violation of the altitude constraint whereas others will provide an indication and maintain a climbing attitude. An analogous situation exists in descent for ABOVE altitude constraints.

When under vertical guidance control and in violation to an ABOVE constraint, the Vertical Guidance function should level-off to minimize the violation of the altitude constraint as the constraint may exist for obstacle clearance.

When below-path and under vertical guidance control and flying a lateral leg with a procedural vertical angle, the Vertical Guidance function should level-off as the vertical angle may exist for obstacle clearance.

Commented [GE10]: Need to make a final decision as a group on whether these should be requirements or recommendations?

4.0 FLIGHT MANAGEMENT FUNCTIONS

Refer to 4.3.3.2.1 for more details regarding use of altitude constraints in the descent path construction and trajectory predictions.

4.3.3.2.2.64.3.3.2.2.7 Speed and Altitude Restrictions

Speed and altitude restrictions encountered in the climb should be observed by the vertical function to prevent the aircraft from accelerating or ascending beyond those restriction values until the associated restriction has been passed. At this point the next restriction (if any) should become the limiting case. Restrictions encountered in descent should be handled similarly except that in the case of speed restrictions, sufficient deceleration distance must be provided in order to achieve the restrictive speed prior to passing the associated restriction. The system should supporthonor altitude-based speed limits such as airport speed limits (e.g. 250/10000) and ICAO limits for procedure legs. For airport speed limits and other limits which apply to a region or block of airspace, the aircraft airspeed should remain AT or BELOW the speed limit while the aircraft is below the specified altitude. For ICAO limits, the aircraft should remain AT or BELOW the speed limit while the aircraft is both flying the procedure leg and below the specified altitude.

In the case of descent AT and AT or BELOW restrictions, sufficient deceleration distance should be provided in order to cross the speed restriction at or below the restriction speed. Once the descent speed restriction has been sequenced, it should be latched such that the descent target speed does not exceed the restriction speed unless the crew deletes the latched speed restriction or the aircraft transitions back to climb flight phase.

Refer to 4.3.2.5.3 for the definition of climb and descent waypoint speed constraints and their applicability in various flight phases.

In general, the system should compute the target speed at any given point in the flight plan as the speed schedule limited to the lowest AT/BELOW of applicable speed restrictions. This target speed should always be limited to the speed envelope (e.g. VMO, MMO, stall, buffet, and placard limits) of the aircraft for the given or assumed aerodynamic configuration. The Vertical Guidance function of the system should accelerate or decelerate as necessary to capture and track the limited target speed.

COMMENTARY

Historically, all speed constraints in the navigation database and entered by the crew were treated as AT or BELOW speed constraints by the FMS. Indeed, most of the optimizations performed by the FMS were accomplished using speed schedules optimized for some criteria (e.g. fuel, time, cost, maximum angle/rate); the philosophy of the FMS was to reach the optimum speed with speed restrictions preventing it from doing so. DO-236() mandated support for an AT

Commented [BM(AU11]: Move to VFP

Vertical Flight Planning already has a bullet for Airport Speed Restrictions. Is that sufficient? I changed this to "honor" to convey that the guidance requirement is to honor the flight plan constraints. Does that address the comment?

4.0 FLIGHT MANAGEMENT FUNCTIONS

and AT or ABOVE speed constraint capability, and the ARINC 424 source now includes a speed descriptor field with each waypoint speed constraint. While DO-236() defines a minimal set of requirements, it does not provide guidance in terms of what takes precedence when an ABOVE speed constraint conflicts with the speed schedule and other speed constraints and limits. To ensure a measure of interoperability as this capability is incorporated into flight management systems, the following requirements and guidance are offered.

When in conflict, the system should always give priority to altitude-based speed limits over waypoint-based speed constraints.

COMMENTARY

Altitude-based limits are AT or BELOW speed limits which may be lower than a preceding AT or ABOVE climb waypoint speed constraints and/or subsequent AT or ABOVE descent waypoint speed constraint. In such cases, the altitude-based limit(s) should take priority. Airport speed limits are in place to ensure safety with slower moving VFR traffic while ICAO limits ensure aircraft remain within the designated airspace.

When in conflict, the system should give priority to BELOW speed constraints over ABOVE speed constraints.

COMMENTARY

In descent, a deceleration point should occur prior to an ABOVE speed constraint if necessary in order to ensure a safe, continuous deceleration to the landing speed. Moreover, altitude-based limits are BELOW speed constraints that are associated with airspace limitations and thus should take precedence.

The figures below illustrate various conflicts and the speed profiles that result given the rules in this section.

For the descent scenario illustrated in Figure 4.3.3-18Figure 4.3.3-18Figure 4.3.3-17, an alternative is to insert a speed discontinuity into the theoretical descent path (at AAA) and provide appropriate indications to the crew. This is deemed less preferable as it may lead to unrealistic deceleration assumptions which are only apparent once the ABOVE speed constraint is sequenced. Moreover, in the absence of special considerations, insertion of a speed discontinuity creates an inherent ETA error and may cause poor guidance behavior as the theoretical speed profile is often used as a reference for advisories and mode reversion logic.

4.0 FLIGHT MANAGEMENT FUNCTIONS

3195 3196

3197 3198

3199

Speed Profile

280

260

240

220

Altitude Profile

12000

6000

AAAA

Figure 4.3.3-154.3.3-14 250/10000 takes priority over 260A at AAA (climb)

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

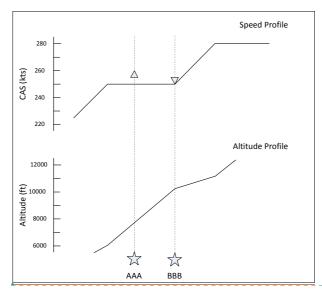


Figure 4.3.3-164.3.3-164.3.3-15 250B at BBB takes priority over 260A at AAA (climb)

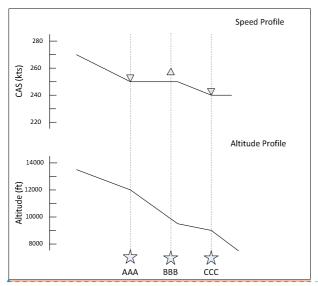


Figure 4.3.3-174.3.3-16 250B at AAA takes priority over 260A at BBB (descent)

Field Code Changed

Field Code Changed

3204 3205

3200 3201

3202 3203 Figure 4.3.3-184.3.3-184.3.3-17 Decel to 240B AT BBB takes priority over 270A at AAA (descent)

In general, in the absence of edits and tactical speed interventions, the system should produce a speed profile that is monotonic during a single phase of flight. For takeoff and climb, the speed target should continuously increase until reaching the climb speed schedule. For descent and approach, the speed target should continuously decrease from the descent speed schedule until reaching the landing speed. As such, the system should compute a climb speed schedule which is the maximum of the modebased climb speed and the highest ABOVE climb speed constraint; the system should compute a descent speed schedule which is the maximum of the mode-based descent speed and the highest ABOVE descent speed constraint. This limitation should be applied to both the speed schedule CAS and MACH (when applicable).

COMMENTARY

Without the MACH limitation, a higher ABOVE speed constraint will produce a lower crossover altitude at which point the ABOVE speed constraint will cease to apply. For this reason, it is suggested that the MACH equivalent of the ABOVE speed constraint evaluated at 25000 feet be used as the lower limit MACH value. This ensures that ABOVE speeds are maintained until at least 25000' for most aircraft.

Field Code Changed

4.0 FLIGHT MANAGEMENT FUNCTIONS

It is assumed that ABOVE speed constraints would not be applied when in performance modes designed to maximize climb rate or angle.

The system should not apply ABOVE speed constraints to hold speed schedules.

Refer to 4.3.3.2.1 for more details regarding use of speed restrictions in the descent path construction and trajectory predictions.

4.3.3.2.3 Estimated Time of Arrival (ETA)

The system should be capable of providing an ETA for every flight plan fix in the primary flight plan. For modifications to the active flight plan, each flight plan fix ETA should be available within 30 seconds (15 seconds typical) of the completion of entries required to perform the calculations.

The accuracy of the ETA should be within +/- 1 percent of the time of flight remaining to the fix, or +/- 10 seconds, whichever is greater, for the entered conditions.

COMMENTARY

It is understood that additional data is required (e.g. forecast wind and temperature) to improve the operational accuracy of the predicted ETA. Such entries can be made manually by the flight crew or uplinked via data communications.

4.3.3.2.34.3.3.2.4 Required Time of Arrival (RTA)RTA (Required Time of Arrival)

The system should make availableprovide a control mode such that the aircraft will be controlled to arrive at any specified waypoint in the primary flight plan at a specified arrival time (RTA). The system should support a resolution of 1 second for entry and display of the RTA time. Accuracy of this function should be ±30 seconds at enroute fixes and route and ±510 seconds at descent fixes in the terminal area, as defined in RTCA Task Force 3, Final Report on Free Flight Implementation. If the RTA is predicted to be not unachievable, an indication annunciation of this condition the problem to the crew should be provided to the crew. The situation condition should be continually reassessed until such time as the RTA is achievable. While on the ground, the system should compute the takeoff time window that allows an achievable time at the specified RTA waypoint. All RTA calculations should respect the speed envelope restrictions as well as all flight plan constraints. The RTA control band should be designed to limit throttle activity to a minimum.

4.0 FLIGHT MANAGEMENT FUNCTIONS

Theis RTA function should accommodate ATS data link consistent with industry standards (e.g. DO-258(), DO-350()) of RTA constraints consistent with RTCA DO-219, including constraint types AT, Before AT or BEFORE, and AT or AFTER., After, and Between.

Systems may provide RTA predictions showing of the earliest and latest arrival times for the candidate RTA waypoint and/or active RTA aircraft may arrive at a waypoint (an RTA window). Also, cC onsideration of fuel reserves in the prediction of RTA feasibility may be provided.

While in preflight, the system may compute a recommended takeoff time which allows an RTA to be achieved using the crew entered cost index or planned speed schedules. While in preflight, the system may also compute the earliest and latest takeoff times which allow takeoff time window that allows an RTA to be achieved an achievable time at the specified RTA waypoint.

4.3.3.2.5 Time of Arrival Control (TOAC)

COMMENTARY

As detailed in DO-236() and DO-283(), the TOAC function is a performance-based operation that invokes a time accuracy requirement for arriving at a specified RTA waypoint within a range of achievable ETAs in 95% of the attempts. The accuracy requirement is dependent upon current and accurate performance data inputs and uncertainty models. TOAC is intended to support/enable future advanced air traffic management (ATM) operations such as time-based trajectory operations (4DTBO) by providing a performance-based time management capability. The requirement for a performance-based time function that enhances predictability, similar in concept to performance requirements of RNP, is a new model upon which to enable future air traffic sequencing and flow management.

The equipment should provide a Time of Arrival function which supports a specified arrival time (RTA) at the RTA constrained fix within the range of achievable ETAs. The range of achievable ETAs at the specified fix is computed by the system based upon entered aircraft performance parameters, current and forecast environmental conditions, and uncertainty models.

The TOAC function should be operational in both enroute and descent phases of flight.

COMMENTARY

Additionally, it is expected that procedure designs will implement speed and altitude constraints (when required) that are compatible with a time-based system such as TOAC by not overly constraining the path. For example, a speed-constrained descent and a time-constrained descent may not be compatible except under specific conditions.

4.0 FLIGHT MANAGEMENT FUNCTIONS

The system should be capable of providing the range of achievable ETAs for at least one fix in the primary flight plan for display in the flight deck and communication to the traffic management facility. For fixes after an RTA constrained fix, the range of achievable ETAs should assume be based on the ETA at the RTA fix. the RTA will be achieved (when achievable).

When the RTA is selected from within the range of achievable ETAs computed by the system, the total time error (TTE), in the presence of the uncertainty model described in DO-283(), should be less than or equal to the required accuracy in 95 percent of the attempts.

The equipment should control to the accuracy requirement while also considering the adverse flight deck effects of large speed and thrust fluctuations.

COMMENTARY

It is expected that the essential information such as current and accurate wind and temperature forecasts are provided and used by the system such that the performance requirements for the TOAC function can be met.

DO-283() specifies the functional requirements of a TOAC function.

4.3.3.3 Three-Dimensional RNAV Approach

[Deleted by Supplement 5]

4.3.4 Performance Calculations Function

The performance function should use information from the flight plan and the performance data base (See Section 9.4) to generate performance related data for display on the MCDU.

4.3.4.1 Performance Modes

One performance mode that should be common to all flight phases is the economy speed mode which should calculate the associated speeds and speed schedules which minimize the total cost of operating the airplane on a given flight. This mode should use a Cost Index, which is the ratio of time-related costs (crew salaries, maintenance, etc.) to fuel cost.

4.0 FLIGHT MANAGEMENT FUNCTIONS

3355	This is expressed as:
3356	Time Cost
3357	Cost Index (CI) =
3358	Fuel Cost
3359 3360 3361 3362 3363	Typical Cost Index entries vary from zero to 999, with the minimum trip fuel cost occurring with the Cost Index set to zero. Cost Index values above zero result in increased trip speeds and varying aircraft vertical trajectories. At the proper Cost Index, the increased fuel cost will be offset by the reduced time cost.
3364	4.3.4.1.1 Climb Mode
3365	Speed modes supported may include:
3366 3367	 Economy CAS/Mach (based on Cost Index) – Lowest cost of operation
3368 3369	 Pilot-entered Computed Air SpeedCAS (CAS)/Mach – Manual selection (or pre-selection)
3370	 Maximum angle climb – Maximum climb rate with respect to distance
3371	 Maximum rate of climb – Maximum climb rate with respect to time
3372 3373	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3374	4.3.4.1.2 Cruise Mode
3375	Speed modes supported may include:
3376 3377	 Economy CAS or Mach (based on Cost Index) – Lowest cost of operation
3378	 Pilot-entered CAS or Mach – Manual selection (or pre-selection)
3379	 Maximum endurance – Maximum time endurance
3380	 Long Range Cruise – Maximum range
3381 3382	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3383	4.3.4.1.3 Step Climb and Step Descent (for changes in cruise flight level)
3384	4.3.4.1.4 <u>4.3.4.1.3</u> Descent Mode
3385	Speed modes supported may include:
3386	 Economy CAS/Mach (based on Cost Index) – Lowest cost of
3387	operation
3388	Pilot-entered CAS/Mach – Manual selection (or pre-selection)
3389	Maximum descent rate – Maximum descent rate with respect to time
3390 3391	 Required Time of Arrival (RTA) – Variable speed to meet a time constraint
3392 3393 3394 3395	A descent path should be computed based on the economy speed schedule, manually selected speed schedule and complying with waypoint speed/altitude constraints where the path is defined as the altitude and speed as a function of the distance from the destination. This path should be

4.0 FLIGHT MANAGEMENT FUNCTIONS

constructed such that the performance of the aircraft is optimized with respect to the cost index, assuming the aircraft will be allowed to follow the constructed path.

4.3.4.2 Maximum and Optimum Altitudes Calculation

The performance function should compute both optimum and maximum altitude for the aircraft/engine type, weight, atmospheric conditions, bleed air settings, and the other vertical flight planning parameters. The optimum altitude algorithm should compute the most cost effective operational altitude and the maximum altitude algorithm should compute the highest attainable altitude (up to maximum certified altitude) while satisfying maneuver margin and minimum climb rate(s) criterion allowing for the specified rate of climb margin. Optimum altitude should be limited by maximum altitude. Consideration should be given in the algorithm design to eliminate the sensitivity and therefore possible erratic behavior that can occur because of the flatness of the performance characteristics. Maximum altitude for engine out should also be computed.

4.3.4.3 Trip Altitude Calculations

The performance function should compute a recommended cruise altitude for a specified route. This altitude may be different from the optimum altitude in that for short trips the optimum altitude may not be achievable because of the trip distance. This algorithm searches for the altitude that satisfies the climb and descent while preserving a minimum cruise time specified by the crew or airline policy. Some designs may elect to integrate this computation as part of the optimum altitude algorithm. All the vertical flight planning parameters should be considered in this algorithm.

4.3.4.4 Alternate Destinations Calculation

The performance function should perform alternate destination calculations. The computations are eptienally-based on alternate destination flight plan routing, either on a direct route from current position to the alternate destination, or continuing to the current destination, followed by execution of a missed approach at the destination and then direct to the alternate destination. Distances, fuel, and ETA, and optionally best trip cruise altitude for selectable alternate destinations should be computed and available for display. Also computed for these alternate destinations are available holding times at the present position and current fuel state versus fuel required to alternates. Besides the alternate destination prediction, this function should provide for the retrieval of the airports nearest the aircraft at crew request.

4.3.4.5 Step Climb/Descent

The performance function should include a prediction of the optimum point(s) at which a step climb/descent maneuver may be initiated to provide for more cost_effective operation. This algorithm should consider all the vertical flight planning parameters as well as entered wind data. The time and distance to the optimum step point to the specified step altitude should be made available for display. Also, the percent savings penalty for the step climb or descent versus the current flight plan may be computed and displayed.

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.4.6 Cruise Climb

The performance function should may compute an optimum or drift-up cruise climb guidance parameters which tracks the optimum altitude for all-engine and engine-out conditions. This algorithm should take into account fuel burn (weight decrease) and the predicted wind altitude profile. Automatic mode transition to level cruise should occur when an altitude constraint is reached.

4.3.4.7 T/C, T/D, Intermediate T/D Advisories

The performance function should compute distances to the top of climb (T/C) and top of descent (T/D) points. This information is based on the stored trajectory prediction and the current state of the aircraft. Also, for the climb and descent phases, performance should compute the distance and ETA to the next altitude constraint. In descent, the distance and ETA is also computed for the next intermediate T/D (where the aircraft will continue its descent after a level off in the descent path caused by an altitude constraint). <<Add Deceleration Points and Intercept, S/C, etc)

4.3.4.8 Thrust Limit Data Calculations

The thrust limits for takeoff, climb, cruise, go around, and continuous modes of operation should be computed (if applicable for the installation) for the current atmospheric conditions and type of engine/aircraft and bleed settings. Moreover, derates for takeoff and climb thrust should be available for selection as well as selected temperature derates for takeoff thrust. The crew can manually select the thrust limit mode that is output as the current thrust limit or an auto mode can be selected that makes the choice based on logic between the flight control computer and the FMC.

COMMENTARY

In some designs, the thrust limit function is performed by a Thrust Control Computer (TCC). For these designs, the thrust limit computation in the FMC is only required for the purpose of trajectory predictions and support of other performance calculations.

4.3.4.9 Takeoff Reference Data

The performance function should provide for the entry of V1, VR, and V2 entry of V1, VR, and V2 takeoffor V- speeds for selected flap settings and runway, atmospheric, weight. and weight. and weight. and weight. conditions <a href="may be implemented for the purpose of selection and/or reasonableness checks. These entered or selected V--speeds should be <a href="may be made available for crew selection as output for display on the flight instruments. In addition, Flap/slat retraction takeoff configuration speeds should-may optionally be computed and displayed for reference.

4.3.4.10 Approach Reference Data

Landing configuration selection should be provided for each configuration appropriate for the operation of the specific aircraft. The crew should be allowed to select the desired approach configuration and the state of that selection should be made available for output to other systems. Selection of an approach configuration should also result in the computation of a landing speed based on a manually entered wind correction for the destination

4.0 FLIGHT MANAGEMENT FUNCTIONS

runway. In addition, approach configuration speeds should be computed and displayed for reference.

4.3.4.11 Reserve Fuel Calculation

When the system supports a default reserve fuel, the default The amount of fuel that can be specified as reserve fuel should be computed based on the estimated fuel burn for the active given flight plan, and the entered for measured total fuel quantity, and additional entered parameters such as assumed fuel flow percent error. This computation may be used as a default reserve fuel value. Manual entry of a reserve fuel quantity to override this computation should be provided and should override the default value (if any). The system should provide an indication to the crew when the predicted fuel at destination is below the reserve fuel.

4.3.4.12 Engine-Out Performance Calculation

Systems should provide engine-out performance predictions for the case of the loss of at least one engine. These predictions may include:

- · Climb at engine-out climb speed
- · Cruise at engine-out cruise speed
- · Driftdown to engine-out maximum altitude at driftdown speed
- · Use of maximum continuous thrust
- Two-engine-out predictions when applicable on three and four engine aircraft

4.3.4.13 Other Predictions

A number of other predictions and computed performance parameters can be provided by flight management systems. The following are a few of these optional functions:

4.3.4.13.1 Maximum Range Computation

Capability to compute the maximum range of the aircraft based on the entered/measured fuel quantity and the specified reserves should be provided. Both range to reserves and range to empty may be displayed as appropriate.

4.3.4.13.2 Maximum Endurance Computation

The maximum endurance time of the aircraft can be computed based on the entered/measured fuel quantity and the specified reserves. Both endurance time to reserves and time to empty can be provided.

4.3.4.13.3 Descent Energy Circles

For a selected fix point and associated altitude constraint, the distance required to descend from current altitude to the constraint altitude can be computed for both clean and full drag aircraft configurations. This data can be available for display on both the MCDU and as range circles centered on the specified fix on the navigation display.

4.3.5 Printer Functions

Capability may be provided to print various data such as data link messages, flight plans, and maintenance information.

	4.0 FLIGHT MANAGEMENT FUNCTIONS
4.3.6	AOC Function
	The system should provide for a data link interface with Airline Operations Communication. This interface should allow for uplink and crew controlled insertion of parameters that are enterable through the MCDU. This should include:
	 User preferred flight plans defined by the airline dispatch office
	 Wind and Temperature profiles entries at multiple altitudes (Section 4.3.2.5.1)
	 Waypoints where automatic position reports are required
	Performance initialization data
	Navigation data base amendments
	NOTAMs
	Likewise, this interface should provide for the downlink of <u>entered and</u> <u>computed</u> data <u>computed for display on the MCDU</u> , including flight plan requests and waypoint reports.
	Refer to Section 8.0 and ATTACHMENT 7 for interface details.
4.3.7	ATS Datalink
	Air Navigation Service Providers (ANSPs) are implementing, or have plans to implement, Air Traffic Services Datalink functions using existing and future data link systems whose requirements are defined according to the DO-264/ED-78 safety and performance requirements process. These include:
	 FANS 1/A+ Interoperability and Accommodation (DO-258 FANS Interoperability, DO-305 Accommodation in Domestic Airspace, and DO-306 Oceanic Safety and Performance Requirements)
	 Link 2000+ (subset of Baseline 1, DO-280/290/EUROCONTROL spec-0116)
	 Baseline 2 Rev A or B (DO-350 through DO-353/ED-229)
	COMMENTARY
	Rev A is planned for Europe and Rev B is planned for the US
	The FMS system should support these datalink systems. FANS 1/A was originally utilized primarily in trans-oceanic ATC environments (mandated in the North Atlantic) but is being expanded into US and European domestic airspace. Link 2000+ is the datalink system in Europe. Baseline 2 is applicable to domestic airspace in North America and will eventually replace Link 2000+ in domestic European airspace. Some aircraft avionics implementations have elected to support multiple ATS datalink systems (oceanic and domestic).

4.0 FLIGHT MANAGEMENT FUNCTIONS

All these ATS datalink systems provide the capability to establish a direct message exchange between the pilots and controllers, using datalink messages instead of voice and may provide other functions such as downlink of position reports and aircraft state and intent information.

The datalink communication architecture on the aircraft has evolved with variation in the allocation of the datalink subfunctions to physical units.

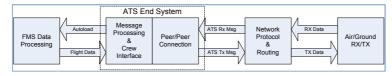


Figure 4.3.7-14-3.7-1 Functional Breakdown of ATS Datalink Airborne Architecture

Some system integrators have chosen to allocate the ATS end system into the FMS, some have chosen to allocate the ATS end system to a different unit and establish a significant data interface with the FMS to support the various datalink functions. Some implementations have a minimal interface with the FMS and depend on the crew to manually support the data needs of the datalink function. The following sections describe all the potential FMS requirements for the datalink functions without regard to the functional allocation of the specific airborne architecture.

It is imperative for stakeholders to understand the specific airborne architecture and which requirements are applicable in their particular architecture.

4.3.7.1 Future Air Navigation System 1/A (FANS 1/A)

The ATS applications used in FANS 1/A are Air Traffic Services Facilities Notification (AFN), Automatic Dependent Surveillance-contract (ADS-C), Controller Pilot Data Link Communication (CPDLC) as defined in DO-258/DO 290 and ARINC 622. These applications enable the following ATS services:

- Data Link Initiation (DLIC)
- ATC Communications Management (ACM)
- Clearance Request and Delivery (CRD)
- ATC Microphone Check (AMC)
- Pre-Departure Clearance
- Information Exchange and Reporting (IER)
- Position Reporting (PR)
- In Trail Procedure (ITP)

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.7.1.1 Air Traffic Services Facilities Notification (AFN)

The AFN logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use, along with the current position as required by the ground system. In response, the ground provides an application name and version number for each application that the ground supports. AFN enables and precedes the use of CPDLC, ADS-C and associated services.

To support auto transfer from one center to the next, the contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the next ATS ground system. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The AFN logon messages and sequence are detailed in DO-258 and ARINC 622.

For architecture with dual datalink systems (dual stack), the AFN function should support the auto transfer from one datalink system to another datalink system.

4.3.7.1.2 Controller/Pilot Data Link Communication (CPDLC)

The CPDLC specific messages supported should be those defined by <u>ICAO</u> <u>Doc 4444:</u> PANS_ATM <u>4444</u>-and DO-258()/ED-100() to enable the following services:

- ATC Communications Management (ACM)
- Clearance Request and Delivery (CRD)
- ATC Microphone Check (AMC)
- Pre-Departure Clearance
- Information Exchange and Reporting (IER)
- Position Reporting (PR)

These messages include some which are loadable and others which are display only. The FMS exchanges these messages with the communication management function which provides for the capability to receive and send these messages over the data link network. The FMS should provide the capability to interface with the network protocol and integrity checking as defined by ARINC 622, These data link messages will be identified with an Imbedded Message Identifier (IMI) of ATx and Message Format Identifier (MFI) of AA/BA to distinguish them from AOC messages and take priority over any other pending data link messages.

Interpretation of the message is based on the CPDLC application defined by RTCA DO-258/290 message element number. Upon receipt of an ATC uplink, the system should annunciate an alerting level message in the primary field of view and set an output discrete that will be used to control an aural warning. The system should also provide for a crew interface that details these messages for crew review along with the appropriate prompts for crew responses such as accept, reject, standby, or response data that may be required.

4.0 FLIGHT MANAGEMENT FUNCTIONS

As a minimum, the FMC functions should provide the capability to load (autoload) the following message types:

- · Cross position BEFORE, AT, or AFTER time
- Route Clearances

For all load functions, the changes should be displayed for review by the flight crew. The changes should be initiated and activated by the flight crew.

4.3.7.1.3 Automatic Dependent Surveillance - Contract (ADS-C)

This function should provide for uplink messages to establish the following:

- Periodic Contract
- On Demand Contract
- Event Contract
- Cancel Contract
- Cancel All Contracts

It should also provide Acknowledgment, Negative Acknowledgment, Noncompliance Notification, and data downlink messages as defined in RTCA DO-258.

This function should support at least 5 connections (four typically used for ATC and another for AOC). Each connection is associated with the ATC center address and may have any contract type.

The ADS-C contracts should be established automatically by the contract protocol defined in DO-258 without the need for crew intervention. Each contract specifies the data groups as well as the report interval and other report downlink triggers that are desired. Each contract request can specify the data groups to be transmitted:

- Basic ADS-C
- Flight ID
- Airframe ID
- Air vector
- Ground vector
- Aircraft Intent
- Projected profile
- MET data

All time stamps associated with data groups should be based on the UTC received from the GNSS. UTC based on aircraft clocks should only be used in case of GNSS outage or failure.

4.3.7.2 Link 2000+

The ATN applications used in Baseline 1 Link 2000+ are subsets of context management (CM), and Controller Pilot Data Link Communication (CPDLC), as defined in DO-280/290/EUROCONTROL spec-0116. These applications support the following ATS Services:

• Data Link Initiation (DLIC)

4.0 FLIGHT MANAGEMENT FUNCTIONS

- ATC Communications Management (ACM)
- Air Traffic Clearance (ACL)
- ATC Microphone Check (AMC)

4.3.7.2.1 Context Management (CM)

The Baseline 1 Link 2000+ CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.

To support auto transfer from one center to the next, the Link 2000+ CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in the Baseline 1 ATN Interoperability DO-280.

For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.

4.3.7.2.2 Controller Pilot Data Link Communication (CPDLC)

The Link 2000+ CPDLC is a subset of the ATN Baseline 1 CPDLC as defined in RTCA DO-280/290/ EUROCONTROL spec-0116. The ATN Baseline 1 Link 2000+ controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in DO-280/ 290/EUROCONTROL spec-0116. This function provides messages for the following:

- ATC Communication Management (ACM)
- Air Traffic Clearance (ACL)
- ATC Microphone Check (AMC)

The ATN Baseline 1 Link 2000+ CPDLC message elements encompass level assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot has the capability to respond to messages, request clearances and report information. An uplink "free text" capability is also provided to exchange information not conforming to defined formats and to append information explaining error reasons. A downlink "free text" capability is provided to append information explaining error reasons.

The Baseline 1 transfer of data authority function provides the capability for the current data authority (CDA) to designate another air traffic service unit

4.0 FLIGHT MANAGEMENT FUNCTIONS

(ATSU) as the next data authority (NDA). A CPDLC connection can be established by the NDA at a time before becoming the CDA. This capability is intended to prevent a loss of communication that would occur if the NDA were prevented from actually setting up a connection with an aircraft system element until it became the CDA.

4.3.7.3 Baseline 2 (B2)

 The ATS applications used in Baseline 2 are Context Management (CM), Automatic Dependent Surveillance-Contract (ADS-C) and Controller Pilot Data Link Communication (CPDLC) as defined in DO-350 through DO-353 and ED-229. These applications support the following ATM functions:

- Data Link Initiation (DLIC)
- ATC Communications Management (ACM)
- Clearance Request and Delivery (CRD)
- ATC Microphone Check (AMC)
- Departure Clearance (DCL)
- Data Link Taxi (D-TAXI)
- In Trail Procedure (ITP)
- Advanced Interval Management (A-IM)
- Oceanic Clearance Delivery (OCL)
- Information Exchange and Reporting (IER)
- Position Reporting (PR)
- 4-Dimensional Trajectory Data Link (4DTRAD)
- Dynamic Required Navigation Performance (DRNP)

4.3.7.3.1 Context Management (CM)

The CM logon function can only be aircraft initiated. The aircraft system uses the logon function to provide an application name, address, and version number for each application that the aircraft wishes to use that can be ground initiated, along with the Origin and Destination airports as required by the ground system. In response, the ground provides an application name and version number for each ground-only initiated requested application.

To support auto transfer from one center to the next, CM contact function provides a method for the ATS ground system to request the aircraft system to initiate the logon function with the ATS ground system indicated in the CM contact. The ATS ground system initiates this function with a contact request specifying the ATS ground system CM application address with which to logon. The aircraft initiates a logon and provides the information indicating whether or not the requested contact was successful. The Context Management logon messages and sequence are detailed in DO-350 and ED-229.

For architecture with dual datalink systems (dual stack), the CM function should support the auto transfer from one datalink system to another datalink system.

4.0 FLIGHT MANAGEMENT FUNCTIONS

3788	
3789	4.3.7.3.2 Controller Pilot Data Link Communication (CPDLC)
3790 3791 3792 3793	The ATN Baseline 2 controller-pilot message exchange function defines a method for a controller and pilot to exchange information via data link as detailed in DO-350 and ED-229. This function provides messages for the following:
3794 3795 3796 3797 3798 3799 3800 3801 3802	 General information exchange Clearance delivery, request, and response Departure Clearance Taxi Instructions Separation Assurance Route modification Advanced Interval Management 4D trajectory based operation Dynamic RNP
3803 3804 3805 3806 3807	The aircraft system shall-should allow the flight crew to view the message with no more than a single action and allow the flight crew to access the list/queue of unread messages with no more than a single action. The aircraft system should display the messages on a display in the primary field of view.
3808 3809 3810 3811	The aircraft data link system shall should provide the flight crew with the capability to load designated CPDLC uplink messages into the FMS to avoid hazards associated with human entry errors and/or increased workload. The following clearance messages are prone to these hazards:
3812 3813 3814 3815 3816 3817	 A clearance that will require the creation, in the resulting flight plan, of more than one waypoint unless the route is described by a procedure name that can be loaded from the navigation database, A clearance that will require the creation, in the resulting flight plan, of one waypoint specified by place-bearing-distance or latitude/longitude with a resolution smaller than whole degrees.
3818 3819 3820 3821	The aircraft data link system will provide the flight crew with assistance to create CPDLC downlink messages to avoid any safety implications (i.e., human entry errors and/or significant increased workload). The following downlink messages are prone to these hazards:
3822 3823 3824 3825	 request messages which contain more than one waypoint report messages of the present aircraft position or containing one (or more) waypoint(s) from the FMS active flight plan.
3826	4.3.7.3.3 Automatic Dependent Surveillance (ADS-C)
3827 3828 3829 3830	The ADS-C application provides automatic reports from an aircraft system to an ATSU as detailed in DO-350. The ATSU is capable of requesting the aircraft system to provide the ADS-C reports to the ATSU system in three ways:

on demand on a periodic basis

3831 3832

3833

3834

3835

3836

3837

3838

3839

3840

3841 3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866 3867

3868

3869

3870

3871 3872 3873

3874

3875

3876

4.0 FLIGHT MANAGEMENT FUNCTIONS

· when triggered by an event

Only one contract of a given type is permitted at one time per ATSU. When the ATSU sends a contract request to an aircraft system for a periodic or event contract, and either of these two contracts already exists with that aircraft, then the new contract will override the previous contract for that type. Acceptance of an event or periodic contract request implicitly cancels an existing respective event or periodic contract. Since the demand contract is satisfied by sending a single report, any number of demand contracts may be sequentially established with a given aircraft. The ATSU is capable to cancel either a single contract or all contracts in operation that it has established with an aircraft. The ATSU specifies either which contract(s) to cancel by identifying the contract type(s), or specifying to cancel all contracts. The aircraft system acknowledges the cancellation and ceases sending the ADS-C reports for the cancelled contract(s). The aircraft system is capable of providing ADS-C reports to support contract requests. The ADS-C reports content and the conditions under which the report is sent vary depending on the type of contract request and the conditions specified in the request. The aircraft system is capable of supporting contract requests with at least five ground systems simultaneously. In addition, when in emergency mode, the aircraft system provides an emergency/urgency indication as part of each downlink ADS-C messages including the ADS-C report.

Each contract request can specify the data groups to be transmitted:

- Basic ADS-C
- air vector
- · ground vector
- · projected profile
- MET data
- RTA status data
- · extended projected profile
- planned final approach speed
- RNP status

COMMENTARY

The predicted altitudes in ADS reports should be the level at which the aircraft is predicted to sequence the point. When the aircraft is off the vertical reference path this altitude may be different than the predicted reference path altitude.

4.3.8 Airport Surface Guidance

[This section dDeleted by Supplement 5].

4.3.9 Terrain and Obstacle Data

[This section dDeleted by Supplement 5].

4.0 FLIGHT MANAGEMENT FUNCTIONS

38//	4.3.10 Electronic Map Interfaces
3878	4.3.8.14.3.10.1Navigation Display Interface
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888	The system should provide for support an interface with a Navigation Display (ND) in order to provide an Electronic Flight Instrument System (EFIS or EIS) for the purpose of lateral situational awareness (ie.eg. aircraft position, lateral routetrajectory, nearby navaids, etc). Based on the architecture, the FMCF may provide data for use by an external symbol generator or may provide a series of drawing commands. The EFIS ND interface is detailed in Section 7.0; the CDS interface is in ARINC 661 supporting navigation data display described in this characteristic. The standard interface between the EFIS and the flight management function, detailing the interface data and formats, etc., may be found in Section 7 of this Characteristic.
3889 3890 3891	In addition to the map background data, the system should supply a number of other data items that are shown on the navigation displays. These may include:
3892 3893	 Wind (either cross wind and headwind components or magnitude and bearing)
3894	 Time and distance to go to the next waypoint
3895	Ground speed
3896	 Vertical deviation when guiding to the descent path
3897	 Trend vector showing current rate and direction of turn
3898 3899 3900	Independent displays should be provided for the pilot and copilot by each of the two Flight Management Computers-Functions (FMCFMF). Thus, each pilot may select different map ranges, modes, or options.
3901	4.3.10.2 Vertical Situation Display Interface
3902 3903 3904 3905 3906 3907	The system may support an interface with a Vertical Situation Display (VSD) in order to provide vertical situational awareness (e.g. aircraft position, AFCS Control Panel Altitude, altitude constraints, descent reference path, vertical trajectory predictions, terrain, etc). Based on the architecture, the FMF may provide data for use by an external symbol generator or may provide a series of drawing commands. The CDS interface is in ARINC 661.
3908 3909 3910	In addition to the map background data, the system should supply a number of other data items that are shown on the navigation displays. These may include:
3911	 Time to go to the next waypoint
3912	 Vertical speed
3913	 Vertical deviation when guiding to the descent path
3914	 Trend vector showing current flight path angle
3915 3916 3917	Independent displays should be provided for the pilot and copilot by each of the two Flight Management Functions (FMF). Thus, each pilot may select different map ranges, modes, or options.
3918	

Commented [BM(AU12]: Add VSD

4.0 FLIGHT MANAGEMENT FUNCTIONS

4.3.94.3.11 CMU Interface

 The system should provide for an interface with a CMU for the purpose of supporting all data link functionality described in this characteristic. The standard interface between the CMU and the flight management function, detailing the interface data and formats, may be found in Section 8.0 of this characteristic. Message formats for AOC communications are defined in ATTACHMENT 7.

4.3.104.3.12 Predictive Receiver Autonomous Integrity Monitoring (RAIM)

Optional capability may be provided for the FMS to transmit the selected destination latitude, longitude, and ETA to the GNSS when a flight plan has been activated 4.3.12 Predictive Receiver Autonomous Integrity and predicted. The purpose of this capability is for the prediction of the availability of GNSS satellite coverage for the approach phase of the flight. The GNSS should respond to whether adequate satellite coverage is anticipated. If not, the system should immediately alert the crew. Interface requirements for this capability are defined in ARINC Characteristic 743A, Appendix C.

4.3.13 Precision-Like Approach Guidance

With the advent of advanced navigation sensors and airborne systems, two methods have been developed that allow non-precision approaches to be flown like an ILS, MLS, or GLS precision approach: LP/LPV Approaches and FMS Landing System (FLS)

LP/LPV Approaches are analogous to GLS approaches. Both LP/LPV and GLS are satellite-based operations using an augmented GNSS solution. In a GLS approach, a ground station transmits both (a) corrections to a GNSS signal, and (b) a Final Approach Segment (FAS) Data Block which defines the localizer and glideslope beams. When tuned to the GLS channel number, a receiver onboard the aircraft receives those signals and computes ILS look-alike deviations for use by the autoflight and display systems. In an LP/LPV approach, a receiver onboard the aircraft receives corrections to the GNSS signal from a satellite-based system (SBAS) rather than a ground-based system (GBAS); it typically receives the FAS Data Block from the onboard Flight Management System.

For any non-precision approach, some Flight Management Systems support an FLS guidance mode where the onboard FMS navigation solution may be used to provide the autoflight and display systems with ILS look-alike deviations.

4.3.13.1 Approach Navigation Data Base ExchangeLP/LPV Approach Guidance

On some installations, the system supports LP/LPV approach capability when used in conjunction with an ARINC 743B GNSS Landing System Sensor Unit (GLSSU) (RTCA DO-229 Delta-4 SBAS receiver) or an ARINC 755 Multi-Mode Receiver (MMR) supporting the GLS function. The GLSSU (or MMR) provides the lateral and vertical deviations (ILS look-alike) and guidance during the final approach segment.

4.0 FLIGHT MANAGEMENT FUNCTIONS

On those installations, upon crew selection of the desired LP/LPV approach, the system should extract the Final Approach Segment (FAS) data block from its navigation database and transmit it to the GLSSU/MMR. The protocol to exchange the FAS data block is described in ARINC 743B Appendix D and ARINC755 Appendix A. The Final Approach Segment (FAS) data block includes a 32-bit Cyclic Redundancy Check (CRC) value ensuring the integrity of the data from the time of the original packet generation.

Upon crew activation of a new approach where the previously selected Final Approach Segment is no longer applicable, the system should invalidate the previously sent Final Approach Segment Data Message (FASDM).

One possible implementation of this function provides for the FMC to transmit to the GNSS landing function the final approach path data packet as extracted from the FMC navigation data base when the approach has been selected and the GNSS landing function has been armed for the approach. The final approach data packet would include a 32-bit Cyclic Redundancy Check (CRC) value to ensure the integrity of the packet that was preserved from the time of the original packet generation. Specific recommendations will be provided in a future revision to this document.

4.3.13.2 FMS Landing System (FLS)

 The system may support a virtual ILS guidance capability which can be used to fly a non-precision final approach segment. This capability is referred to as FMS Landing System (FLS).

When an FLS capability is provided and the crew has selected a non-precision approach, the system should provide a means for the crew to select or de-select FLS guidance for the final approach. When FLS is selected and lateral guidance is not already being provided by a ground-based localizer (if allowed), the system should compute a virtual localizer path. When FLS is selected, the system should compute a virtual glideslope path. For the virtual glideslope path, the anchor point should be located such that the aircraft can maintain a constant vertical angle to the landing threshold point (LTP), even in cases where the MAP is not located at the runway or there is a curved lateral path to the runway. When FLS guidance is selected, the system should interface to the autoflight and/or display systems to allow the virtual localizer and/or glideslope to be flown. When the system cannot support FLS guidance for the selected non-precision approach, the system should prohibit selection of FLS guidance and/or provide an indication to the crew.

COMMENTARY

FLS guidance must comply with the Temperature Compensation Requirements in Section 4.3.2.5.4 4.3.3.2.2.8.

4034

4.0 FLIGHT MANAGEMENT FUNCTIONS

4009	4.3.114.3.14 Integrity Monitoring and Alerting
4010	4.3.11.1 <u>4.3.14.1</u> Sensor Status
4011 4012 4013	Sensor warning inputs will be implemented as specified in ARINC Specification 429, Section 2.1, in that validity status is contained within the digital word format.
4014 4015	In all cases of sensor input failure, suitable sensor failure warning and degraded status annunciation should be provided.
4016	4.3.11.24.3.14.2 System Status Alert
4017 4018 4019 4020 4021 4022	Any change of status that results in reduced system operational capability or availability should be annunciated to the pilot on, or adjacent to, primary flight instruments. Additional data for use in diagnosing the reason for the change will be of value if it can be displayed on the MCDU or output to an onboard printer of data collection system (e.g., through the data loader interface). Means should be provided to cancel the alert.
4023	COMMENTARY
4024 4025 4026 4027 4028 4029	The system status alert is designed only to attract the attention of the pilot to the fact that something has happened either within the system or to one of the sensors that has degraded or will degrade the operational viability of the system. It will be necessary for the pilot to look for further signs to determine the actual problem and whether or not he can correct it.
4030 4031 4032 4033	System integrity monitoring and failure warning discrete outputs are described in Section 5.3 of this Characteristic. All other such alerts and warnings are included in the transmitted digital word as specified in ARINC Specification 429, Section 2.1.

4.0 FLIGHT MANAGEMENT FUNCTIONS

4035	4.3.11.34.3.14.3 Self-Test
4036 4037 4038 4039 4040	The FMC should be designed to perform automatic self-tests of its internal operation, and reasonableness tests on input data during normal operation. The FMC will generate digital output buses which will include malfunction codes to indicate the FMC's assessment of its health, and the status of its interfaces.
4041	4.3.11.44.3.14.4 Failure Response
4042 4043 4044 4045 4046	The system should monitor its own health and processing for integrity. When an error is detected, the system should record the failure in a nonvolatile BITE log and attempt to recover from or correct the error if possible. If an attempted fault recovery is unsuccessful, the system should prevent further processing in the affected partition.
4047	COMMENTARY
4048 4049 4050	The airlines desire a high degree of fault tolerance in the FMS. System recovery logic for intermittent faults should be designed to minimize visible flight deck effects and loss of system availability.
4051	4.4 Training Simulator Support Functions
4052 4053	FMS requirements for simulator support functions are defined in ARINC Report 610B().
4054	

5.0 STANDARD INTERFACES

4055	5.0 ST	ANDARD INTERFACES
4056	5.1 FN	IC Digital Data Input Ports
4057 4058 4059 4060 4061		This section describes the digital interfaces to the FMC. It is unlikely that all of these inputs will be employed in a given installation. Those not used in a particular aircraft type need not be implemented in the FMC. However, hardware, software, and computer cycle time capacity should be available to allow all of them to be activated when needed.
4062		COMMENTARY
4063 4064 4065		Data signaling for inputs and outputs to the FMC should be in the ARINC 429 low-speed rates, except where otherwise specified. The data signals are defined in Attachment 4 of this document.
4066 4067 4068		Providing for FMC interchangeability across different aircraft types in a user's fleet may generate the need for the computer to offer more input capacity than needed on any one of those types.
4069	5.1.1	VOR Input Ports
4070 4071		Two ARINC 429 input ports are provided to receive data from dual ARINC 711 VOR receivers.
4072	5.1.2	DME Input Ports
4073 4074		Two ARINC 429 input ports are provided to receive data from dual ARINC 709 DME interrogators.
4075	5.1.3	ILS/MMR Input Port
4076 4077		One ARINC 429 input port will receive data from an ARINC 710 ILS receiver or an ARINC 755 Multi-Mode Landing System Receiver (MMR).
4078		COMMENTARY
4079 4080		These ports are used to support LP/LPV approaches when interfacing to an ARINC 755 MMR
4081		
4082	5.1.4	Air Data Input Ports
4083 4084		Two ARINC 429 input ports will receive data from dual ARINC 706 Air Data Systems or ARINC 738 Air Data Inertial Reference Unit (ADIRU).
4085	5.1.5	IRS/AHRS Input Ports
4086 4087 4088		Three ARINC 429 input ports will receive data from ARINC 704 IRS, ARINC 705 AHRS or ARINC 738 ADIRU systems. These are ARINC 429 high-speed inputs.
4089	5.1.6	GNSS Input Ports
4090 4091 4092 4093 4094		Two ARINC 429 input ports should receive data from an ARINC 743A GNSS Sensor. These may be ARINC 429 high-speed or low-speed inputs. The ARINC 743A GNSS Sensor is capable of providing ARINC 429 data in high-speed or low-speed format.

1

5.0 STANDARD INTERFACES

4095	COMMENTARY
4096 4097	These ports are used to support LP/LPV approaches when interfacing to an ARINC 743B GLSSU or an ARINC 755 MMR
4098	5.1.7 Flight Control System Input Ports
4099 4100	One ARINC 429 input port will receive data from an ARINC 701 Flight Control System glare shield controller.
4101	5.1.8 MCDU Input Ports
4102 4103 4104	Two ARINC 429 input ports are provided to receive data from one or two MCDUs. One of these ports is designated the "on-side" port and the other is designated the "off-side" port (see Attachment 3 of this document).
4105	5.1.9 Data Loader Input Ports (ARINC 615)
4106 4107 4108 4109 4110	One ARINC 429 input port is dedicated to receive data to update bulk storage integral to the FMC. This port is intended for an interface with a loading device of the type described in ARINC Report 615. The characteristics of the digital data transmission on this bus are defined to the extent necessary in that document.
4111	5.1.10 Data Link Input Ports
4112 4113	The FMC should provide two ARINC 429 high-speed input ports to receive data from up to two ARINC 758 CMUs.
4114 4115 4116	The FMC should provide two ARINC 429 low-speed input ports to receive data from up to two ARINC 724B ACARS Management Units or to support existing ACARS functionality integrated into the ARINC 758 CMU.
4117	COMMENTARY
4118 4119	Dual ACARS low-speed inputs can be accommodated by using a software selectable speed input for at least one of the CMU inputs.
4120	5.1.11 Intersystem Data Input Port
4121 4122	One ARINC 429 input port provides the intersystem comparison data received from a second FMC.
4123	COMMENTARY
4124 4125	As an alternative to ARINC 429, a faster intersystem data bus may be necessary. Refer also to Sections 5.2.1 and 5.4.
4126	5.1.12 Propulsion/Configuration Data Input Ports
4127 4128	Six ARINC 429 input ports are provided for engine and fuel flow and quantity parameters and data received from the Thrust Control Computer (TCC).
4129	COMMENTARY
4130 4131 4132 4133	It is intended that four of these ports should be assigned for receiving individual engine and fuel flow data from up to four engines or fuel systems. The remaining two ports would normally receive other data such as thrust limit, fuel quantity, and TCC data.

4134

5.1.13 Electronic Flight Instrument System Input Ports

5.0 STANDARD INTERFACES

4135 4136 4137 4138	Two ARINC 429 input ports are provided for data from an Electronic Flight Instrument system. This interface may provide interface capability to the Cursor Control Device (CCD). This capability may be provided by a separate input as defined in Section 5.1.19.
4139	5.1.14 Printer
4140 4141	One ARINC 429 input port is provided for data from an ARINC 740 or ARINC 744 airborne printer.
4142	5.1.15 Digital Clock Input
4143 4144 4145 4146	One ARINC 429 input port is provided for data from a digital clock. The clock input may be provided from a GNSS source, in which case the GNSS input is utilized per Section 5.1.6. In this case a dedicated clock input port is not required.
4147	5.1.16 Maintenance Input
4148 4149	One ARINC 429 low-speed input port is provided for interface to an ARINC 604 or 624 maintenance system.
4150	5.1.17 WBS Input
4151 4152	One ARINC 429 input port is reserved for input of data from an ARINC 737 On-Board Weight and Balance System (WBS).
4153	5.1.18 Simulator Input
4154 4155 4156	A serial digital input is required to support ARINC 610B simulator functions. As a manufacturer option, this input may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.
4157	5.1.19 Pointing Device
4158 4159	Two high-speed ARINC 429 input ports are reserved for input from dual cockpit pointing devices.
4160	COMMENTARY
4161 4162 4163 4164	These ports are retained for compatibility with unknown systems should they exist. It is expected that all future systems will receive graphical user interface inputs via an ARINC 661 CDS interface.
4165	5.1.20 ASAS Input
4166 4167	One ARINC 429 high-speed port is reserved for input of data from an Aircraft Separation Assurance System (ASAS) system.
4168	5.1.21 Reserved Ports for Growth Inputs
4169 4170	Four ARINC 429 input ports are reserved. These ports should be software selectable as ARINC 429 high-speed or low-speed inputs.
4171	5.2 FMC Digital Data Outputs
4172 4173	Separate buffered ARINC 429 data output ports are provided to drive the MCDUs and other subsystems requiring FMC data.

Commented [GE13]: Keep?

Commented [BM(AU14]: Add comment on current outlook

5.0 STANDARD INTERFACES

4174	5.2.1	FMC Intersystem Output
4175 4176 4177		The FMC should provide an output bus which can be used for intersystem communication from one FMC to another. Section 5.4 of this document provides guidance on intersystem communications.
4178		COMMENTARY
4179 4180 4181 4182		It may be necessary to exchange data at higher data rates than possible on an ARINC 429 data bus. In these cases, an alternative data bus may be used. Any alternative data bus should meet the same EMI requirements of ARINC 429.
4183	5.2.2	General Data Output
4184 4185 4186 4187 4188		Two ARINC 429 outputs provide data to flight instruments, to radio receiver or frequency management unit for tuning, to the Thrust Control Computer System, Flight Control Computer System, and other users. They may also provide initialization data to the IRS. Optionally , they may include the FAS data block to an ARINC 743B GLSSU or ARINC 755 MMR.
4189		COMMENTARY
4190 4191		The amount of data to be carried may require the use of ARINC 429 high-speed buses.
4192	5.2.3	Primary Display Data Output
4193 4194		Two ARINC 429 high-speed outputs are dedicated to supplying data for the Electronic Flight Instrument systems.
4195		COMMENTARY
4196 4197 4198 4199		The specialized design of the FMC/EFI interface makes these outputs unsuitable for supplying other displays such as digital electromechanical instruments. The general data outputs should be used for these purposes. See Section 7.0 of this document.
4200	5.2.4	MCDU Output Ports
4201 4202		Two ARINC 429 outputs provide the means for the FMC to supply data to the MCDUs for the system.
4203	5.2.5	Data Loader Output
4204 4205		One ARINC 429 output is provided for interface to an ARINC 615 data loader.
4206	5.2.6	Data Link Output Ports
4207 4208		One ARINC 429 high-speed output is provided for connection to an ARINC 758 CMU.
4209		One ARINC 429 low-speed output is provided for connection to an ARINC
4210 4211		724B ACARS Management Unit, or to support existing ACARS functionality integrated into the ARINC 758 CMU.
4210	5.2.7	724B ACARS Management Unit, or to support existing ACARS functionality

5.0 STANDARD INTERFACES

4215	5.2.8	Printer
4216 4217		One ARINC 429 high-speed output is reserved for the output of data to an ARINC 740 or ARINC 744 printer.
4218	5.2.9	Onboard Maintenance
4219 4220		One ARINC 429 output is reserved for the output of data to an ARINC 604 or 624 onboard maintenance system.
4221	5.2.10	Programmable Data Output
4222 4223		One ARINC 429 high-speed output is provided to support flight test data collection.
4224	5.2.11	Simulator
4225 4226 4227		A serial digital output is required to support ARINC 610B simulator functions. As a manufacturer option, this output may be shared with other interfaces not requiring simultaneous use, such as maintenance or data loader inputs.
4228	5.2.12	Aircraft State and Intent Path Output (Trajectory Bus)
4229 4230 4231 4232 4233 4234 4235 4236 4237		The FMC should include an ARINC 429 high-speed bus to provide Position Velocity Time (PVT) and intent data from the FMC. This data may be used for surveillance applications such as ADS-B, Terrain Awareness and Warning System (TAWS), Terrain/Obstacle avoidance, and other situational awareness systems. The interface definition is comprised of present aircraft state data that is broadcast at a half second (2 Hz) update rate. The FMS should comply with the requirements of RTCA DO-229C that specifies that the data defining the position shall be output prior to 200 milliseconds after the time of applicability.
4238 4239 4240 4241		Additionally, trajectory intent data for the active flight plan, modified or temporary flight plan, or other specified flight plan, assumed to be flown in FM managed mode, is transmitted as a block data transfer. This data may be used for all types of ATM applications.
4242 4243 4244 4245 4246 4247 4248 4249		As an option, the Aircraft State and Trajectory output may be provided by an ARINC 664 Ethernet interface. In principle, the types of data parameters, refresh rates, etc., are similar. However, the reader is cautioned that specific differences in the data structure and content are intentional. Ethernet state data is not defined herein, as it is expected to be generally available on Ethernet buses. The Trajectory data is specified in Section 5.2.12.2.2. There are no pin assignments in this Characteristic for an ARINC 664 Ethernet bus. These interfaces may be aircraft specific.
4250 4251		The list of ARINC 429 data words used for the broadcast data is included in ARINC Specification 429: Digital Information Transfer System (DITS).
4252	5.2.12.	1 Aircraft State Data
4253 4254 4255 4256 4257 4258		The aircraft state data from the FMS should include the parameters in Table 5-1. Trajectory intent status data should be included as an FMC output based on determination if the aircraft is following its FMC specified flight plan. Separate discrete bits (label 270 bits 27, 28, 29) are provided to the user to aid in the interpretation of trajectory data. These discrete bits indicate whether the airplane is being flown to the vertical, lateral, and speed/time

5.0 STANDARD INTERFACES

targets for the trajectory provided with the appropriate automation engaged, as necessary.

This list of data represents information that is expected to be made available on the Trajectory intent data bus from the FMC to support multiple functions. It is not intended to specify what should be transmitted from the airplane.

Table 5-1 – Aircraft State and Intent Path Output

Label	Parameter	Update Rate
102	FMS Selected Altitude	0.5 sec
103	FMS Selected Airspeed 0.5 sec	
106	FMS Selected Mach	0.5 sec
114	FMS Desired Track	0.5 sec
116	Cross Track Distance	0.5 sec
117	Vertical Deviation	0.5 sec
135	Current Vertical Path Perf Limit (Vert RNP)	0.5 sec
136	Current Vertical Path Perf (Vert ANP ⁽¹⁾)	0.5 sec
150	UTC	0.5 sec
167	Estimated Position Uncertainty (or ANP)	0.5 sec
171	Current RNP	0.5 sec
233-237	Flight ID	0.5 sec
310	Present Position Latitude	0.5 sec
311	Present Position Longitude	0.5 sec
312	Ground Speed	0.5 sec
313	Track Angle True	0.5 sec
314	True Heading	0.5 sec
315	Wind Speed	0.5 sec
316	Wind Direction	0.5 sec
320	Magnetic Heading (pass through from IRS)	0.5 sec
325	Roll Data (pass through from IRS)	0.5 sec
335	Track Angle Rate (pass through from IRS)	0.5 sec
365	Inertial Vertical Velocity (pass through from IRS)	0.5 sec
366	N/S Velocity	0.5 sec
367	E/W Velocity	0.5 sec
270	Intent Status	0.5 sec
	bit 29-speed/time controlled	
	bit 28-lateral controlled	
	bit 27-vertical controlled	
	bit 26-no active flight plan intent data	
	bit 25-desired track mag/true ref (1 = true)	
	bit 24-indicates when bus is guidance master	

Note 1:Vertical ANP is applied to baro-corrected altitude when below transisiton altitude. Vertical ANP is applied to transition flight level and barometric altitude when above transition altitude.

COMMENTARY

Table 5-1 provides FMS data parameters for surveillance and fully recognizes that other data parameters necessary for surveillance transmit processing are provided by other systems (e.g., GPS, inertial system, air data system, Flight Controls system).

5.0 STANDARD INTERFACES

For example, data available from the air data system is not included in the Aircraft State and Intent Path Output, as the surveillance transmitter (e.g., ATC transponder for ADS-B) would interface directly to the air data system.

The integrity data is Estimated Position Uncertainty and Current Vertical Path Performance. It is expected that surveillance systems using this data to transmit an integrity parameter outside the airplane would use these data items (or the appropriate integrity parameters when using data from another source, such as GPS) to compute the requisite integrity parameter as specified by the RTCA MOPS for that particular surveillance application.

5.2.12.2 Trajectory Intent Data

In addition to the aircraft state data defined above, the FMC should provide an output of the flight path trajectory for each flight plan, for example, active, modified, secondary, and ATC flight plans. This may be used to support predictive functions such as real time traffic conflict probes, airspace traffic situational awareness, strategic traffic coordination, and terrain/obstacle avoidance. The data should consist of a string of points that describe the predicted trajectory of the aircraft along with the point type and data associated with the flight path transition. This data forms the basis for a using function to be able to unambiguously reconstruct the predicted flight trajectory. This block transmission is for the entire flight trajectory even though a using function may only be interested in a part of the active trajectory. For the active flight plan, this data should be updated under the following events:

- Whenever an active flight plan change occurs.
- When a lateral waypoint is passed.
- When a defined period has elapsed (on the order of one minute) since the last transmission.

COMMENTARY

Other events might require data to be updated. For example, it may be desirable to update the data when there has been a significant change to the predicted trajectory caused by tactical operations or unforecast environmental conditions.

For the modified, secondary and data link flight plans, this data should be updated when such a plan is created, deleted or a change is made to these plans.

5.2.12.2.1 A429 Trajectory Intent File Transfer Format

Refer to Attachment 8 for coding examples of the Trajectory Intent Data File Format

Table 5-2 – A429 Trajectory Intent File Transfer Format

Word Type Bits 31, 30	Parameter	Bit 29	Format Bits 28-9	Label Bits 8-1
Start Of Transmission 1 1		0	Bits 28-25 (Note 4) Bits 24-17 word count Bits 16-9 LDU sequence	232 for Active Intent (Note 5)

5.0 STANDARD INTERFACES

Word Type Bits 31, 30	Parameter	Bit 29	Format Bits 28	3-9	Label Bits 8-1
Full Data Word	Data Descriptor	Bits 29-22 P	ad 0		232
0 1 (frame start)		Bits 21-16 D	ata Type (Note 6	Sa)	
		Bits 15-13 G	Bits 15-13 Geometry (Note 6b)		
		Bits 12-9 Ve	Bits 12-9 Version/Compatibility (Note 6c)		
Full Data Word	Characteristics	Bits 29-9 Ch	aracteristic (Note	e 7)	232
0 0					
Full Data Word	Point	Same as lab	el 310		232
0 0	Latitude				
Full Data Word	Point	Same as lab	el 311		232
0 0	Longitude				
Full Data Word	Point	Same as lab	pel 361 (Note 2)		232
0 0	Altitude	(less than -2	2000 feet = NCD)		
Full Data Word(1)	Point ETA	0 = valid	Same as label		232
0 0	UTC	1 = NCD			
Full Data Word	Path RNP	0 = valid	Same as label 1	171	232
0 0		1 = NCD			
Full Data Word(1)	Point CAS or	0 = valid	Same as label	103 (CAS) or	232
0 0	Point Mach(3)	1 = NCD	Same as label		
Full Data Word ⁽¹⁾	Wind Speed	0 = valid	Same as label 3		232
0.0	Trana opeca	1 = NCD	Came de labor (
Full Data Word ⁽¹⁾	True Wind	Same as lab	nel 316		232
0 0	Direction	Carrio ao las	001010		202
Full Data Word ⁽¹⁾	Point name	Bits 29-23	Bits 22-16	Bits 15-9	232
0 0	1 on than c	Char #3	Char #2	Char #1	202
Full Data Word ⁽¹⁾	Point name	Bits 29-23	Bits 22-16	Bits 15-9	232
00	1 On thane	Char #6	Char #5	Char #4	202
Full Data Word ⁽¹⁾	Point name	Bits 29-23	Bits 22-16	Bits 15-9	232
00	1 On thane	Pad 0	Pad 0	Char #7	202
Full Data Word ⁽¹⁾	Named Point Ref	Same as lab		Onai #1	232
00	Latitude	Same as lac	DEI 310		202
Full Data Word ⁽¹⁾	Named Point Ref	Same as lab	nal 311		232
00	Longitude	Same as lac	DEI 311		202
Full Data Word ⁽¹⁾	Altitude Constraint	Same as lab	nal 361		232
0.0	Lower Bound		ero feet = no lowe	er hound)	202
Full Data Word ⁽¹⁾	Altitude Constraint	Same as lab		or bourier)	232
0 0	Upper Bound		50000 feet = no u	inner hound)	202
Full Data Word ⁽¹⁾	Earliest ETA	0 = valid	Same as label		232
00	UTC	1 = NCD	Same as label	130	202
Full Data Word ⁽¹⁾	Latest ETA	0 = valid			
00	UTC	1 = NCD	Same as label 150 252		202
Full Data Word ⁽²⁾	Turn Radius	Sign	Bits 28-13		232
0.0	Turr Radias	negative =	range ± 512 n	m	202
0 0		left	resolution = 0.		
Full Data Word ⁽²⁾	Turn Center	Same as lab		007012011111	232
0 0	Latitude	Jame as lat	010		202
Full Data Word ⁽²⁾	Turn Center	Same as lab	nel 311		232
0 0	Longitude	Carrie as lac	,0,011		202
Repeat Full Data Word g		ne start (01) a	s necessary to th	e end of trajectory	,
After 253 Full Data Word			o nocessary to th	ic cha of trajectory	•
End Of Transmission	a new LDO must be	1	Bits 28-26 0	0.00	232
1 1		'	Bits 28-26 0 0 0 232 Bits 25 final LDU = 1		232
1 1		Bits 24-9 CRC			
	I .				

4327 4328

5.0 STANDARD INTERFACES

Word Type Bits 31, 30	Parameter	Bit 29	Format Bits 28-9	Label Bits 8-1	
(1) Full Data Word only included as specified in Data Type table (Note 6a)					
(2) Only included if arc to point (Geometry code 010)					
(3) Parameter defined by Characteristics bit 12					

	er defined by Characte		010)			
4314	Notes:					
4315 4316	1.		pes that are impleme	nted need to be encoded. This S implementation.		
4317 4318 4319	2.	reference is	Refer to Section 4.3.3.2.1, Trajectory Predictions, where altitude reference is described. By definition, altitude is flight level above the transition altitude/level, and MSL is below.			
4320 4321 4322	3.	Because of multiple users (sink) of this file, no RTS, CTS, ACK, or NAK protocol is provided. Receivers must be capable of handling the block file transfer when the transmitter sends it.				
4323 4324	4.	Start of transmission word, Bits 28-25 describe provisions for alternate content.				
4325	5.	The followin	g labels are used for o	different flight plan types:		
4326						
		Label	Flight Plan Type			
		232	Active			
		242	Modified			
		252	Secondary			

Label	Flight Plan Type
232	Active
242	Modified
252	Secondary
262	Data Link

5.0 STANDARD INTERFACES

6a. Data Type codes are as follows:

4329

4330

4331

4332

4333

4334

4335

4336

Bits 21-16 Data Type Integer Value	Data Includes ETA	Data Includes point speed, wind speed, wind direction	Data Includes point name, ref latitude, ref longitude	Data Includes Iower altitude constraint, upper	Data includes earliest ETA, latest ETA
				altitude constraint	
0					
1	YES				
2	YES	YES			
3			YES		
4	YES		YES		
5	YES	YES	YES		
6			YES	YES	
7	YES		YES	YES	
8	YES	YES	YES	YES	
9	YES	YES	YES		YES
10	YES	YES	YES	YES	YES
11-63 SPARE				· · · · · · · · · · · · · · · · · · ·	

Point name corresponds to a flight plan waypoint crossing location where the point lies on the trajectory and not necessarily the waypoint location. The identifier is provided as part of the data set for this point.

6b. Geometry codes are as follows:

Bits 15-13	Geometry
000	Start point
001	Line to point
010	Arc to point
	Reserved for growth
111	Reserved for growth

6c. Version/Compatibility codes are as follows:

Bits 12-9	Version
0000	ARINC 702A-2 (2005)
0001	ARINC 702A-3 (2006) ¹
0010	ARINC 702A-4 (2014) ¹
0011	Reserved
	Reserved
1111	Reserved

Note

 The definition of Aircraft State and Intent Path Output (Trajectory Bus) (Section 5.2.12) is identical in ARINC 702A-3 and ARINC 702A-4.

5.0 STANDARD INTERFACES

4341 4342

7. Characteristic codes are as follows:

Bits	Characteristics	Description
29-9		
29	Start of climb	The point where the trajectory will begin a climb segment following a level (intermediate or cruise) segment.
28	Top of climb	Where the trajectory arrives at the cruise flight level. There will be one top-of-climb point for each cruise flight level (step climbs).
27	Top of descent	The point where the trajectory begins a descent from the cruise flight level.
26	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.
25	Level-off	The point in climb where an intermediate level-off occurs (i.e., not including top-of climb) or in descent where a level segment begins.
24	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.
23	Transition altitude/level	Where the trajectory reaches the transition altitude (in climb) or transition level (in descent).
22	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.
21	Reserved	-
20	Reserved	
19	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics necessary to describe the vertical trajectory.
18	Aircraft projection	Indicates that the point corresponds to the projection of the airplane's present position onto the current flight plan leg.
17	Non-flyable	Indicates that the trajectory from the previous point to this one is unflyable.
16	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.
15	Runway	Indicates that the point corresponds to a runway.
14	Start of descent	The point where the trajectory begins a descent from intermediate level segments.
13	RTA point	The first point with a Required Time of Arrival (RTA) constraint.
12	Speed is Mach	Point speed is Calibrated Air Speed (CAS) if zero. Mach if one.
11	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.
10	Current or next	Indicates that the segment belongs at least partially to the
	leg	active or the next leg.

5.0 STANDARD INTERFACES

5.2.12.2.2 Ethernet Trajectory Intent File Transfer Format

4345

4346 4347 4348 The format of the trajectory data uses blocks containing a header, body, and footer. All elements shall be coded in big endian mode.

Table 5-3 – Ethernet Trajectory Intent File Transfer Format

HEADER	HEADER STATE OF THE STATE OF TH					
Data	Туре	Size (bits)	Comments			
Start_of_block		8	Start of application block. Code hx53			
Flight Plan type	Integer	8	(Note 1)			
Trajectory_sequence_number	Integer	8	From 1 to 255 (0 reserved for special use)			
Header_size	Integer	8	Size in byte of the header including pad			
Trajectory_file_size	Integer	32	Size in byte of the file (does not include header nor footer)			
Block_number	Integer	8	Number of application block starting with "0"			
Number_of_blocks	Integer	8	Total number of application blocks for the transmitted file			
Pad		16	hx0000			
Block_size	Integer	32	Size in byte of application block including header and footer			
Transition_altitude	Signed Integer	32	Initial climb transition altitude in feet (Note 6)			
Climb_baro_setting	Float	32	Climb baro setting in hPa. (Note 6)			
Transition_FL	Signed Integer	32	Descent transition FL in feet (converted by FL x 100) (Note 6)			
Descent_baro_setting	Float	32	Descent baro setting in hPa (Note 6)			
BODY	•					
Data	Туре	Size (bits)	Comments			
Geometry	Integer	3	Always included. (Note 2)			
Data Type	Integer	5	Always included. (Note 3)			
Characteristics	Integer	24	Always included. (Note 4)			
Path RNP	Float	32	Always included. (Note 6) RNP in NM.			
Point Latitude	Float	32	Always included. (Note 6) Latitude in degrees.			
Point Longitude	Float	32	Always included. (Note 6) Longitude in degrees.			

5.0 STANDARD INTERFACES

Turn Radius	Float	32	Only included if geometry is arc to point. (Note 6) Radius in NM.	
Turn Center Latitude Float		32	Only included if geometry is arc to point. (Note 6) Latitude in degrees.	
Turn Center Longitude	Float	32	Only included if geometry is arc to point. (Note 6) Longitude in degrees	
Point Altitude Signed Integer		32	Always included. See bit 1 and 2 of characteristics (Note 4, Note 5) for altitude reference. (Note 6) Altitude in feet.	
Point ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC)	
Point Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Mach if value between 0-10 CAS in kt if value greater than 10	
Wind Speed	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Speed in kt.	
Wind Direction	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Direction in degrees.	
Point Name	String	m * 32	Only included as specified in Data Type Table. (Note 3, Note 6, Note 7)	
Ref Latitude	Float	32	Only included as specified in Data Type Table. (Note 3, Note 6) Latitude in degrees.	
Ref Longitude Float		32	Only included as specified in Data Type Table. (Note 3, Note 6) Longitude in degrees.	
Altitude Constraint, Lower Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.	
Altitude Constraint, Upper Bound	Signed Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) Altitude in feet.	
Earliest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).	
Latest ETA	Integer	32	Only included as specified in Data Type Table. (Note 3, Note 6) ETA in seconds (UTC).	
FOOTER	•			
Data	Туре	Size (bits)	Comments	
End of block		8	End of application block. Code hx45	
Pad		24	hx000000	

5.0 STANDARD INTERFACES

4350 Notes:

4351

4352

4353

4354

1. The following coding is used for different flight plan types:

Integer Value	Flight Plan Type
0	Reserved
1	Partial Portion of Active
2	Active
3	Secondary
4	Data Link
5	Modified/Temporary
6- 255	Spare

2. Geometry codes are as followed:

Integer Value	Geometry
0	t c
1	nt 3D
2	oint 3D
3	int 3D
4 to 7	

3. Data Type codes are as follows:

Data Type Integer Value	Data Includes ETA	Data Includes point speed, wind speed, wind direction	Data Includes point name, ref latitude, ref longitude	Data Includes lower altitude constraint, upper altitude constraint	Data includes earliest ETA, latest ETA
0	, and the second	, and the second			
1	YES				
2	YES	YES			
3			YES		
4	YES		YES		
5	YES	YES	YES		
6			YES	YES	
7	YES		YES	YES	
8	YES	YES	YES	YES	
9	YES	YES	YES		YES
10	YES	YES	YES	YES	YES
11-31 SPARE					

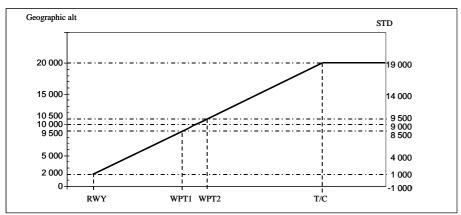
4. Characteristic codes are as follows:

Bits 1-24	Characteristics	Description
1	Start of climb	The point where the trajectory will begin a climb segment following a level (intermediate or cruise) segment.
2	Top of climb	Where the trajectory arrives at the cruise flight level. There will be one top-of-climb point for each cruise flight level (step climbs).
3	Top of descent	The point where the trajectory begins a descent from the cruise flight level.

5.0 STANDARD INTERFACES

Bits 1-24	Characteristics	Description	
4	End of descent	The point in the trajectory where the descent procedure ends. Subsequent points will correspond to an approach procedure or may include a vertical discontinuity if the approach is undefined.	
5	Reserved		
6	Runway	Indicates that the point corresponds to a runway.	
7	Reserved		
8	Reserved		
9	Aircraft projection	Indicates that the point corresponds to the projection of the airplane's present position onto the current flight plan leg.	
10	Discontinuity	Indicates that the trajectory from the previous point to this one is undefined.	
11	Non-flyable	Indicates that the trajectory from the previous point to this one is unflyable.	
12	Clearance Altitude Level-off	Indicates the point where the aircraft will level off at selected altitude.	
13	Current or next leg	Indicates that the segment belongs at least partially to the active or the next leg.	
14	Reserved		
15	Reserved		
16	Unnamed fix	A point inserted between other FMS trajectory points, not corresponding to any other specific point type, so as to provide more complete definition of the trajectory. The unnamed fix includes any vertical points not specifically identified by other characteristics listed that are necessary to describe the vertical trajectory.	
17	Baro ref 1	Note 5	
18	Baro ref 2	Note 5	
19	Crossover altitude	The point in climb or descent where the airplane will transition between Mach and IAS control.	
20	Reserved		
21	Speed change	The point where the airplane will begin accelerating or decelerating as a result of a speed constraint or limit, or reaches the target speed.	
22	Reserved		
23	Reserved		
24	Reserved		

5. Altitude Reference


Baro ref 1 (bit1)	Baro ref 2 (bit2)	Description
0	0	Reserved
0	1	The altitude is baro referenced for a segment in climb with baro correction = Climb_baro_setting (if available)
1	0	The altitude is baro referenced for a segment in descent with baro correction = Descent_baro_setting correction (if available)
1	1	The altitude is STD referenced

Note that two codings may be used to code the same trajectory:

4355

4356 4357

5.0 STANDARD INTERFACES

Example of trajectory with CLB QNH = 1049 hPa, transition altitude = 10 000 ft and standard temperature.

Note: Geographic altitude is true height above the earth (tape measure), with Mean Sea Level as the "0" reference.

Geographic altitude is independent of atmospheric pressure or temperature.

				Codi	ng with "STD'	only only		oding with "S aro" referenc	
	Geo Altitude	Std Altitude (1013 hPa)	ATC Altitude	Altitudes coded in "format"	Baro_ref1	Baro_ref2	Altitudes coded in "format"	Baro_ref1	Baro_ref2
T/C	20 000	19 000	FL 190	9 000	1	1	19 000	1	1
WPT2	10 500	9 500	FL 095	9 500	1	1	9 500	1	1
Trans ALT	10 000	9 000	10 000 ft	9 000	1	1	10 000	0	1
WPT1	9 500	8 500	9 500 ft	8 500	1	1	9 500	0	1
RWY	2 000	1 000	2 000 ft	1 000	1	1	2 000	0	1
	0	-1 000	N/A	N/A	N/A	N/A	N/A	N/A	N/A

6. hxFF 80 00 00 code is reserved to indicate invalid / undefined parameter.

4398 4399

4400

4401

5.0 STANDARD INTERFACES

4367 4368 4369 4370	 Strings are defined as the sequence of n (numbered 1 through n) ASCII characters, 8-bits encoded. Number n is encoded as a 16-bit unsigned integer, and is immediately followed by the n bytes of the string. Padding for 32-bits word shall be filled with 0's (zeroes).
4371	5.2.13 Reserved Ports for Growth
4372 4373	Four ARINC 429 output ports should be reserved for growth. These ports should be programmable for high-speed or low-speed operation.
4374	5.3 Discrete Inputs and Outputs
4375 4376 4377 4378	Digital discrete inputs may be provided by discrete program pins or by coded digital configuration inputs, such as a configuration data base or Airplane Personality Module (APM). Discrete program pins are defined in Attachment 2-3.
4379	5.4 FMC/FMC Intersystem Communications
4380 4381 4382 4383	FMC-to-FMC intersystem communications are not defined in this document. The formats and data content should be optimized by the system implementer to support system synchronization, including, but not limited to, the following:
4384 4385	Navigation Cross Check – used to monitor independent navigation calculation and improve the integrity of the navigation solution.
4386 4387	Data Entry Transfer – used to ensure that data entries and selections are reflected in all FMCs.
4388 4389	Radio Tuning Coordination – used to ensure that each FMC tunes a different set of radio sensors (if possible) to ensure navigation independence.
4390 4391	Status Information – used to synchronize mode of operation such as phase of flight, active flight plan leg, navigation status and other events.
4392 4393	Sensor Data – used to transfer data from some inputs, cross check discretes, confirm sensor faults, etc.
4394 4395	Crossloading of data bases and software - intersystem communications can be utilized to facilitate data loading in a dual FMS installation.
4396	5.5 Ethernet Interface (ARINC 646)
4397 4398	Two ARINC 646 Ethernet interfaces are provided for dual interface capability to peripheral devices such as ARINC 615A data loader, ARINC 744A printer,

and ARINC 758 CMU. This should not be confused with ARINC 664

Ethernet operating in a switched network topology (typical).

Commented [BM(AU15]: Double-Check

6.0 CONTROL DISPLAY UNIT INTERFACE

4402	6.0 CONTRO	L DISPLAY UNIT INTERFACE
4403	6.1 General	
4404 4405		The Control Display Unit (CDU) design should be a Multi-Purpose Control and Display Unit (MCDU) in accordance with ARINC 739 or ARINC 739A.
4406		COMMENTARY
1407 1408 1409 1410 1411 1412 1413		It is expected that the MCDU installed in this configuration will provide a shared control and display resource used by both the FMC and the data link management unit. This is especially true where AT data link communications are used. Depending on the chosen architecture for CNS/ATMATS Datalink (see Section 4.3.74.3.7.1.3), an ARINC 739A MCDU one key access to the Communications Management Unit (CMU) may be required as opposed to the standard log-on/log-off menu style selection.
4415	6.2 Standby N	Navigation Service Control of the Co
4416 4417 4418 4419 4420 4421		In order to initialize the MCDU flight plan for standby navigation, the FMC should provide the MCDU with an ordered list defining the current active flight plan legs. Any leg whose type is not compatible with the MCDU flight plan, as described in ARINC 739, should be replaced with a flight plan discontinuity. This initialization should occur as required to ensure the MCDU has current data at the time of transition to standby navigation.
4422	6.3 Self-Test	
4423 4424 4425 4426 4427		The MCDU may include a pilot confidence test, initiated by a control on the MCDU, which will provide a visual indication that the display and any status annunciators are operating correctly. This test should in no way affect the on-line performance, navigation and guidance computations, or the FMC interfaces.
4428	6.4 MCDU An	nunciators
4429 4430 4431 4432 4433		The ARINC 739 MCDU may have several annunciator lights located on the unit front panel. The purpose of these annunciators is to alert the pilot's attention for possible required action. Specific annunciator definitions and associated logic is installation dependent and is not defined in this document; however, typical annunciator usage may include the following:
4434 4435		 MSG (Message) – illuminates when FMC generated messages are displayed in the MCDU scratchpad
4436 4437 4438		 DSPY (Display) – illuminates when the current display is not related to the active flight plan leg or the currently operational performance mode
4439		 FAIL – illuminates in case of selected FMC failure
4440		 OFST (Offset) – illuminates when a parallel offset is in use
4441 4442		 IND (Independent) – illuminates in case of independent dual system operation
4443 4444		 MENU – illuminates when the FMC is the active subsystem and a non-active subsystem requests MCDU access

6.0 CONTROL DISPLAY UNIT INTERFACE

6.5 MCDU Alerting

 The MCDU may display a number of messages on the bottom line of the display known as the scratchpad. These messages may be of several types, indicating different priorities or originating conditions. Specific message definitions, classes, and display logic are dependent on overall flight deck display/annunciation design and operational philosophy, and are not specified in this document. The following paragraphs provide a description of typical message classes and logic design considerations.

High priority messages, referred to as Alerting or Type I messages, are typically displayed in response to a significant status change or operational condition of the system. Lower priority messages may be referred to as Advisory, Type II, or Entry Error messages, and usually indicate a condition of lesser importance, or prompt the pilot to enter required data or correct a previous entry through the MCDU.

Considerations for design of MCDU alerting include the following:

- Priority of scratch pad messages over other classes of messages and MCDU scratchpad alpha-numeric data entries
- Relationship of scratchpad messages to EFIS messages or other dedicated annunciators in the pilot's forward field of view
- Message clearing logic. Messages may be cleared by keyboard action, or automatically by a change in system status
- Inhibition of MCDU messages during critical flight phases
- Stack operation of multiple messages

6.6 MCDU Color and Font Usage

The MCDU may utilize variation in display color and character font size to convey additional information to the flight crew. Designers should consider priority of the displayed information and consistency with color usage on other display devices in defining MCDU color usage standards. Character font size may be used to indicate data attributes such as computed versus pilot-entered data.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

7.1 Introduction

The navigation data base stored in the ARINC 702A Advanced Flight Management Computer may, together with computed guidance data, be used to support the operation of a map display on an electronic horizontal situation indicator or other electronic display in the cockpit. This section of this Characteristic describes interface standards which will enable any manufacturer's FMC to be used with any manufacturer's electronic display. The term Electronic Flight Instrument (EFI) will be used to describe such displays generically.

7.2 FMC Outputs to EFI

Two high-speed ARINC 429 data output ports are provided on the FMC for instrumentation supply. All of the map background and position updating (dynamic) data for two EFIS will be supplied from both of these ports. In an installation comprising one FMC and two EFIS, the FMC's #1 Instrumentation Output should be connected to the captain's EFI, and its #2 Instrumentation output to the first officer's EFI. A possible interconnection scheme in an installation comprising two FMCs and two EFIS is to connect the #1 output of FMC #1 and the #2 output of FMC #2 to the captain's EFI and the #1 output of the FMC #2 to the #2 output of FMC #1 to the first officer's EFI.

COMMENTARY

The foregoing data output arrangements permit one FMC to supply independently organized data to each of two EFIS. While the word formats of the individual data elements crossing the interface are not map scale dependent, the total number of data words needed to construct the map does vary with the map scale selected. The FMC can thus accommodate the generation of maps on both sides of the cockpit even when the captain and the first officer have selected different scales.

7.3 FMC Inputs from EFI

The FMC provides two low-speed ARINC 429 data input ports through which map mode, scale and symbol option selections are transferred from the FFIS to the FMC.

Interface provisions are provided to the FMC from a pointing device.

7.4 COMMENTARY

7.5 Functional and architectural requirements for the pointing device will be provided in a future Supplement to this Characteristic.

7.67.4 EFI Design Features

The following EFI design features impact the design of the FMC/EFI interface.

7.6.17.4.1 Map

The EFI will generate a dynamic map positioned relative to the aircraft. The map may be oriented with respect to aircraft track or heading.

4563 4564

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4521	7.6.2 7.4.2	_Plan
4522 4523 4524 4525		The EFI may also generate a north-oriented static map positioned relative to reference points selected at the FMC Multi-Purpose Control Display Unit (MCDU). This may be used by the flight crew to verify the correct insertion of flight plan waypoints and other data.
4526	7.6.3 <u>7.4.3</u>	_HSI Mode
4527 4528 4529 4530 4531 4532		The FMC/EFI interface may provide outputs of desired track (course), track angle error, drift angle, and lateral and vertical deviations to support the generation of a HSI (rose mode) type of display. If provided, the lateral and vertical deviation outputs should support the use of variable sensitivities (full scale deflection) in accordance with the requirements of RTCA/EUROCAE SC-181/WG-13 RNP MASPS.
4533	7.6.4 7.4.4	_Map Scales
4534 4535 4536 4537		EFI map scales for map and plan modes will be a compatible subset of the ARINC 708A Weather Radar, which has selectable ranges, from 5 to 640 nautical miles of look-ahead. Additional low range capability may be required for incorporation of surface map display capability.
4538	7.6.5 <u>7.4.5</u>	_Map Projection
4539 4540 4541 4542 4543 4544 4545		The EFI will transform earth coordinate data received from the FMC into flat plane coordinates for the map display. The accuracy of this transformation will be such that the EFI can be used as a primary instrument for guiding the aircraft along great circlegeodesic and circular transition flight paths, and provide accurate registration of planar weather radar data on the map display. The map projection method chosen is expected to permit worldwide EFI usage without latitude restrictions.
4546 4547 4548 4549 4550 4551		The EFI will also ensure that vector lines and conics which cross display editing boundaries are correctly terminated to ensure a continuous and accurate presentation on the display. The EFI will translate the map background to account for aircraft motion between map background data block transmissions based on aircraft position and angular data received from the FMC and other systems.
4552	7.6.6 <u>7.4.6</u>	_Option Selection
4553 4554 4555 4556		The EFI will provide for symbology option selections, including weather radar data overlay on the map. These will allow the flight crew to declutter the map by selectively removing different categories of data, e.g., Navaids, Airfields, Geographic Reference Points, Waypoint Definition Data, etc.
4557	7.6.7 <u>7.4.7</u>	_Symbol Repertoire
4558 4559 4560		Each category of data shipped from the FMC for display on the EFI will call for a distinctive symbol on the display. A list of potential data categories includes, but is not necessarily limited to, the following:
4561		Primary-Active flight plan path
4562		Secondary flight plan path
4563		Modified flight plan path

• Altitude Intercepts

Commented [GE16]: What is the correct reference here?

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4565	 RTA symbology
4566	 Waypoints
4567	 Waypoint data (altitude, speed, time)
4568	 Origin and destination airports

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4569		FIR boundaries
4570		 Special reference points (T/D, B/D, energy circles)
4571		Runway Data
4572		Marker Beacons
4573		Tuned Navaids
4574 4575		 Navaids, including (co-Located VOR and TACAN (VORTAC), VOR, DME/ TACAN (high altitude and low altitude)
4576		 VOR radials
4577		 Airports
4578		Geographic reference points
4579		Non-directional beacons
4580		 Navigation data (e.g., sensor positions)
4581		 Terrain/obstacle data (MSA, MEA, MORA)
4582		Special use airspace
4583 4584 4585 4586		The data available for display in a particular installation will depend on the navigation data base content of the FMC. The above data categories fall into the following general symbology types, each of which requires different data parameters for definition via the FMC/EFI interface.
4587		Vectors (straightgeodesic lines)
4588		Conics (circular arc lines)
4589		Upright symbols
4590		Rotated symbols
4591		Dynamic symbols
4592		Alpha/numeric data readouts
4593	7.6.8 7.4.8	EFI Data Conditioning
4594 4595 4596		The EFI will perform any input data filtering needed to produce a smoothly changing map display, and will condition data used to update readouts on the display.
4597	7.6.9 7.4.9	Pointing Device
4598		[Deleted by Supplement 5]
4599 4600		Functional and architectural requirements for the pointing device will be provided in a future Supplement to this Characteristic.
4601	7.6.10 <u>7.4.10</u>	_Surface Map Mode
4602		[Deleted by Supplement 5]
4603 4604 4605 4606		The surface map mode will provide a scaled representation of the airport surface for assistance in aircraft taxi and ramp movement. Functional recommendations will be provided in a future Supplement to this Characteristic.

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4607 7.77.5 FMC Design Features 4608 The following FMC design features impact the design of the FMC/EFI 4609 interface. 4610 Flight Plans 7.7.17.5.1 4611 As part of its guidance function, the FMC will have flight plans assembled in 4612 its guidance buffers by pilot data entry or data link and selection through the 4613 MCDU. Such flight plans will define paths in the sky in two, three and 4614 ultimately four dimensions. Accurate representation of aircraft position with 4615 respect to the flight plan path is essential when the EFI is used as the primary instrument by which the flight crew controls the aircraft laterally and 4616 4617 vertically with respect to a three-dimensional path, and along that path to 4618 make good assigned times at waypoints. 4619 Flight plan paths can be presented on the EFI as sequences of lines and 4620 conics representing great circlegeodesic paths between waypoints and 4621 curved transitions between path legs. Circular path legs consisting of DME arcs, RF legs, holding patterns, and procedure turns can also be displayed. 4622 4623 The FMC generates the necessary data to define four-dimensional flight 4624 plans in its guidance buffers. The guidance algorithms in the FMC calculate 4625 the position, speed and time differences between the aircraft state vector 4626 and the flight plan, and hence generate the guidance commands to the 4627 automatic flight control system (including the auto-throttle) to make good the 4628 flight plan. 4629 The guidance data can be used to define the vector lines and conics needed 4630 to represent the flight plan path and other guidance symbology on the EFI. Map Display Edit Areas 4631 7.7.27.5.2 4632 The FMC should, to the extent of the limitations imposed by the size of the 4633 data block (see Section 7.6.2), supply map background data for an area 4634 large enough to preclude the appearance of blank screen between transmissions. The EFI will limit the data displayed to that needed for the 4635 4636 viewing window. This limit operation will include vector clipping to ensure the 4637 correct display of vector data and associated text. 4638 7.5.3 Pointing Device 4639 [Deleted by Supplement 5] 4640 COMMENTARY 4641 It is expected that future systems will incorporate a pointing device in the 4642 FMC/EFI interface. Functional and architectural requirements for the 4643 pointing device will be provided in a future Supple 4644 7.87.6 Interface Design 4645 The design of the FMC/EFI interface is described in the following 4646 paragraphs. 4647 7.8.17.6.1 4648 Map background data and position updating and other dynamic data should 4649 be interleaved on the FMC instrumentation output buses. The FMC should

specify the data type to be displayed and the associated positioning and

4650

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

rotation data. The EFI will control symbology color, size, brightness, blinking and related parameters, and transform map position data received from the FMC into screen coordinates.

The FMC should extract the information necessary for the map background from its navigation data base and flight plan buffers. Position data transmitted to the EFI should be in latitude and longitude coordinates. The types of data transmitted should respond to mode symbology options and display range selected by the flight crew on the EFI control panel. The order of the data on the bus should be in general accordance with the priority in which it is to be displayed.

The FMC/EFI dynamic data interface should be designed to permit updating of the map background data positions between background data block transmissions without the need for a hand-shaking relationship between the FMC and the EFI symbol generator. FMC/EFI dynamic data is defined in Attachment 4.

The FMC/EFI interface design and map background and dynamic data bus implementation should be such that the EFI can provide a valid map display if map background data transmissions are lost or invalid for periods of up to 10 seconds duration.

The display mechanization should accommodate a worldwide map projection. This may result in the need to provide additional and/or special software to project map data in the vicinity of the earth's poles.

7.8.27.6.2 Map Data Updating

The FMC should supply map data to the EFI in alternating 64-word blocks of background and dynamic data until a complete map background data block has been transmitted (see Attachment 6, Figure 2). The maximum size of the background data block should be programmable up to a maximum of 1023 words. After completion of the map background data transmission, the dynamic data should continue to be updated at a rate of 20 times per second (nominal) until a new map background data block is to be transmitted. Map background data should be updated and transmitted once every three seconds (nominal), except that when a mode, scale or option change is made on the EFI, the FMC should update and transmit new map background data within one second (maximum).

COMMENTARY

Dynamic data update at a rate greater than 16 times per second is needed to avoid undesirable visual effects on the display.

7.8.37.6.3 Background Data Prioritizing

To ensure that writing time or other internal data processing limitations in the EFI do not result in most wanted map background data not appearing on the display, the FMC should prioritize the information as follows. The EFI should truncate the data, if necessary, in the reverse order of this prioritization.

- 1. Flight plan data
 - a. Primary Active flight plan
 - b. Secondary flight plan

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4696	C	. Flight plan changes
4697	d	. Waypoints
4698	е	. Waypoint data
4699	f.	Offsets
4700	g	. Altitude intercepts
4701	h	. Flight plan events
4702	i.	RTA symbology
4703	2. S	elected reference points
4704 4705		unway Data (may be edited out in some flight phases but should ot disappear because of truncation of the data stream)
4706	4. C	origin and destination airports
4707	5. T	uned navaids
4708	6. N	avigation data (may be dynamic rather than background)

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4709		7. Non flight plan navaids
4710		8. General reference points (position ordered)
4711	7.8.4 <u>7.6.4</u>	Background Data Editing
4712 4713 4714 4715		An example of the background data editing process is shown in Attachment 6, Figure 1. The FMC should, as a minimum, transmit data for the displayed area plus the area which could appear on the display as a result of aircraft translation and rotation between map background data updates.
4716 4717 4718 4719 4720		Because the density of data needed for terminal operations could saturate the display at the higher map scales and the volume of data within the edit area overload the EFI symbol generator buffers, the FMC should determine the amount of data it supplies to the EFI from an analysis of the map scale and mode selection information it receives from the EFI.
4721 4722 4723		Typically, the high map scales are used in cruise and the low map scales are used for terminal area operations. Therefore, only high altitude chart data need be transferred across the interface for the larger map scales.
4724	7.8.5 7.6.5	Mode Change Response
4725 4726 4727		The FMC should respond to a mode, scale or symbology option selection change received from the EFI such that the desired data transmission occurs within one second maximum.
4728		COMMENTARY
4729 4730		Airlines desire the overall (FMC and EFI) response time of a practical system to be less than two seconds.
4731	7.8.6 7.6.6	Map Translation and Rotation Data
4732 4733		The FMC should provide the following data to the EFI to support map projection and rotation functions:
4734		Map Projection
4735		Map background data
4736		Map reference latitude (plan mode only)
4737		 Map reference longitude (plan mode only)
4738		Map mode/scale
4739		Map Position Data
4740		Aircraft present latitude
4741		Aircraft present longitude
4742		Map Rotation
4743		Map Position Data
4744		Track (true)

• Track (magnetic)

4745 4746

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

4747	7.8.7 7.6.7	Resolution
4748 4749 4750		The resolution of data used to position symbology on the display should be such that a change of binary state of the least significant bit of a position data word produces no visible step movement on the display.
4751	7.8.8 <u>7.6.8</u>	_Interface Data Errors
4752		The mechanization of the FMC/FFI interface should minimize the visual

effects on the map display of occasional data errors.

7.8.97.6.9 FMC-to-EFI Data Transfer Protocol

Because the FMC/EFI interface is dedicated to the transfer of data between the FMC and the EFI symbol generator(s), not all of the formatting and protocol standards of ARINC Specification 429: Digital Information Transfer System (DITS) will be applied. The following sections indicate where these departures from ARINC 429 have been made. Although not mentioned hereafter, the electrical and timing standards set forth in ARINC 429 for high-speed operation (100 kbps) and the standard broadcast protocol do apply.

7.8.9.1 **7.6.9.1** Data Block Format

The first word of each 64-word data block should be a Start of Transmission word containing octal code 301 in its label field (bits 1 through 8) if the block contains map background data and octal code 303 in this field if the block contains dynamic data. Bits 9 through 13 of each map background data block Start of Transmission word should contain a binary number indicating the position of the block in the sequence of such blocks into which the transmission is divided. In addition, the first such Start of Transmission word of a transmission should contain in bits 20 through 29 a binary count of the total number of usable background data words to be contained in the transmission. (This count should not include Start of Transmission, End of Transmission, or fill-in words.) This field should contain binary zeros in all subsequent background data block Start of Transmission words of the transmission. All background data block Start of Transmission words should contain binary zeros in bits 14 through 19, while bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The Start of Transmission word of each dynamic data block should contain binary zeros in bits 9 through 29 and the control word code defined in Section 7.6.9.2 in bits 30 and 31. Bit 32 should be set to render word parity odd

The last word of each 64-word map background data block should be an End of Transmission word containing octal code 302 in its label field. Bits 9 through 29 of this word should contain binary zeros. Bits 30 and 31 should contain the control word code defined in Section 7.6.9.2 and bit 32 should be set to render word parity odd.

The 62 usable data words of each map background data block should contain the positional, character, and control information used by the EFI to construct the map background. The label codes and word formats defined in Attachment 6 to this document should be used. Bits 30 and 31 should be

7.0 ELECTRONIC FLIGHT INSTRUMENT SYSTEM INTERFACE

encoded to indicate word type per Section 7.6.9.2 and bit 32 should be set to render word parity odd. If the final block of the transmission contains less than 62 useful words, it should be padded to this length with fill-in words (binary zeros in bit positions 1 through 32) and terminated with the End of Transmission word at position 64.

Dynamic data blocks should be interleaved with map background data blocks as described in Section 7.6.2. Dynamic data blocks should contain data words labeled and formatted per ARINC Specification 429.

COMMENTARY

The interleaving on the same bus of blocks of data labeled per ARINC 429 standards and blocks of data labeled per other standards requires the EFI to be capable of changing from one set of standards to the other at appropriate instants during the data transmissions. The EFI is expected to make use of the two Start of Transmission words and the background data block End of Transmission word in deciding when to make these changes.

7.8.9.27.6.9.2 Data Type Word Formats

The general word format defined in ARINC Specification 429 should be employed. Words transmitted by the FMC for which standards are defined in ARINC 429 should employ those standards and their ARINC 429 labels. Formats of symbol word groups, vector word groups, map reference word groups, and dynamic symbol words should differ from ARINC 429 standards in that the label field should be used to encode data type and the sign/status matrix to designate multiple word records within a data type group as follows:

BIT		
31	30	WORD DESCRIPTION
0	1	First word of data type group
0	0	Intermediate positional, character words
1	1	Control words (symbol rotation and vector conics)
1	0	Last word of data type group

Attachment 6 to this document sets forth the formats of these FMC-specific ARINC 429 words.

7.8.107.6.10 EFI-to-FMC Data Transfer

The data sent from the EFI to the FMC will consist of the map mode, scale and symbol option selections made by the flight crew at the EFI control panel. These selections will be encoded into one or more discrete words, as defined in ARINC Specification 429, Part 2 and in ARINC Characteristic 725: Electronic Flight Instruments (EFI).

8.0 COMMUNICATIONS MANAGEMENT UNIT INTERFACE

4827	8.0 COMMUNICATIONS MANAGEMENT UNIT INTERFACE
4828	8.1 General
4829 4830 4831	The Communications Management Unit (CMU) interface is defined in ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2. Specific details are implementation dependent.
4832	

9.0 DATA BASE STORAGE CONSIDERATIONS

9.0 DATA BASE STORAGE CONSIDERATIONS

9.1 Introduction

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871 4872

4873

4874

The FMC will contain a number of data bases and configuration tables which provide the data and definitions required to support the functions defined in Section 4. The data bases are stored in non-volatile memory and may be periodically updated or modified via the data loader. The individual data bases should be separately loadable. Designers should provide significant growth capacity when sizing data base memory storage. Mechanisms should be provided to ensure the integrity of the stored data.

9.2 Navigation Data Base

The navigation data base is stored in non-volatile memory in two parts: a body of active permanent data which is effective until a specified expiration date and a set of data revisions or active data for the next period of effectivity. The effectivity dates for both sets of data are displayed for reference on the system's configuration definition page. Data base updates are to be accomplished at appropriate intervals by loading the next cycle via means of a data base loader.

The navigation data base contains all current information required for operation in a specified geographic area. The data base should be consistent with the requirements of RTCA DO-201A: Standards for Aeronautical Data. It includes the following data:

- · VOR, ILS, DME, VORTAC, and TACAN navigation aids
- NDBs
- Waypoints
- Airports and runways
- Standard Instrument Departures (SIDs)
- Standard Terminal Arrival Routes (STARs)
- Enroute airways
- Charted holding patterns
- Approaches (GNSS, ILS, VOR, NDB, LOC, LDA, etc., types)
- Approach and departure transitions
- Final Approach Segment (FAS) Data Block (for LP/LPV approaches)
- · Company route structure
- Terminal gates
- Alternates
- Minimum Safe Altitude (MSA)
- Minimum Enroute IFR Altitude (MEA)
- Minimum Obstruction Clearance Altitude (MOCA)
- Grid Minimum Off-Route Altitudes (MORAs)
- FIR/Upper Flight Information Region (UIR) Boundaries
- Special Use Airspace
- Effectivity dates

9.0 DATA BASE STORAGE CONSIDERATIONS

4875	Airline customized data
4876	• RNP
4877 4878 4879	The data base is capable of supplying all of the information required for the assembly of a complete flight plan for the selected route via MCDU data entry and selection.
4880	9.3 Airline Modifiable Information (AMI) Data Base
4881 4882 4883	The Airline Modifiable Information data base is capable of defining those items which may be individually selectable by the airline operator. These may include the following:
4884	Performance management options
4885	Airport speed restrictions
4886	AOC data link parameters
4887	Tailorable CDU page formats
4888	Flight test bus definitions
4889	The Airline Modifiable Information may also contain: special operations
4890	information, trigger events, special airline specific messages, and/or
4891	parameters.
4892	9.4 Performance Data Base
4893 4894 4895 4896 4897 4898 4899	The performance data base will contain the data necessary to allow the FMS to provide the vertical trajectory predictions (Section 4.3.3.2.1), performance calculations (Section 4.3.4), and vertical guidance (Section 4.3.3.2.2) functions. The data will consist of tables, coefficient for polynomials or any other convenient means of representing the data, but will not include any executable code. The data contained in the Performance Data base may include elements of the following:
4900	Aerodynamic Data
4901	 Drag polars (clean and high-lift)
4902	 Reynolds number drag correction
4903	 Compressibility drag
4904	 Trim drag (clean and high-lift)
4905	o Windmill drag
4906	 Spoiler/speed brake drag
4907	 Buffet onset mach number/lift coefficients
4908	 Stall speeds (clean and high-lift)
4909	o Bank angle limits
4910	 Propulsion Data
4911 4912	 Data to compute each thrust limit (Takeoff, Max Continuous, Max Cruise)
4913	 Data to compute de-rate and flex take-off rating
4914	o Bleed effects

Idle thrust setting

4915

9.0 DATA BASE STORAGE CONSIDERATIONS

4916 4917	 Relationship between thrust, fuel flow, ram drag and thrust setting parameter (EPR or N1)
4918	Performance Data
4919 4920	 Economy climb speed data (all-engine and one engine inoperative)
4921 4922	 Economy cruise speed data (all-engine and one engine inoperative)
4923 4924	 Economy descent speed data (all-engine and one engine inoperative)
4925	 Drift-down speed data
4926	 Hold speed data
4927	 Maximum endurance speed data
4928	 Long Range Cruise (LRC) speed data
4929	 Maximum angle climb speed data
4930	 Maximum rate of climb speed data
4931	 Flap/slat/gear placard speeds
4932	 Maximum altitude (all engine and one engine inoperative)
4933	 Take-off time, fuel, distance data
4934	 Go-around time, fuel, distance data
4935	 Alternate flight plan time, fuel, distance data
4936	 Optimum altitude/optimum step weight data
4937	 Relationship between fuel weight/C.G.
4938	Take-off/approach data
4939	 Data to compute V1, VR, and V2
4940	 Approach speed data

- o Climb-out speed data

4941

4942

4943

4944

4945

4946

4947

4948

4949 4950

4951

4952

4953

4954

4955

4956

4957

This is not an all-inclusive list. Some of the data in the list may not be applicable to a specific airplane/system and some additional data may be necessary in some applications, particularly as additional capability is added to the system. The format of the data is not specified in this document, but manufacturers are encouraged to use a standard format that will allow use of the FMS across multiple airplane types.

Data for the Performance data base is developed from data supplied by the airplane manufacturer, and may include off-line data reduction and modeling before loading into the FMS. It should be consistent with the data contained in that airplane's Airplane Flight Manual (AFM) and Flight Crew Operations Manual (FCOM).

The data base should contain sufficient data to allow identification of its part number and to which airplane model(s) it is applicable. Loading and use of the data in the FMS should include positive means of verifying that the appropriate data has been loaded, and that data pertaining to a particular model airplane is not being used on an airplane to which it does not apply.

9.0 DATA BASE STORAGE CONSIDERATIONS

4958 4959 4960	A particular data base may contain data for more than one airplane model. In this case, positive means to preclude the wrong data being used should be provided.
4961	9.5 Magnetic Variation Data Base
4962 4963 4964 4965	The magnetic variation data base will support the determination of magnetic variation for any Lat/Long, Navaid, Waypoint, Airport, etc. The format of the data stored in this data base is a manufacturer option, but should be flexible to accommodate periodic update of the magnetic variation data reference.
4966	COMMENTARY
4967 4968 4969 4970 4971 4972	The use of current MagVar throughout the flight deck is desired to minimize confusion. However, for those aircraft configurations which cannot be updated, system designers should give consideration to providing a means to harmonize MagVar tables with other aircraft equipment, such as the inertial reference system, to provide a consistent display of magnetic bearings in the flight deck.

9.6 Terrain and Obstacle Data

4973 4974

4975

4976

[This section dDeleted by Supplement 5].

9.0 DATA BASE STORAGE CONSIDERATIONS

4977	9.7 Airport Surface Map Data
4978	This section dDeleted by Supplement 5].
4979	
4980	9.8 Configuration Data Base
4981 4982	The configuration data base defines parameters specific to an individual system application or installation.
4983	COMMENTARY
4984 4985	These items are type certification driven. Changes to these items will require re-certification.
4986	These items may include the following:
4987	 Tables containing ATS data link parameters
4988	 Transport and network protocols
4989	 FMS configuration
4990	 Available functional options
4991	 Interface variations
4992	 CMU specific configuration variations
4993	 Optional maintenance configurations
4994	 Weight variants definitions
4995	
4996	

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

4997 10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS 4998 10.1General Discussion 4999 Since the FMC may be the primary means of navigation on some aircraft, 5000 the utmost attention should be paid to the need for reliability and 5001 maintainability in all phases of system design, production, and installation. 5002 COMMENTARY 5003 It is also important to remember that all aspects of the testing program (BITE, ramp, and shop testing) contribute to the reliability 5004 5005 and profitable operation of a system by the end users. The ability of 5006 the program to identify faults, and facilitate their repair, has a 5007 profound affect on maintainability and overall reliability. Attention to a close relationship between aircraft faults and shop testing will help in 5008 5009 reducing the number of unscheduled removals. 5010 10.2 Fault Detection and Reporting 5011 10.2.1 General 5012 The FMC should support at least one of the following Built-In Test Equipment (BITE) capabilities defined by AEEC: 5013 5014 ARINC Report 624: Design Guidance for Onboard Maintenance 5015 5016 ARINC Report 604: Guidance for Design and Use of Built-In Test 5017 Equipment 5018 MCDU maintenance pages should contain a fault log formatted in accordance with ARINC Report 624 or ARINC 604. This maintenance log 5019 should be able to be printed on the cockpit printer via selection on the 5020 5021 MCDU. 5022 **COMMENTARY** The option used should be compatible with the aircraft in which the 5023 5024 FMC will be installed. 5025 BITE in the FMC should be capable of detecting at least 95% of the faults or failures which can occur within the FMS, and as many faults as possible 5026 5027 associated with other interfaces. 5028 Where possible, optional functions present in the FMS that are not activated 5029 by the operator should be excluded from all on-board testing. The intent is to 5030 eliminate unnecessary removals. 5031 BITE should closely relate to bench testing. Error modes encountered on the 5032 aircraft should be reproducible in the shop. Error messages recorded by BITE should assist bench testing. 5033 5034 No failure occurring in the BITE subsystem should interfere with the normal 5035 operation of the FMC. 5036 10.2.2 Self-Monitoring 5037 The self-contained fault detection should incorporate nonvolatile memory 5038 and logic to identify true hardware faults based on the historical trends. This

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

5039 5040	includes a flight hour monitor as well as air-ground logic to monitor installed time on the aircraft.
5041	

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

10.2.3 Debugging Tools

FMC complexity is such that it may sometimes exhibit operational anomalies for which the root cause(s) are difficult to identify. To provide for quick inservice observation/evaluation of the FMC software anomalies, the FMC should provide password accessible MCDU pages for BITE, view latched fail code(s), memory contents, etc. This feature would be usable by supplier/operator engineers as a debugging tool. Access to these pages should be categorized and leveled for line maintenance or engineering use, as appropriate. This should be a certified configuration so as to allow engineering evaluations in-flight during revenue operations of the system.

10.2.4 Failure Rate Monitor

Reasonable failure rate thresholds for some significant faults should be incorporated such that the FMC would optionally set a flag when these thresholds are exceeded.

COMMENTARY

Some hardware faults that would be reset during a ground check or power interruption may not be repeated immediately. This condition may allow the unit to remain on board the aircraft. A threshold exceedance monitor would detect and set the flag when one of these transient faults exceeds an acceptable rate of occurrence. Some airlines may choose to deactivate such a monitor.

10.2.5 Fault Messaging

The FMC will have a go/no-go light or indicator indicating overall unit performance ability. BITE fault messages (MCDU display, code lights or otherwise) will be as descriptive as possible (English language fault descriptions). When an external or internal fault occurs, the FMC will alert maintenance personnel to the status of the specific system components, either as a displayed list, or on request.

System faults should be classified based on their effect on the system as debilitating or non-debilitating. Fault displays should also indicate the most probable correction of the problem.

A system debilitating failure is any non-recoverable failure which prohibits the FMC from performing any basic required function: navigation, performance computations, flight planning, etc. Cockpit and/or LRU failure annunciation is provided for a system debilitating failure. A system debilitating failure will be logged in BITE memory. If recoverable, crew action may be necessary.

A non-system-debilitating failure is any BITE-detected failure which is autorecoverable within specified/acceptable operational limitations (of short duration and requiring no crew action for recovery) and which has no adverse impact on the required functions of the FMC. A non-system-debilitating failure will be logged in BITE memory, but need not be cockpit and/or LRU annunciated.

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

10.3_Ramp Maintenance

10.3.1 Return to Service Testing

When an FMC is installed on an air transport aircraft, some form of end to end testing should be available for two primary reasons:

- To provide an operational verification of the system function prior to return to service.
- To reduce unnecessary removals of the FMC when the fault was actually in another part of the system.

As an end-to-end test, the procedure should verify integrity of the LRU as well as interfaces with other systems. This maintenance test will provide test values on the digital outputs with the appropriate status matrix code for the test condition as defined in ARINC Specification 429. This test can also exercise internal monitoring and diagnostic routines and provide test formats on the MCDU and on a multifunction display.

COMMENTARY

The airlines prefer test results to indicate the probable cause of failure. Emphasis on end to end system testing will lead to a desirable increase in the MTBUR, especially for removals that were not related to LRU faults.

Means should be provided for initiating this maintenance test either through an externally supplied discrete input or an MCDU prompt. The FMC may also have the capability, via a switch on the front of the FMC, for initiating the maintenance test. If this switch is provided, an indicator should also be mounted on the FMC front panel to show the result of the test.

10.3.2 Programmable Data Bus Interface

The system should provide output data to be recorded for analysis of system performance, including in-service operation. A list of available parameters, scaling, and label assignments should be determined by the manufacturer and made available for selection by the aircraft operator as required.

10.3.3 Data Loading

It is expected that operational software (manufacturer and airline controlled software or tables) and data bases (e.g., navigation data, performance data) will be on-board loadable. The FMC should accept this data from a data loader in accordance with ARINC 615 or ARINC 615A. The standard interface from the data loader to the FMC is high-speed ARINC 429. The return interface to the data loader is low-speed ARINC 429. The FMC should also support high-speed data loading via Ethernet interface defined in ARINC 615A.

COMMENTARY

It is recognized that some minimal level of boot software must be non-loadable to provide the basic loading interface.

The FMC should provide compatibility testing to ensure that loadable software and data are compatible with the FMC hardware configuration. Mechanisms should be provided to ensure the integrity of the loaded data.

10.0 BUILT-IN TEST AND MAINTENANCE PROVISIONS

5129	10.3.4 Cross Loadable Software
5130 5131	All loadable software and data bases should be selectively cross loadable between two FMCs in a dual installation via the intersystem bus.
5132	COMMENTARY
5133 5134 5135 5136	The objective of the cross loading capability is to reduce loading times. Since mixed cases of cross loadable and non-cross loadable software present many problems, operators prefer that all of the software be cross loadable.
5137	10.3.5 Data Loading Fault Recovery
5138 5139 5140 5141	In all cases, when loading or cross loading software or data, the procedure must provide a method for recovering from faults. The FMC should be able to abort a software or data base loading process without a major disruption of the system (disruption requiring removal of the FMC from the aircraft).
5142	10.4 Provisions for Automatic Test Equipment
5143	10.4.1 General
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153	To enable Automatic Test Equipment (ATE) to be used in the bench maintenance, internal circuit functions not available at the unit service connector and considered by the equipment manufacturer necessary for automatic test purposes may be brought to pins on an auxiliary connector of a type selected by the equipment manufacturer. This connector should be fitted an adequate number of contacts needed to support the ATE functions. The connector should be provided with a protective cover suitable to protect these contacts from damage, contamination, etc. while the unit is installed in the aircraft. The manufacturer should observe ARINC Specification 600 for unit projections, etc., when choosing the location for this auxiliary connector
5154	10.4.2 ATE Testing
5155 5156 5157 5158 5159	The FMC should be ATE testable and should have a test program written using the ATLAS language specified in ARINC Specification 626 : Standard ATLAS Subset for Modular Test. Development of the test program set should consider and apply the quality characteristics set forth in ARINC Specification 625.
5160	COMMENTARY
5161 5162 5163	The airlines desire that the ATLAS test procedure be demonstrated to execute without modification on Automatic Test Systems defined in ARINC Specification 608A: Automatic Test Equipment Standards.
5164	

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

ATTACHMENT 1 FLIGHT MANAGEMENT SYSTEM

5165

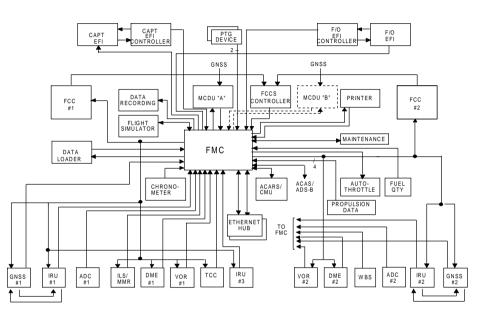


Figure 1-1 –

Configuration 1 – Single FMC Installation and

Configuration 2 – Single FMC/Dual CDU Installation

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

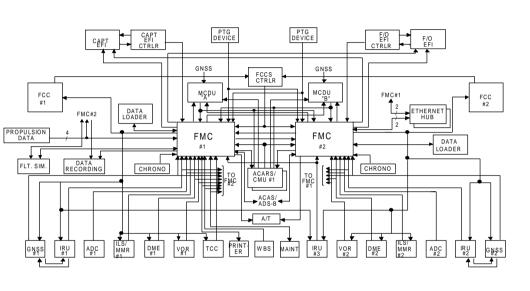


Figure 2-2 - Configuration 3 - Dual FMC CDU Intallation

ATTACHMENT 1 FLIGHT MANGEMENT SYSTEM

5173 ATTACHMENT 2 FMC CONNECTOR AND INTERWIRING
5174 ATTACHMENT 2-1

ATTACHMENT 2-1 FMC CONNECTOR POSITIONING

5176 **ATTACHMENT 2-2**

5177 5178

5175

Figure 2-1 – View from Rear of Connector

ATTACHMENT 2-2 STANDARD INTERWIRING

5 179 ATTACHM 5 180 ATTACHM

ATTACHMENT 2-3 STANDARD INTERWIRING

ATTACHMENT 2-3

			1 2
FUNCTION	_	FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	٦A	TP1A	ARINC 711 VOR #1
ARINC 429 Input	В	TP1B	ARINC 711 VOR #1
Spare	7 6	TP1C	ANING I II VOIC#1
•	٦Α	TP1D	ARINC 709 DME #1
ARINC 429 Input	l l		
ARINC 429 Input] B	TP1E	ARINC 709 DME #1
Spare		TP1F	
ARINC 429 Input] A	TP1G	ARINC 710 ILS
ARINC 429 Input	Јв	TP1H	ARINC 710 ILS
Spare		TP1J	
Discrete Input		TP1K	Oleo Strut Switch
	٦.		
ARINC 429 Output	A	TP2A	ARINC 758 CMU
ARINC 429 Output	JB	TP2B	ARINC 758 CMU
Spare		TP2C	
ARINC 429 Output	ŢΑ	TP2D	Trajectory Bus
ARINC 429 Output	В	TP2E	Trajectory Bus
Spare	-	TP2F	
ARINC 429 Output	lΑ	TP2G	Spare
ARINC 429 Output	J B	TP2H	Spare
Spare		TP2J	-r
Spare		TP2K	
•			
ARINC 429 Input] A	TP3A	ARINC 704A IRS
ARINC 429 Input	J₿	TP3B	or ARINC 705 AHRS #1
Spare		TP3C	
ARINC 429 Input	7 A	TP3D	ARINC 743A/755 GNSS #1
ARINC 429 Input	J B	TP3E	ARINC 743A/755 GNSS #1
Spare	_	TP3F	
ARINC 429 Input] A	TP3G	ARINC 737 Weight and Balance System
ARINC 429 Input	B	TP3H	ARINC 737 Weight and Balance System
Spare	7 0	TP3J	, it is to 757 Word it all a balance system
Discrete Input		TP3K	Self Test Switch
•			
Spare		TP4A	
Spare		TP4B	
Spare	_	TP4C	
ARINC 429 Output] A	TP4D	Spare
ARINC 429 Output	J B	TP4E	Spare
Spare		TP4F	
ARINC 429 Input	7 A	TP4G	ARINC 762 TAWS
ARINC 429 Input	В	TP4H	ARINC 762 TAWS
Spare	-	TP4J	
Discrete Input		TP4K	Mag/True Input #1
A DINIO 400 I	7.4	TDSA	FFID 4 0
ARINC 429 Input] A	TP5A	EFI Data Source #1
ARINC 429 Input	JB	TP5B	EFI Data Source #1
Spare		TP5C	
ARINC 429 Input	7 A	TP5D	ARINC 611 Fuel Quantity Data Source
ARINC 429 Input	∫В	TP5E	ARINC 611 Fuel Quantity Data Source
Spare	-	TP5F	,
ARINC 429 Input	lΑ	TP5G	ARINC 703 TCC
ARINC 429 Input	B	TP5H	ARINC 703 TCC

Spare		TP5J	140011011011	
Discrete Input		TP5K	MCDU Select Switch 1 2	3
FUNCTION		FMC PIN	SOURCE/SINKS	NOTES
TONCTION		TWICTH	300102311113	NOTES
Spare		TP6A		
Spare		TP6B		
Spare		TP6C		
ARINC 429 Output	ŢΑ	TP6D	Spare	
ARINC 429 Output	J B	TP6E	Spare	
Spare		TP6F		
ARINC 429 Output	7 A	TP6G	ARINC 739A Offside MCI	
ARINC 429 Outpu	В	TP6H	ARINC 739A Offside MCI	DU
Spare		TP6J TP6K	D	
Discrete Input		IPON	Reserved Spare	
ARINC 429 Input A	٦	TP7A	Propulsion Data	
ARINC 429 Input B		TP7B	Source #3	
Spare		TP7C		
ARINC 429 Input A	7	TP7D	ARINC 706	
ARINC 429 Input B		TP7E	Air Data System #1	
Spare	_	TP7F		
ARINC 429 Input A		TP7G	ARINC 701	
ARINC 429 Input B	٦	TP7H	Glare Shield Controller	
Spare Discrete Input		TP7J TP7K		
Discrete input		IF/K		
Spare		TP8A		
Spare		TP8B		
Spare		TP8C		
Spare		TP8D		
Spare		TP8E		
Spare		TP8F		
Spare Spare		TP8G TP8H		
Spare		TP8J		
Spare		TP8K		
ARINC 429 Input	ηА	TP9A	ARINC 739A Onside MCI	
ARINC 429 Input	∫В	TP9B	ARINC 739A Onside MCI	DU
Spare	_	TP9C		
ARINC 429 Input	A	TP9D	ARINC 615 Data Loader	6
ARINC 429 Input	∫В	TP9E TP9F	ARINC 615 Data Loader	
Discrete Input ARINC 429 Output	ĪΑ	TP9G	Data Utilization	
ARINC 429 Output	В	TP9H	Devices	
Spare	7 0	TP9J	2011003	
Discrete Input		TP9K	Man/Autotune Input #1	4
-			•	
Spare		TP10A o		
Spare		TP10B o		
Spare Spare		TP10C o TP10D o		
Spare		TP10D o TP10E o		
Spare		TP10F o		
Spare		TP10G o		
Spare		TP10H o		
Spare		TP10J o		
Spare		TP10K o		

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Output	٦А	TP11A	EF/Instruments
ARINC 429 Output	В	TP11B	EF/Instruments
Spare		TP11C	
ARINC 429 Input	٦А	TP11D	ARINC 739A Offside MCDU
ARINC 429 Input	В	TP11E	ARINC 739A Offside MCDU
Spare	70	TP11F	ANINO 133A Oliside MODO
ARINC 429 Output	٦А	TP11G	ARINC 615 Data Loader 6
ARINC 429 Output	B	TP11H	ARINC 615 Data Loader
	7 0	TP11J	ANING 013 Data Loadel
Spare			Man/Autotune Input #2 4
Discrete Input		TP11K	Man/Autotune Input #2 4
Spare		TP12A	
Spare		TP12B	
Spare		TP12C	
Spare		TP12D	
Spare		TP12E	
Spare		TP12F	
Spare		TP12G	
Spare		TP12H	
Spare		TP12J	
Spare		TP12K	
Spare		IF IZK	
ARINC 429 Output	7 A	TP13A	Other ARINC 702A FMC
ARINC 429 Output	В	TP13B	Other ARINC 702A FMC
Spare		TP13C	
ARINC 429 Output	lΑ	TP13D	ARINC 739A Onside MCDU
ARINC 429 Output	В	TP13E	ARINC 739A Onside MCDU
Spare	_	TP13F	
ARINC 429 Output	٦а	TP13G	Test Data Recording
ARINC 429 Output	B	TP13H	Test Data Recording
Spare	3 5	TP13J	root Data Recording
Discrete Output		TP13K	Alert Annunicator
Discrete Output		IFISK	Alert Affidilicator
Spare		TP14A	
Spare		TP14B	
Spare	_	TP14C	
Ethernet Interface #1 6] A	TP14D	615A Data Loader, 758 CMU,
Ethernet Interface #1	В	TP14E	and/or 744A Printer via
			Ethernet Hub
Ethernet Interface #1	С	TP14F	615A Data Loader, 758 CMU,
6			
Ethernet Interface #1	D	TP14G	and/or 744A Printer via
			Ethernet Hub
Ethernet Interface #1	E	TP14H	615A Data Loader, 758 CMU,
6			,,
			and/or 744A Printer via Ethernet Hub
Spare		TP14J	Euromot Hub
Spare Spare		TP14K	
γραισ		1F 14K	

1	•

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	٦А	TP15A	ARINC 758 CMU #1
ARINC 429 Input	В	TP15B	ARINC 758 CMU #1
Spare		TP15C	7 H WHO 7 00 OMO # 1
ARINC 429 Input	ĪΑ	TP15D	ARINC 704A IRS or
ARINC 429 Input	∫ B	TP15E	ARINC 705 AHRS #3
	7 0	TP15E	AINING 703 AI ING #3
Spare	٦.		Dranulaian Data Cauraa #4
ARINC 429 Input	A	TP15G	Propulsion Data Source #1
ARINC 429 Input	JB	TP15H	Propulsion Data Source #1
Spare		TP15J	
Discrete Output		TP15K	
ARINC 429 Input] A	MP1A	Propulsion Data
ARINC 429 Input	JB	MP1B	Source #4
Spare		MP1C	
ARINC 429 Input	ĪΑ	MP1D	ARINC 711 VOR #2
ARINC 429 Input	J B	MP1E	ARINC 711 VOR #2
Spare		MP1F	
ARINC 429 Input	ĪΑ	MP1G	Other ARINC 702A FMC
ARINC 429 Input	∫ B	MP1H	Other ARING 702A FMC
Spare	J 0	MP1J	OUIGI AININO 102A I WIO
Discrete Input		MP1K	SDI Code Input #1 [5]
ARINC 429 Output		MP2A	Autothrottle System
ARINC 429 Output		MP2B	Autothrottle System
Spare		MP2C	
ARINC 429 Output		MP2D	ARINC 624 Maintenance System
ARINC 429 Output		MP2E	ARINC 624 Maintenance System
Spare		MP2F	
ARINC 429 Output		MP2G	ARINC 740/744A Printer
ARINC 429 Output		MP2H	ARINC 740/744A Printer
Spare .		MP2J	
Discrete Input		MP2K	
ARINC 429 Input	JΑ	MP3A	ARINC 704A IRS or
ARINC 429 Input	B	MP3B	ARINC 705 AHRS #2
Spare	7 0	MP3C	AMINO 100 ALINO #2
ARINC 429 Input	٦٨	MP3D	ARINC 731 Digital Clock
	A B	MP3E	
ARINC 429 Input	D L		ARINC 731 Digital Clock
Spare	٦ ^	MP3F	ADING 704D A CADO
ARINC 429 Input	A	MP3G	ARINC 724B ACARS
ARINC 429 Input	JB	MP3H	ARINC 724B ACARS
Spare		MP3J	-
Discrete Input		МРЗК	SDI Input #2 5
Spare		MP4A	
Spare		MP4B	
Spare		MP4C	
ARINC 429 Output	ŢΑ	MP4D	Spare
ARINC 429 Output	В	MP4E	Spare
Spare		MP4F	
ARINC 429 Input	ĪΑ	MP4G	ASAS Bus
ARING 429 Input	l B	MP4H	ASAS Bus

ATTACHMENT 2-2 STANDARD INTERWIRING

Spare MP4J Spare MP4K

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
ARINC 429 Input	ŢΑ	MP5A	Propulsion
ARINC 429 Input	JB	MP5B	Data Source #2
Spare		MP5C	
ARINC 429 Input] A	MP5D	ARINC 706
ARINC 429 Input	J₿	MP5E	Air Data System #2
Spare	_	MP5F	
ARINC 429 Input	A	MP5G	ARINC 740/744A Printer
ARINC 429 Input	Jв	MP5H	ARINC 740/744A Printer
Spare		MP5J	
Discrete Input		MP5K	SDI Code Input #3 5
ARINC 429 Input	٦A	MP6A	ARINC 624 Maintenance System
ARINC 429 Input	В	MP6B	ARINC 624 Maintenance System
Spare	-	MP6C	
ARINC 429 Input	٦A	MP6D	ARINC 758 CMU #2
ARINC 429 Input	JB	MP6E	ARINC 758 CMU #2
Spare		MP6F	
ARINC 429 Input	ĪΑ	MP6G	ARINC 724B ACARS #2
ARINC 429 Input	J₿	MP6H	ARINC 724B ACARS #2
Spare		MP6J	
Discrete Output		MP6K	
ARINC 429 Input	٦Α	MP7A	ARINC 743A/755 GNSS #2
ARING 429 Input	B	MP7B	ARINC 743A/755 GNSS #2
Spare	7 0	MP7C	AKINO 140A/100 GNOO #2
ARINC 429 Output	JΑ	MP7D	Data Utilization
ARINC 429 Output	B	MP7E	Devices
Spare	70	MP7F	Devices
ARINC 429 Input	ĪΑ	MP7G	ARINC 709 DME #2
ARINC 429 Input	B	MP7H	ARINC 709 DME #2
Spare		MP7J	7111110 100 51112 112
Discrete Output		MP7K	
ARINC 429 Input	ŢΑ	MP8A	Spare
ARINC 429 Input	J B	MP8B	Spare
Spare		MP8C	
ARINC 429 Input	7 A	MP8D	Spare
ARINC 429 Input	JB	MP8E	Spare
Spare		MP8F	
ARINC 429 Input] A	MP8G	Spare
ARINC 429 Input	JB	MP8H	Spare
Spare		MP8J	
Spare		MP8K	
ARINC 429 Output	ŢΑ	MP9A	ARINC 724B ACARS Data Link
ARINC 429 Output	В	MP9B	ARINC 724B ACARS Data Link
Spare	_	MP9C	
ARINC 429 Input	ŢΑ	MP9D	EFIS
ARINC 429 Input	В	MP9E	EFIS
Discrete Input		MP9F	

ATTACHMENT 2-2 STANDARD INTERWIRING

			1 2
FUNCTION		FMC PIN	SOURCE/SINKS NOTES
		MD404	
Spare		MP10A	
Spare		MP10B	
Spare		MP10C	
Ethernet Interface #2	7 A	MP10D	615A Data Loader, 758 CMU,
Ethernet Interface #2	_ B	MP10E	and/or 744A Printer via
			Ethernet Hub
Ethernet Interface #2	7 C	MP10F	615A Data Loader, 758 CMU,
Ethernet Interface #2	D	MP10G	and/or 744A Printer via
Ethernet Interface #2	lΕ	MP10H	Ethernet Hub
Spare	_	MP10J	
Spare		MP10K	
Discrete Input		MP11A	Data Loader Interface 6
Discrete Input		MP11B	Connector
Discrete Input		MP11C	Reserved for Application-
Discrete Input		MP11D	Unique Discrete Inputs
Discrete Input		MP11E	Reserved for Application-
Discrete Input		MP11F	Unique Discrete Inputs
Discrete Input		MP11G	Reserved for Application-
		MP11H	
Discrete Input			Unique Discrete Inputs
Discrete Input		MP11J	Reserved for Application-
Discrete Input		MP11K	Unique Discrete Inputs
Spare		MP12A	
Spare		MP12B	
Spare		MP12C	
Spare		MP12D	
Spare		MP12E	
Spare		MP12F	
Spare		MP12G	
Spare		MP12H	
Spare		MP12J	
Spare		MP12K	
Diagrata Innut		MD43A	Departed for Application
Discrete Input		MP13A	Reserved for Application-
Discrete Input		MP13B	Unique Discrete Inputs
Discrete Input		MP13C	Reserved for Application-
Discrete Input		MP13D	Unique Discrete Inputs
Discrete Input		MP13E	Reserved for Application-
Discrete Input		MP13F	Unique Discrete Inputs
Discrete Input		MP13G	Reserved for Application-
Discrete Input		MP13H	Unique Discrete Inputs
Discrete Input		MP13J	Reserved for Application-
Discrete Input		MP13K	Unique Discrete Inputs
Spare		MP14A	
Spare		MP14B	
Spare		MP14C	
Spare		MP14D	
Spare		MP14E	

Spare	MP14F
Spare	MP14G
Spare	MP14H
Spare	MP14J
Spare	MP14K

		1 2
FUNCTION	FMC PIN	SOURCE/SINKS NOTES
Discrete Input	MP15A	Reserved for Application-
Discrete Input	MP15B	Unique Discrete Inputs
Discrete Input	MP15C	Reserved for Application-
Discrete Input	MP15D	Unique Discrete Inputs
Discrete Input	MP15E	Reserved for Application-
Discrete Input	MP15F	Unique Discrete Inputs
Discrete Input	MP15G	Reserved for Application-
Discrete Input	MP15H	Unique Discrete Inputs
Reserved	MP15J	
Reserved	MP15K	
115 Vac Primary Power (Hot)	BP1	115 Vac 5 A C/B
Spare	BP2	
Spare	BP3	
Spare	BP4	
Spare	BP5	
Spare	BP6	
115 Vac Primary Power (Cold)	BP7	ac Ground
Chassis Ground	BP8	dc Ground
Spare	BP9	
Spare	BP10	
Spare	BP11	
Spare	BP12	
Spare	BP13	

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

- 5182 <u>ATTACHMENT 2-4</u> <u>NOTES APPLICABLE TO THE STANDARD INTERWIRING</u>
- 5183 ATTACHMENT 2-4ATTACHMENT 2-5
- The standard interwiring shown in this Attachment is for a single FMC installation
 comprised of one FMC and one CDU. For the sake of completeness; however, wiring is
 also shown to enable the FMC to operate with a second CDU and one for a cross-talk
 bus between this FMC and another one.
- 5188 2. Because of the variety of interwiring characteristics of aircraft installations utilizing the
 5189 702A FMC, this attachment does not standardize detailed interwiring in the traditional
 5190 sense. Connector pin assignments are standardized with respect to input/output signal
 5191 types only. While nominal signal functions are provided, manufacturers are encouraged
 5192 to utilize programmable I/O design approaches which allow for variations in aircraft
 5193 interfaces and installations.
- 5194 3. Shield Grounds

5197

5198

5199

5200

5207

5208 5209

5210

5211

5212 5213

5214

5215

5216

5217 5218

- 5195 4. Digital data bus shield grounds should be grounded to aircraft structure at both ends.
- 5196 5. Off-Side CDU Enable Discrete
 - 6. This discrete tells the FMC which CDU has control of data entry in dual CDU installations in which either may perform this function. When an open circuit is sensed by the FMC, its prime CDU has control. When the wire is connected to ground by means of a cockpit-located switch, or equivalent, the other CDU has control.
- 5201 7. FMC Master/Slave and Manual Autotune Discrete
- 5202 8. The Master/Slave discrete may be used in dual FMC installations to tell the FMCs
 5203 which unit should be considered as master for dual system synchronism and
 5204 redundancy management purposes as described in Section 3.5. The manual/autotune
 5205 discretes provide information to the FMCs on VOR/DME turning status. When in
 5206 autotune mode, these radios accept tuning commands from the FMC.
 - 9. Source/Destination Identifier (SDI) Encoding
 - 10. Pins MP1K, MP3K, and MP5K are assigned for encoding the location of the FMC in the aircraft (i.e., system number) per Section 2.1.4 of ARINC Specification 429. If the SDI function is used, the following encoding scheme should be employed, the pins designated being either left open circuit or connected, on the aircraft-mounted half of the connector, to pin MP5K. The wiring of these pins should cause bit numbers 9 and 10 of each digital word transmitted by the FMC to take on the binary states defined in ARINC Specification 429. When the SDI function is not used, both pins MP1K and MP3K should be left open circuit such that bit numbers 9 and 10 are always binary zeros.

FMC No.	Connector Pin		
	MP1K	MP3K	
Not Applicable	Open	Open	
1	Open	To MP5K	
2	To MP5K	Open	
3	To MP5K	To MP5K	

11. The foregoing describes the SDI function performed by a data source. ARINC Specification 429 also discusses the data identification function to be performed by Commented [BM(AU17]: Looks like something got messed up.

5226

14.

ATTACHMENT 2-3 NOTES APPLICABLE TO THE STANDARD INTERWIRING

5219 5220 5221	sinks whose system numbers are encoded in this way. In summary, the FMC should recognize and accept data words in which bit numbers 9 and 10 are either both zeros or form the code defined by pins MP1K and MP3K. All other data may be discarded.
5222	12. Data Loader Interface
5223 5224 5225	13. It is expected that the airframe manufacturers will provide, at some convenient location on the aircraft, a connection point for an external data loader of the type described in ARINC Report 615 and 615A.

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

ATTACHMENT 2-6 CONNECTOR INSERT LAYOUT

ATTACHMENT 2-5ATTACHMENT 2-7

TOP INSERT

	Α	В	С	D	E	F	G	Н	J	K
1	ARINC 42		SPARE		29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	O DISC INPUT
2	ARINC 429	OUTPUT	SPARE	ARINC 429	OUTPUT		-	OUTPUT	SPARE	SPARE
	o A	o B	0	o A	o B	SPARE 0 0	o A	o B	0	o
3	ARINC 429		SPARE		29 INPUT	SPARE		29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	O DISC INPUT
4	SPARE	SPARE	SPARE		OUTPUT	SPARE		29 INPUT	SPARE	
	0	o	0	o A	o B	0	o A	o B	0	O DISC INPUT
5	ARINC 42		SPARE	-	29 INPUT	SPARE	-	29 INPUT	SPARE	
	o A	o B	0	o A	o B	0	o A	o B	0	o DISC INPUT
6	SPARE	SPARE	SPARE		OUTPUT	SPARE		OUTPUT	SPARE	
	0	0	o	o A	o B	0	o A	o B	0	O DISC INPUT
7	ARINC 42	9 INPUT o	SPARE	ARINC 42	29 INPUT o	SPARE	ARINC 42	29 INPUT o	SPARE	o
	A	В		A	В		A	В	-	DISC INPUT
8	SPARE 0	SPARE o	SPARE o	SPARE 0	SPARE 0	SPARE o	SPARE 0	SPARE 0	SPARE 0	SPARE 0
9	ARINC 42		SPARE	-	29 INPUT		-	OUTPUT	SPARE	
	o A	o B	0	À	o B	DISC INPUT	o A	o B	0	O DISC INPUT
10	SPARE o	SPARE o	SPARE o	SPARE o	SPARE 0	SPARE o	SPARE 0	SPARE o	SPARE 0	SPARE o
11	ARINC 429	OUTPUT	SPARE	ARINC 42	29 INPUT	SPARE	ARINC 61	OUTPUT	SPARE	
	o A	o B	o	o A	o B	0	o A	o B	0	o DISC INPUT
12	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0	SPARE 0
13	ARINC 429	OUTPUT	SPARE		OUTPUT			OUTPUT	SPARE	
	o A	В	0	o A	o B	0	o A	o B	0	O DISC OUTPUT
14	SPARE	SPARE	SPARE			RNET INTERFA			SPARE	SPARE
	0	o	0	o A	o B	o C	o D	o E	0	o
15	ARINC 42		SPARE		29 INPUT	SPARE	ARINC 42		SPARE	_
	o A	o B	o	o A	o B	0	o A	o B	0	O DISC OUTPUT

5227

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

5232

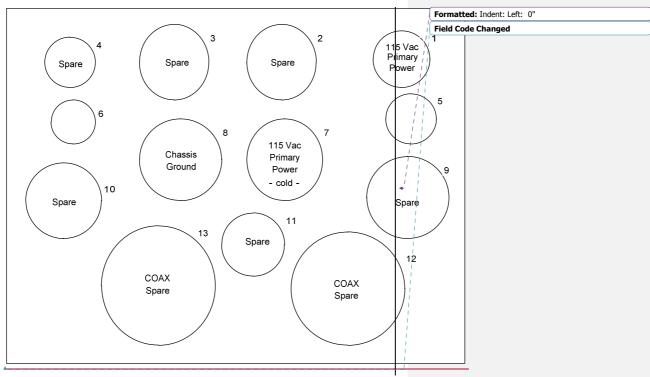
MIDDLE INSERT

MIDDLE INSEI

	Α	В	С	D	E	F	G	Н	J	K
1	ARINC 429 INPUT o A B		% P ∢ K E o	ARINC 429 INPUT o o A B		0 P A R E 0	ARINC 428 INPUT O O A B)	SPAREO	S D
2	ARINC 429 OUTPUT o o A B		S P A R E o	ARINC 429 OUTPUT o o A B		S P A R E o	ARINC 429 OUTPUT o o A B		S P A R E o	0 D - S C - N P U T
3	ARINC 429 INPUT O O A B		S P A R E o	ARINC 429 INPUT o o A B		S P A R E o	ARINC 425 INPUT o o A B		S P A R E o	0 D S C N P U T
4	S P A R E	S P A R E	S P A R E o	ARINC 429 OUTPUT o o A B		S P A R E o	ARINC 429 INPUT o o A B)	S P A R E	S P A R E o
5	ARINC 429 INPUT O O A B		S P A R E o	ARINC 429 INPUT o o A B		S P A R E o	ARINC 425 INPUT 0 0 A B		S P A R E o	0 D S C N P U T
6	ARINC 429 INPUT o o A B		S P A R E o	ARINC 429 INPUT o o A B		SPAREO	ARINC 429 INPUT o o A B)	S P A R E	o D I S C

← - - - Formatted: 32 Bit Table Text

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT


										O U T P U T
7	ARINC 429 INPUT O O A B		S P A R E o	ARINC 429 OUTPUT o o A B		S P A R E o	ARINC 429 INPUT o o A B	Ð	S P A R E o	0 D S C N P U T
8	ARINC 429 INPUT o o A B		S P A R E o	ARINC 429 INPUT o o A B		S P A R E o	ARINC 429 INPUT o o A B	Ð	S P A R E o	S P A R E o
9	ARINC 429 OUTPUT O O A B		S P A R E o	ARINC 429 INPUT o o A B		0 D S C N P U T	ARINC 429 OUTPUT o o A B		S P A R E o	S P A R E o
1 0	S P A R E o	S P A R E o	S P A R E o	o A	ETHERNET o B	INTERFACE #. o o C E	2 0 D		S P A R E o	S P A R E o
1	0 D - S C - N P U T	0 D S C N P U T	0 D S C N P U T	0 D S C N P U T	o D I S C I N P U T	0 D - S C - N P U T	0 D 8 C N P U T	0 D S C N P U T	o D I S C I N P U T	1C d Z - O S - O O
1 2	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E	S P A R E o

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

1 3	o D S C N P U T	0 D S C N P U T	0 D S C N P U T	0 D S C N P U T	o D S C N P U T	0 D S C N P U T	0 D S C N P U T	0 D S C N P U T	0 D S C N P U T	0 D - S C - N P U T
1 4	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	S P A R E o	SPAREO	S P A R E o	S P A R E o	S P A R E o
1 5	0 D I S C I N P U T	0 D I S C I N P U T	0 D S C N P U T	0 D S C N P U T	0 D I S C I N P U T	0 D S C C N P U T	0 D S C N P U T	0 D I S C I N P U T	o R S V D	o R S V D

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

5235 BOTTOM INSERT

ATTACHMENT 2-4 CONNECTOR INSERT LAYOUT

5238	ATTACHMENT 3
5239	
5240	
5241	
5242	
5243	
5244	THIS SECTION INTENTIONALLY LEFT BLANK
5245	

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

5246 ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			МСБИ	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
DISTANCE TO GO	001	BCD		Х	Х				
TIME TO GO	002	BCD			0				
PRESENT POSITION LATITUDE	010	BCD		0					
PRESENT POSITION LONGITUDE	011	BCD		0					
GROUND SPEED	012	BCD		0	X				
SELECTED RUNWAY HEADING	017	BCD		0					
SELECTED N1/EPR (BCD)	021	BCD							l
TACAN SELECTED COURSE (BCD)	027	BCD		0					
ILS FREQUENCY	033	BCD		0					
VOR/ILS FREQUENCY #1	034	BCD		0					
VOR/ILS FREQUENCY #2	034	BCD		0					
DME FREQUENCY #1	035	BCD		0					
DME FREQUENCY #2	035	BCD		0					
MLS FREQUENCY/CHANNEL	036	BCD		0					
SET LATITUDE	041	BCD		X					
SET LONGITUDE	042	BCD		X					
SET MAGNETIC HEADING	043	BCD		Х					
FAS DATA BLOCK MESSAGE START	045	BLK		<u>O</u>					
_(see ARINC 743B/755 for details)									
FAS DATA BLOCK MESSAGE DATA	<u>046</u>	<u>BLK</u>		<u>O</u>					
ETA (ACTIVE WAYPOINT)	056	BCD			X				l
ACMS INFORMATION	061	BNR		0					
ACMS INFORMATION	062	BNR		0					
ACMS INFORMATION	063	BNR		0					
LONGITUDINAL (ACTIVE WAYPOINT)	066	BCD		0					
CENTER OF GRAVITY (BCD)									
REFERENCE AIRSPEED (VREF)	070	BNR		0	0				
TAKE-OFF CLIMB AIRSPEED (V2)	071	BNR		0	0				
ROTATION SPEED (VR)	072	BNR		0	Χ				
CRITICAL ENGINE FAILURE SPEED VI	073	BNR		Х					
ZERO FUEL WEIGHT	074	BNR		0					
GROSS WEIGHT	075	BNR		Х				0	
TARGET AIRSPEED	077	BNR		0					
SELECTED COURSE #1	100	BNR		0					
SELECTED ALTITUDE	102	BNR		0					Χ
SELECTED AIRSPEED	103	BNR		0				0	Χ
SELECTED VERTICAL SPEED	104	BNR		0					
SELECTED RUNWAY HEADING	105	BNR		0					
SELECTED MACH	106	BNR		0					Χ
SELECTED CRUISE ALTITUDE	107	BNR		0					
DESIRED TRACK	114	BNR		0	Χ				Χ

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

WAYPOINT BEARING	FUNCTION	LABEL								
CROSS TRACK DISTANCE				MCDN	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
VERTICAL DEVIATION										
RANGE TO ALTITUDE					_					
HORIZONTAL COMMAND SIGNAL	VERTICAL DEVIATION	117	BNR		0	0				
VERTICAL COMMAND SIGNAL	RANGE TO ALTITUDE	120	BNR			Χ				
THROTTLE COMMAND SIGNAL	HORIZONTAL COMMAND SIGNAL	121	BNR		Χ					
UNIVERSAL COORDINATED TIME (UTC)	VERTICAL COMMAND SIGNAL	122	BNR		0					
(UTC)	THROTTLE COMMAND SIGNAL	123	BNR					0	0	
SELECTED LANDING ALTITUDE		125	BCD		Х					
CURRENT VERTICAL PATH PERF 135	VERTICAL DEVIATION (WIDE)	126	BNR		0					
LIMIT	SELECTED LANDING ALTITUDE	127	BNR		Χ					
GREENWICH MEAN TIME (UTC)		135	BNR							Χ
LOCALIZER BEARING (TRUE)	CURRENT VERTICAL PATH PERF	136	BNR							Χ
MAXIMUM ALTITUDE 153 BNR X RUNWAY HEADING (TRUE) 154 BNR X ESTIMATED POSITION UNCERTAINTY 167 BNR X CURRENT RNP 171 BNR X DRIFT ANGLE 200 BCD O ENERGY MANAGEMENT (CLEAN) 202 BNR O ENERGY MANAGEMENT SPEED 203 BNR O BRAKES UTILITY AIRSPEED 204 BNR O UTILITY AIRSPEED 204 BNR O O BBAS FAS DATABLOCK WORD #1 205 BLK O O SBAS FAS DATABLOCK WORD #2 206 BNR O SBAS FAS DATABLOCK WORD #2 206 BLK O O SBAS FAS DATABLOCK WORD #3 207 BLK O O O SBAS FAS DATABLOCK WORD #4 211 BNR O O O SBAS FAS DATABLOCK WORD #4 211 BNR O O O SBAS FAS DATABLOCK WORD #6 213 BLK O O <td>GREENWICH MEAN TIME (UTC)</td> <td>150</td> <td>BNR</td> <td></td> <td>Χ</td> <td>Χ</td> <td></td> <td></td> <td>0</td> <td>Χ</td>	GREENWICH MEAN TIME (UTC)	150	BNR		Χ	Χ			0	Χ
RUNWAY HEADING (TRUE)	LOCALIZER BEARING (TRUE)	151	BNR		0					
ESTIMATED POSITION UNCERTAINTY	MAXIMUM ALTITUDE	153	BNR		X					
CURRENT RNP 171 BNR X DRIFT ANGLE 200 BCD O ENERGY MANAGEMENT (CLEAN) 202 BNR O ENERGY MANAGEMENT SPEED 203 BNR O BRAKES UTILITY AIRSPEED 204 BNR O UTILITY AIRSPEED 204 BNR O O BARO ALTITUDE 204 BNR O O SBAS FAS DATABLOCK WORD #1 205 BLK Q O (see ARINC755 for details) COMPUTED AIRSPEED 206 BLK Q O SBAS FAS DATABLOCK WORD #2 206 BLK Q O SBAS FAS DATABLOCK WORD #2 END SBAS FAS DATABLOCK WORD #3 D O O O O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O O O O O SBAS FAS DATABLOCK WORD #6 215 BLK Q O O	RUNWAY HEADING (TRUE)	154	BNR		X					
DRIFT ANGLE	ESTIMATED POSITION UNCERTAINTY	167	BNR							Χ
ENERGY MANAGEMENT (CLEAN) 202 BNR O ENERGY MANAGEMENT SPEED 203 BNR O BRAKES UTILITY AIRSPEED 204 BNR O UTILITY AIRSPEED 204 BNR O O BARO ALTITUDE 204 BNR O O SBAS FAS DATABLOCK WORD #1 205 BLK Q O (see ARINC755 for details) COMPUTED AIRSPEED 206 BNR O O SBAS FAS DATABLOCK WORD #2 206 BLK Q O O O SBAS FAS DATABLOCK WORD #3 207 BLK Q O O O O SBAS FAS DATABLOCK WORD #4 211 BNR O O O O SBAS FAS DATABLOCK WORD #4 211 BLK Q A A ALTITUDE RATE 213 BNR O O O O SBAS FAS DATABLOCK WORD #6 213 BLK Q O O O SBAS FAS DATABLOCK WORD #7 BNR D O	CURRENT RNP	171	BNR							Χ
ENERGY MANAGEMENT SPEED 203 BNR	DRIFT ANGLE	200	BCD		0					
BRAKES	ENERGY MANAGEMENT (CLEAN)	202	BNR			0				
BARO ALTITUDE		203	BNR			0				
SBAS FAS DATABLOCK WORD #1 (see ARINC755 for details) 205 BLK Q COMPUTED AIRSPEED 206 BNR SBAS FAS DATABLOCK WORD #2 206 BLK Q SBAS FAS DATABLOCK WORD #3 207 BLK Q O O TOTAL AIR TEMPERATURE 211 BNR O O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O	UTILITY AIRSPEED	204	BNR		0	0				
(see ARINC755 for details) 206 BNR COMPUTED AIRSPEED 206 BLK Q SBAS FAS DATABLOCK WORD #2 206 BLK Q SBAS FAS DATABLOCK WORD #3 207 BLK Q TOTAL AIR TEMPERATURE 211 BNR O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O ALTITUDE RATE 212 BNR O O SBAS FAS DATABLOCK WORD #5 213 BLK Q O SBAS FAS DATABLOCK WORD #6 215 BLK Q O GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q D	BARO ALTITUDE	204	BNR							
COMPUTED AIRSPEED 206 BNR SBAS FAS DATABLOCK WORD #2 206 BLK Q SBAS FAS DATABLOCK WORD #3 207 BLK Q TOTAL AIR TEMPERATURE 211 BNR O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O ALTITUDE RATE 212 BNR O O SBAS FAS DATABLOCK WORD #5 213 BNR O O SBAS FAS DATABLOCK WORD #6 215 BLK Q O SBAS FAS DATABLOCK WORD #7 217 BNR D O SBAS FAS DATABLOCK WORD #7 217 BLK Q O MCDU #1 ADDRESS LABEL 220 X N M SBAS FAS DATABLOCK WORD #8 220 BLK Q O		<u>205</u>	BLK		0					
SBAS FAS DATABLOCK WORD #2 206 BLK Q SBAS FAS DATABLOCK WORD #3 207 BLK Q TOTAL AIR TEMPERATURE 211 BNR O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O O ALTITUDE RATE 212 BNR O O O SBAS FAS DATABLOCK WORD #4 213 BNR O <td></td> <td>206</td> <td>BNR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		206	BNR							
SBAS FAS DATABLOCK WORD #3 207 BLK O TOTAL AIR TEMPERATURE 211 BNR O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O ALTITUDE RATE 212 BNR O O SBAS FAS DATABLOCK WORD #5 213 BNR O O SBAS FAS DATABLOCK WORD #6 215 BLK Q O GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q O D					0					
TOTAL AIR TEMPERATURE 211 BNR O O SBAS FAS DATABLOCK WORD #4 211 BLK Q O ALTITUDE RATE 212 BNR O O STATIC AIR TEMPERATURE 213 BNR O O SBAS FAS DATABLOCK WORD #5 213 BLK Q SBAS FAS DATABLOCK WORD #6 215 BLK Q GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q O					_					
SBAS FAS DATABLOCK WORD #4 211 BLK Q ALTITUDE RATE 212 BNR O STATIC AIR TEMPERATURE 213 BNR O O SBAS FAS DATABLOCK WORD #5 213 BLK O O SBAS FAS DATABLOCK WORD #6 215 BLK O O SBAS FAS DATABLOCK WORD #6 217 BNR O SBAS FAS DATABLOCK WORD #7 BNR D SBAS FAS DATABLOCK WORD #7 BLK O O SBAS FAS DATABLOCK WORD #8 220 X SBAS FAS DATABLOCK WORD #8 220 BLK O O SBAS FAS DATABLOCK WORD #8 220 BLK O O D SBAS FAS DATABLOCK WORD #8 220 BLK O O D SBAS FAS DATABLOCK WORD #8 220 BLK O O D SBAS FAS DATABLOCK WORD #8 220 BLK O O D D D D D D D D D D D D D D D D D D D			_					0	0	
ALTITUDE RATE 212 BNR STATIC AIR TEMPERATURE 213 BNR 0 0 SBAS FAS DATABLOCK WORD #5 213 BLK 0 SBAS FAS DATABLOCK WORD #6 215 BLK 0 GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK 0 MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK 0					0				Ŭ	
STATIC AIR TEMPERATURE 213 BNR O O SBAS FAS DATABLOCK WORD #5 213 BLK O SBAS FAS DATABLOCK WORD #6 215 BLK O GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK O MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK O										
SBAS FAS DATABLOCK WORD #5 213 BLK Q SBAS FAS DATABLOCK WORD #6 215 BLK Q GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q								0	0	
SBAS FAS DATABLOCK WORD #6 215 BLK O GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK O MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK O					0			-		
GEOMETRIC VERTICAL RATE 217 BNR SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q										
SBAS FAS DATABLOCK WORD #7 217 BLK Q MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q										
MCDU #1 ADDRESS LABEL 220 X MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK O					0					
MCDU #1 ADDRESS LABEL 220 X SBAS FAS DATABLOCK WORD #8 220 BLK Q				Х	_					
SBAS FAS DATABLOCK WORD #8 220 BLK O		_								
			BLK		0					
I MICDU #2 ADDREGO LADEL ZZT Ā	MCDU #2 ADDRESS LABEL	221		Χ						

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDN	GENERAL	EB	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
SBAS FAS DATABLOCK WORD #9	<u>221</u>	BLK		0					
MCDU #3 ADDRESS LABEL	222		0						I
CDU DATA (PER ARINC 739)			X						
PRINTER #1 ADDRESS LABEL	223						0		
SBAS FAS DATABLOCK WORD #10	223	BLK		0					
PRINTER #2 ADDRESS LABEL	224						0		l l
SBAS FAS DATABLOCK WORD #11	224	BLK		<u>O</u>					
MINIMUM MANEUVERING AIR SPEED	225	BNR			0				l l
SBAS FAS DATABLOCK WORD #12	<u>225</u>	BLK		<u>O</u>					
MINIMUM OPERATING FUEL TEMP.	226	BNR		0					Į.
MCDU #4 ADDRESS LABEL	230			X					
SBAS FAS DATABLOCK WORD #13	<u>225</u>	BLK		<u>O</u>					
ACTIVE TRAJ INTENT DATA BLOCK	232								Х
ACMS INFORMATION	233								X
ACMS INFORMATION	234								Χ
ACMS INFORMATION	235								Χ
ACMS INFORMATION	236								Χ
ACMS INFORMATION	237								Χ
MIN. AIRSPEED FOR FLAP EXTENSION	241	BNR			0				
MODIFIED INTENT DATA BLOCK	242								Х
SBAS FAS DATABLOCK WORD #14	<u>242</u>	BLK		<u>O</u>					
SBAS FAS DATABLOCK WORD #15	244	BLK		0					
MINIMUM AIRSPEED	245	BNR		0					
GENERAL MAX SPEED (VCMAX)	246	BNR		0					
SBAS FAS DATABLOCK WORD #16	<u>246</u>	BLK		<u>O</u>					
CONTROL MINIMUM SPEED (VCMIN)	247	BNR		0					ļ
CONTINUOUS N1 SPEED	250	BNR	0				0		
GO-AROUND N1 LIMIT	253	BNR		X					
CRUISE N1 LIMIT	254	BNR		X					
CLIMB N1 LIMIT	255	BNR		X					
TIME FOR CLIMB	256	BNR		0					
TIME FOR DESCENT	257	BNR		0					
DATE/FLIGHT LEG	260	BCD		X				0	
FLIGHT NUMBER (BCD)	261	BCD		0					
DOCUMENTARY DATA (PER ARINC 619)	262	BNR				0			
MIN. AIRSPEED FOR FLAP RETRACTION	263	BNR			0				
NDB EFFECTIVITY	263			0					
TIME TO TOUCHDOWN	264	BNR		0	0				
MIN. BUFFET AIRSPEED	265	BNR		0					

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

FUNCTION	LABEL								
			MCDU	GENERAL	EFI	ACARS	PRINTER	AUTO THROTTLE	TRAJECTORY
MAX. MANEUVER AIRSPEED	267	BNR		0	0				
INTENT STATUS	270	DISC							Χ
STATUS DISCRETES	270	DISC		X					
DISCRETE DATA #1	270	DISC			Х				
DISCRETE DATA #2	271	DISC		Х	Х				
DISCRETE DATA #3	272	DISC		0	0				
DISCRETE DATA #6	275	DISC		0	0				
DISCRETE DATA #7	276	DISC		0	0				
APPLICATION DEPENDENT	301				0				
APPLICATION DEPENDENT	302				0				
APPLICATION DEPENDENT	303				0				
PRESENT POSITION LATITUDE	310	BNR		0	X				X
PRESENT POSITION LONGITUDE	311	BNR		0	Х				Χ
GROUND SPEED	312	BNR		0	Х				Χ
TRACK ANGLE TRUE	313	BNR		0	Х				Χ
TRUE HEADING	314	BNR							Χ
WIND SPEED	315	BNR			Х				Χ
WIND DIRECTION (TRUE)	316	BNR			Х				Χ
TRACK ANGLE MAGNETIC	317	BNR		0	Х				
MAGNETIC HEADING	320	BNR							Χ
DRIFT ANGLE	321	BNR		0	Х				
FLIGHT PATH ANGLE	322	BNR			0				
GEOMETRIC ALTITUDE	323	BNR							
TRACK ANGLE RATE	335	BNR							Χ
N1 OR EPR COMMAND	341	BNR		Х			0	0	
N1 BUG DRIVE	342	BNR		Х			0	0	
MAINTENANCE DATA #5	354			0					
ISO ALPHABET #5 MESSAGE	357	ISO-5			0				
FLIGHT INFORMATION	360	BNR		0	0				
N/S VELOCITY	366	BNR			,				Χ
E/W VELOCITY	367	BNR	-						Χ
EQUIPMENT ID	377			Х					

5247 Notes:

5248 2.4. X = Basic or Baseline

3.<u>5.</u> 5249 O = Optional

5250

ATTACHMENT 4 DATA INPUT/OUTPUT FMC OUTPUTS

ATTACHMENT 5 ENVIRONMENTAL TEST CATEGORIES

ENVIRONMENT	RTCA DO-160 SECTION	CATEGORY RTCA DO-160C/D
Temperature and Altitude	4	Category A2/W
Temperature Variation	5	Category A
Humidity	6	Category B
Shock	7	
Vibration	8	Category B'
Explosion	9	Category X
Waterproofness	10	Category X
Hydraulic Fluid	11	Category X
Sand and Dust	12	Category X
- Fungus	13	Category F
- Salt Spray	14	Category X
Magnetic Effects	15	Category Z
Power Input	16	Category A
Voltage Spikes	17	Category A
Audio Frequency		
 Conducted Susceptibility 	18	Category Z
Electromagnetic Compatibility		Category A
- Induced Signal Susceptibility	19	Category Z
- Radio Frequency Susceptibility	20	Category W
- Emission of Radio Frequency Energy	21	Category Z
- Lightning	22	600v/120a

ATTACHMENT 6 FMC/EFI INTERFACE

Formatted: Attachment HEADING 1

5255 ATTACHMENT 6 FMC/EFI INTERFACE

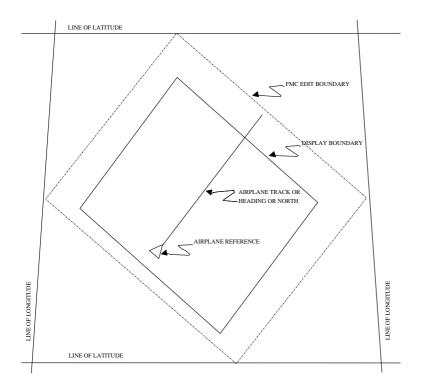
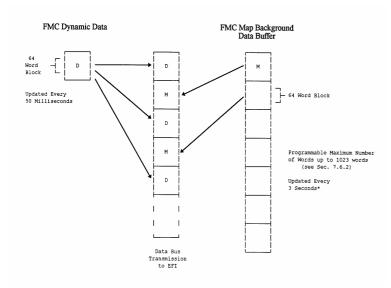



Figure 6-1 – Map Edit Area North-Up Orientation Used in Plan Mode

5256 5257 5258

ATTACHMENT 6 FMC/EFI INTERFACE

Note: Updated and transmitted within 1 second after either a mode, scale or option change.

Figure 6-2 - FMC/EFI Data Transmission Format

5261 5262

5263

5264 5265

ATTACHMENT 6 FMC/EFI INTERFACE

Table 6-1 – FMC/EFI Data Type Identification Codes

OCTAL	DIT	POS	ITIO	NI.					
LABEL	1	2	3	N 4	5	6	7	8	PARAMETER
	1	1	0		0	0	0	1	START OF TRANSMISSION (SOT) (BACKGROUND)
301 303	1	1	0	0	0	0	1	1	START OF TRANSMISSION (SOT) (BACKGROUND) START OF TRANSMISSION (SOT) (DYNAMIC)
100	0	1	0	0	0	0	0	0	VECTOR - Active Flight Plan
300	1	1	0	0	0	0	0	0	- Active Flight Plan Changes
	•								
040	0	0	1	0	0	0	0	0	- Inactive Flight Plan
240	1	0	1	0	0	0	0	0	- Inactive Flight Plan Changes
140	0	1	1	0	0	0	0	0	- Radial
340	1	1	1	0	0	0	0	0	- Runway Center Line
020	0	0	0	1	0	0	0	0	- Offset Path
220	1	0	0	1	0	0	0	0	undefined
120	0	1	0	1	0	0	0	0	undefined
320	1	1	0	1	0	0	0	0	undefined
060	0	0	1	1	0	0	0	0	undefined
260	1	0	1	1	0	0	0	0	undefined
160	0	1	1	1	0	0	0	0	VECTOR IDENTIFIERS
360	1	1	1	1	0	0	0	0	undefined
010	0	0	0	0	1	0	0	0	undefined
210	1	0	0	0	1	0	0	0	undefined
110	0	1	0	0	1	0	0	0	undefined
310	1	1	0	0	1	0	0	0	undefined
050	0	0	1	0	1	0	0	0	undefined
250	1	0	1	0	1	0	0	0	SYMBOLS - VORTAC + Identifier
150	0	1	1	0	1	0	0	0	- Tuned VORTAC + Identifier
350	1	1	1	0	1	0	0	0	- VOR + Identifier
030	0	0	0	1	1	0	0	0	- Tuned VOR + Identifier
230	1	0	0	1	1	0	0	0	- DME/TACAN + Identifier
130	0	1	0	1	1	0	0	0	- Tuned DME/TACAN + Identifier
330	1	1	0	1	1	0	0	0	- Waypoint + Identifier
070	0	0	1	1	1	0	0	0	- Active Waypoint + Identifier
270	1	0	1	1	1	0	0	0	- Airfield + Identifier
170	0	1	1	1	1	0	0	0	- Origin/Destination Airfield Ident
370	1	1	1	1	1	0	0	0	- GRP + Identifier
004	0	0	0	0	0	1	0	0	- Altitude Profile Point + Identifier
204	1	0	0	0	0	1	0	0	- Selected Reference Point
104	0	1	0	0	0	1	0	0	undefined
304	1	1	0	0	0	1	0	0	undefined
044	0	0	1	0	0	1	0	0	undefined
244	1	0	1	0	0	1	0	0	undefined
144	0	1	1	0	0	1	0	0	undefined
344	1	1	1	0	0	1	0	0	undefined
024	0	0	0	1	0	1	0	0	undefined
224	1	0	0	1	0	1	0	0	TEXT - Type 1: Navigation Advisory
124	1	0	0	1	0	1	0	0	- Type 2: Maintenance Test
324	1	1	0	1	0	1	0	0	- Type 3
064	0	0	1	1	0	1	0	0	- Type 4
264	1	0	1	1	0	1	0	0	MAP REFERENCE GROUP - Latitude

ATTACHMENT 6 FMC/EFI INTERFACE

OCTAL	BIT POSITION								PARAMETER				
LABEL	1	2	3	4	5	6	7	8	PARAMETER				
164	0	1	1	1	0	1	0	0	-Longitude				
364	1	1	1	1	0	1	0	0	DISCRETE WORD - Map Mode				
014	0	0	0	0	1	1	0	0	- Range				
214	1	0	0	0	1	1	0	0	undefined				
114	0	1	0	0	1	1	0	0	undefined				
314	1	1	0	0	1	1	0	0	undefined				
054	0	0	1	0	1	1	0	0	ROTATED SYMBOLS - Runway + Identifier				
254	1	0	1	0	1	1	0	0	- Airport + Runway + Identifier				
154	0	1	1	0	1	1	0	0	- Marker Beacon				
354	1	1	1	0	1	1	0	0	- Holding Pattern – R				
034	0	0	0	1	1	1	0	0	- Holding Pattern – L				
234	1	0	0	1	1	1	0	0	- Procedure Turn – R				
134	0	1	0	1	1	1	0	0	- Procedure Turn – L				
334	1	1	0	1	1	1	0	0	undefined				
074	0	0	1	1	1	1	0	0	undefined				
274	1	0	1	1	1	1	0	0	undefined				
174	0	1	1	1	1	1	0	0	undefined				
374	1	1	1	1	1	1	0	0	undefined				
302	1	1	0	0	0	0	1	0	END OF TRANSMISSION (EOT)				
000	0	0	0	0	0	0	0	0	FILL-IN WORDS				

ATTACHMENT 7 FMC/DATALINK INTERFACE

5271	ATTACHMENT 7 FMC/DATALINK INTERFACE	← Formatted: Attachment HEADING 1
5272 5273 5274	Part A Text-Imbedded Error Check For Ground Computer/Airborne Computer Messages	
5275 5276	Section 1 End-to-End Error Check	
5277 5278 5279 5280 5281 5282	The FMC should provide the facility to perform an "end-to-end" error check on messages received and transmitted via ACARS. This is accomplished by designating the four characters preceding the suffix character (ETX) of the final block of the message as the "text-imbedded" error control field. This field will be used to verify successful transfer of each message to which the end-to-end error check applies.	
5283 5284 5285 5286 5287 5288	The allowable character set on which the end-to-end check is performed is defined in Attachment 10 to this Characteristic, entitled "ISO Alphabet No. 5 Subset for Ground Computer/Airborne Computer Message Exchange Via ACARS." In addition, bit patterns of the characters appended to the message by the error checking procedure should be encoded per this ISO subset.	
5289 5290	The pad bit for each 7-bit character in the message is set to a binary zero prior to encoding or decoding of the error check.	
5291 5292 5293 5294 5295	The error check to be used in the verification of end-to-end message integrity is a Cyclic Redundancy Check (CRC), described in Section 3 of this attachment, "Character-oriented CRC Calculation." The CRC generator polynomial is the same CCITT polynomial introduced into ARINC Specification 429 by Supplement 12.	
5296	COMMENTARY	
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306	The end-to-end error check provides an assurance that a message composed on the ground has been correctly reconstructed by the FMC (and vice versa for messages originated by the FMC). It supplements the message integrity assurance provisions which are employed at various levels during the transfer of data from originator (e.g., the host airline computer) to the FMC. The normal message integrity checks which, onboard the aircraft, include BCS, word count check, parity check, etc., should continue to be exercised in accordance with the appropriate ACARS Characteristic (ARINC 597, 724, or 724B) and this Characteristic.	
5307	Encoding the CRC at the Message Source	
5308 5309 5310 5311	The procedure specifying the application of the CRC by the source on the message text is as follows. (See Section 3 of this attachment, Character-Oriented CRC Calculation, for a detailed description and example of this procedure.)	
5312 5313 5314	 The CRC is to be applied to the message text beginning with the first character of the IMI, and ending with the last text character of the message. 	← Formatted: Bullet Text

ATTACHMENT 7 FMC/DATALINK INTERFACE

- When ordering bits in the message to be CRC'd, the Most Significant Bit (MSB) of the message is the least significant bit of the first character of the IMI. The Least Significant Bit (LSB) of the message is the most significant bit of the last text character of the message (excluding the ETX character).
- After the source has been determined the CRC code from the 16-bit "remainder," four hexadecimal characters representing these 4-bit bytes will be encoded as ISO #5 characters for the CRC field. The hexadecimal characters are determined by assigning 4 bits at a time in the order specified by the table in Section 2 of this attachment. The resulting four characters are placed at the end of the original message text to be transmitted, in the same transmission order as message text characters; i.e., the LSB of each character is transmitted first.
- For character-oriented file transfer protocols, an ETX character follows the last character of the CRC code.

Decoding the CRC at the Message Sink

5315

5316

5317

5318

5319 5320

5321

5322

5323 5324

5325

5326

5327 5328

5329

5330

5331

5332

5333

5334 5335

5336

5337 5338

5339

5340

5341

5342

5343

5344

5345

5346

5347 5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

- Upon the receipt of a message which is error-free in accordance with the link level protocol, the sink will begin verification of the received message.
- In order to verify the value of the CRC, the sink should first ensure each 7-bit ISO #5 character of the message text has the associated pad bit set to a binary zero, such that each character can be assumed to be 8 bits in length. The sink should also ensure any intermediate "end-of-block" characters have been deleted from the message text.
 - o The sink then operates on the four characters representing the CRC code to translate them back to the original 16-bit binary value calculated by the source; i.e., the reverse of the procedure specified above is performed. Finally, the sink verifies the integrity of the message text by applying either of the verification procedures specified for the receiving system in the following section on Character-Oriented CRC Calculation.
- If the CRC confirms message integrity, the sink should accept the
 message. If message integrity is not confirmed (the CRC fails), the
 sink should discard the message. Further action will be defined by
 the user and will depend on the application of the message.

COMMENTARY

This CRC scheme is only compatible with uncorrupted messages from the host airline computer to the FMC and vice versa. No intermediate systems may be allowed to modify the message text portion of the transmission by character substitution or insertion (such as line feeds, carriage returns, etc.).

ATTACHMENT 7 FMC/DATALINK INTERFACE

Section 2
ISO #5 Representation of Hexadecimal Characters for Binary Data
Transmission

This document states that ISO #5 representation of hexadecimal characters should be used for the interchange of binary information between ground-based and airborne computers via ACARS. The following example illustrates the binary-to-ISO character conversion process.

TRANSMISSION ORDER = =>										
	LSE	3		MSB						
1. BINARY DATA STREAM	1 0	1 1	0 1	0 0	0 0 0 0		0 0 1 1			
2. 4 BIT BYTES STREAM	1 0	1 1	0 1	0 0	0 0 0 0		0 0 1 1			
3. HEX CHARACTER VALUE	В		4		0		3			
4. ISO CHARACTER (COLUMN, ROW)	4,2		3,4		3,0		3,3			
5. ISO BIT VALUES (P = PAD BIT)	Р	100010	Р	0110100	Р	0110000	Р	0110011		
6. ISO BITS TRANSMITTED (PAD BITS set to 0)	0	100010	0	0110100	0	0110000	0	0110011		
7. CHARACTER TX ORDER	CHA	AR 4	CH	AR 3	CHAR 2		CHAR 1			

ATTACHMENT 7 FMC/DATALINK INTERFACE

5368 5369 Binary representation of ISO #5 hexadecimal characters is illustrated in the table below.

table below.												
BIT 7>			0	0	0	0	1	1	1	1		
BIT 6>			0	0	1	1	0	0	1	1		
BIT 5>			0	1	0	1	0	1	0	1		
BIT 4	BIT 3	BIT 2	BIT 1	Col → Row ↓	0	1	2	3	4	5	6	7
- Bill 4		DI1 2	DII 1	KOW 4	00	10	20	30	40	50	60	70
0	0	0	0	0	NUL	DLE	SP	o	@	Р	,	р
					01	11	21	31	41	51	61	71
0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
					02	12	22	32	42	52	62	72
0	0	1	0	2	STX	DC2	"	2	В	R	b	r
					03	13	23	33	43	53	63	73
0	0	1	1	3	ETX	DC3	#	3	С	s	С	s
					04	14	24	34	44	54	64	74
0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
					05	15	25	35	45	55	65	75
0	1	0	1	5	ENQ	NAK	%	5	E	U	е	u
					06	16	26	36	46	56	66	76
0	1	1	0	6	ACK	SYN	&	6	F	٧	f	v
					07	17	27	37	47	57	67	77
0	1	1	1	7	EL	ETB	,	7	G	w	g	w
					08	18	28	38	48	58	68	78
1	0	0	0	8	BS	CAN	(8	Н	Х	h	x
					09	19	29	39	49	59	69	79
1	0	0	1	9	HT	EM)	9	ı	Y	i	у
					0A	1A	2A	3A	4A	5A	6A	7A
1	0	1	0	10	LF	SUB	*	:	J	Z	j	z
					0B	1B	2B	3B	4B	5B	6B	7B
1	0	1	1	11	VT	ESC	+	;	К	[k	{
					0C	1C	2C	3C	4C	5C	6C	7C
1	1	0	0	12	FF	FS	,	<	L	1	I	L i
					0D	1D	2D	3D	4D	5D	6D	7D
1	1	0	1	13	CR 0E	GS 1E	/ 2E	= 3E	M 4E] 5E	m 6E	} 7E
			_									
1	1	1	0	14	SO 0F	RS 1F	2F	> 3F	N 4F	5F	n 6F	~ 7F
_	1	1	1	15	SI	us	1	?				
1	1	1	1	15	31	US	,	_ <i>'</i>	0	-	0	DEL

ATTACHMENT 7 FMC/DATALINK INTERFACE

5371 5372	Section 3 Character-Oriented CRC Calculation
5373	Generation of the CRC Code
5374 5375 5376	This CRC calculation method is based on the premise that a message may be represented as the coefficients of a polynomial, $G(x)$, having k terms, where k is the number of bits in the message.
5377	COMMENTARY
5378 5379 5380 5381 5382 5383	The notation used to describe the CRC is based on the property of cyclic codes that a code vector such as 1000000100001 can be represented by a polynomial $G(x) = x12 + x5 + 1$. The elements of a k element code vector are thus the coefficients of a polynomial of order k - 1. In this application, these coefficients can have the value 0 or 1, and all polynomial operations are performed modulo 2.
5384 5385	To create the polynomial $G(x)$ representing the message, the terms are ordered as follows:
5386 5387	 The coefficient of the most significant bit of G(x), (xk-1), is the LSB of the first character of the message.
5388 5389	 The coefficient of the least significant bit of G(x), (x0), is the MSB of the last character of the message.
5390 5391 5392 5393 5394 5395	For example, if the message, $G(x)$, is 'FPR', the first character is 'F' which is represented by the code 46 hex or 01000110 binary. The rightmost bit of 'F', 0 in this example, is therefore the most significant bit of $G(x)$. Similarly, the last character, 'R', is represented by the code 52 hex or 01010010 and the least significant bit of $G(x)$ is the leftmost bit of 'R', which is 0. The message FPR has 24 bits so k has a value of 24.
5396	The actual transmission order for the message is MSB to LSB as follows:
5397	Note slashes (/) are used for octet separation only.
	Transmission Order ==> LSB MSB 010100010 010100000 01000110 R P F
5398 5399 5400	In order to illustrate the mathematical procedure, the entire message is transposed for representation as a bit stream with the MSB at the left and the LSB at the right to yield:
	Transmission Order ==>

MSB

5401 5402 01100010 00001010 01001010

LSB

ATTACHMENT 7 FMC/DATALINK INTERFACE

5403 Expressing the bit stream for this example as a polynomial, G(x), yields:

$$G(x) = x^{22} + x^{21} + x^{17} + x^{11} + x^{9} + x^{6} + x^{3} + x^{1}$$

5404 5405

5408

5409

5410 5411

5412

5413

5414

5415

To generate the CRC code the generator polynomial is defined as:

$$P(x) = x^{16} + x^{12} + x^5 + 1$$

5406 The CRC code is the one's complement of the remainder obtained from the 5407 modulo 2 division of:

$$\frac{x^{16} G(x) + x^{k} (x^{15} + x^{14} + x^{13} + \dots + x^{2} + x + 1)}{P(x)} = Q(x) + \frac{R(x)}{P(x)}$$

where Q(x) is the quotient and R(x) is the remainder.

Note: The addition of $X^{16}G(x)$ and $xk(x^{15} + x^{14} + x^{13} + ... x^2 + x + 1)$ is modulo 2 and is equivalent to inverting the 16 most significant bits of G(x) and appending a bit string of 16 zeroes to the lower order end of G(x).

If the 16-bit binary CRC code were appended to the original G(x) the resulting message, M(x), would be of length n, where n = k + 16. This is equivalent to the following operation:

$$M(x) = x^{16} G(x) + (16 - bit)CRC (Modulo 2).$$

5416

5417 When the 16-bit binary CRC is transformed into four ISO #5 characters (8 bits each), the final message to be transmitted, $M^*(x)$ is now of length $N^* = k$ 5419 + 32, and so

$$M*(x) = x^{32}G(x) + (32 - bit)CRC (Modulo 2).$$

2

5420

5422

)

5421

Commented [GE18]: Looks like something got messed up here ...

5458

5459

ATTACHMENT 7 FMC/DATALINK INTERFACE

5423 Using the above example with 'FPR' as G(x), the CRC calculation gives a remainder of 00111111/11010010, where the left-hand 0 is the most 5424 5425 significant bit and the right-hand 0 is the least significant bit (see Appendix 7 5426 of ARINC Specification 429, Mathematical Example of CRC Encoding/Decoding, for a detailed example of the mathematical operations 5427 5428 involved to arrive at this remainder). 5429 The CRC code is the one's complement of the remainder, or 5430 11000000/00101100. This CRC code is converted to a four character (ISO 5431 #5) code and appended to the end of the message over which the CRC 5432 code was calculated by applying steps 1 through 7 in Section 2 as follows: 5433 Because the message was transposed in this illustration to generate the 5434 CRC code, the resultant CRC code should also be transposed from left 5435 to right. Transposing 11000000/00101101 yields 10110100/00000011. 5436 This operation returns the CRC code to the same transmission order as 5437 the original message, with the MSB to the right and the LSB to the left. 5438 2-3. Separating the 16-bit transposed value into 4-bit segments and 5439 expressing it in hex yields B403. 5440 4-7. The four characters representing this value are coded as ISO #5 5441 characters and appended to the message in the order: MS to LS 5442 character. For this example, the order is 3, 0 4, B. 5443 The complete message plus CRC code for this example (read left to right) is: FPR304B 5444 5445 The transmission order of this message is right to left, as: 5446 B403RPF ==> 5447 Section 4 Verification (Decoding) of the CRC Code 5448 5449 At the receiving system, the four characters representing the CRC code are 5450 converted back into the original binary CRC code; i.e., the steps in Section 2 5451 are performed in reverse order. At this point, verification (decoding) of the 5452 CRC is accomplished by either of the following methods: 5453 1. After conversion back to the binary CRC code, the 16-bit binary CRC 5454 is appended to the message G(x) (in the same transmission order as 5455 the message) resulting in the message M(x), of length n, where n = k5456 + 16 and $M(x) = \chi^{16} G(x) + (16 - bit)CRC \text{ (Modulo 2)}.$ 5457

M(x) is multiplied by X^{16} , added to the product $x^{n}(x^{15} + x^{14} + x^{13} + ... + x^{2} + x +$

1), and divided by P(x) as follows (where n = k + 16):

ATTACHMENT 7 FMC/DATALINK INTERFACE

5460 4

5461

5462

5463

5464

5465 5466

5467

5468 5469

5470

5471

5472

5473

5474

5475 5476

5477

5478

5479

5480 5481 This CRC procedure is designed to create a constant remainder for error free messages. If the transmission of the serial incoming bits plus CRC code (i.e., M(x)) is error free, then the remainder, Rr(x) is always:

Transmission Order ==>				
MSB	LSB			
00011101	00001111			

(coefficients of x^{15} through x^0 , respectively).

- An alternate procedure for the receiving system, which will ensure the same data integrity, is to recompute the CRC code on the received message less the four CRC characters (using the same generator polynomial). The generated CRC code is then compared with the one received. The following steps are performed:
- The received message, M*(x), is stripped of the four CRC characters, leaving only G(x). The four characters representing the CRC code are converted back into the original binary 16-bit CRC code; that is, the steps in Section 2 are performed in reverse order.
- A binary CRC code is generated for G(x) using the same encoding method described for the message source.
- The generated binary CRC code is compared with the 16-bit binary CRC code stripped from the message and if they are identical, the message is assumed to be free of errors and exactly represents the message transmitted by the source.

5520

ATTACHMENT 7 FMC/DATALINK INTERFACE

5482 5483	Part B Table-Based	d Form	ats for FMC IMI/IEI M	essages
5484	Section 1			
5485	Definition o	f Term	s Used In Data Link N	lessages
5486 5487 5488			rules. The following defi	es are formatted using a consistent set of nitions are used to describe parts of a
5489		IMI	(Imbedded Message Id	lentifier)
5490 5491 5492 5493		begini	ning of the text to identify per message. The same I	c character identifier. An IMI is placed at the the relative message content. Only one IMI is MI can be used for both uplinks and
5494		Exam	oles of IMIs are: FPN, PE	R, LDI, POS, REJ, etc.
5495		IEI	(Imbedded Element Id	entifier)
5496 5497		The IE eleme	•	r identifier that is used to group one or more
5498			Examples of IEIs are: F	N, RP, RM, CG, RW, etc.
5499		Eleme	ent	
5500 5501 5502 5503 5504 5505 5506 5507 5508		It can eleme maxim eleme more alpha is asse	be a single parameter, or nt is defined as either fixen num number of characters nts that must contain eith numeric characters, or or character. The alpha cha	ssible part of an uplink or downlink message. a number of parameters. A single parameter of length or variable length with a defined of length or variable length with a defined of length or variable length with a defined of length or variable length are single parameter or a single alpha character preceding one or e or more numeric characters followed by an aracter indicates the direction (or qualifier) that walue. Directional elements can be fixed or
5509 5510 5511 5512 5513		Multi-p combi multi-p	parameter elements can le nation of fixed and variable parameter element can be	sed to group similar or related information. be fixed length, variable length or a le length. However, only one field within a e of variable length. There is no delimiter within a multi-parameter element.
5514			Example:	
5515			OAT: P23	Single parameter element OAT is +23 °C
5516			V1VRV2: 131139147	Multi-parameter element is composed of
5517				V1 = 131 knots
5518				VR = 139 knots
5519				V2 = 147 knots

ATTACHMENT 7 FMC/DATALINK INTERFACE

5521	Parameter
5522 5523	A parameter is an element or part of an element that has the following attributes:
5524	Type - Variable or Fixed
5525	2. Element Type - Alpha (A - Z)
5526	3. Alphanumeric (A - Z, 0 - 9, dash)
5527	4. Numeric (0 - 9)
5528	5. Character Length - Number of Characters
5529	Scaling Factor - Identifies the multiplication factor
5530	7. Units - Identifies The Parameter Units
5531	List
5532 5533	A list is a repeatable group of elements within a data link message. Each list contains one or more elements.
5534	Message Format Example
5535 5536 5537	The following is an example of a Predicted Wind Information uplink message (the IMI for this message is PWI, the IEI is DD for Descent Wind Data and the IEI DS is for Descent Wind Temperature).
5538 5539 5540	Example: PWI/DD350270060.310270045.140260040/DS320M50.250M30.100M10.01 0P10:060,,,M04,1013
	Altitude/Wind List (up to ten allowed):
	Altitude Wind
	FL350 270/060 kts
	FL310 270/045 kts
	14000 260/040 kts

5541

5542

Altitude/Temperature List (up to ten allowed):				
Altitude	Temperature			
FL320	- 50 °C			
FL250	- 30 °C			
FL100	- 10 °C			

+10 °C

1000ft

Remaining Elements:				
TAI On Altitude	6000 ft			
TAI On/Off Altitude	(Missing Data)			
Des Transition Altitude	(Missing Data)			
Descent ISA Deviation	-4 °C			
QNH	1013 Hectopascals			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Flight Plan Definition

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552 5553 5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

Each independent part of a flight plan is called a Flight Plan Element (FPE). Each FPE is preceded by a Flight Plan Element Identifier (FPEI) which identifies the group of data that follows. These FPEs are used in combination to fully define the FMC flight plan in both the uplinks and downlinks. The flight plan definition is used to create a flight plan (either active or inactive) or modify an existing flight plan.

FPEI (Flight Plan Element Identifier)

FPEIs are used to identify special elements, which are used in the (Flight Plan) Route IEIs of RP, RI, RM, and RA. Examples of Flight Plan Element Identifiers are :H:, :V:, ".", ".", "DA", etc.

FPE (Flight Plan Element)

A Flight Plan Element (FPE) is a special type of variable or fixed length element (or group of elements) used in RP, RI, RM, or RA IEIs.

Examples of FPEs (and their corresponding FPEIs) are shown below:

FPE	FPEI	Example
Departure Airport	:DA:	KJFK
Arrival Airport	:AA:	KLAX
Company Route	:CR:	JFKLAX07
Waypoint Spd/Alt/Time	:V:	N47W125,250,AT1250
Direct to Waypoint		BLAKO
Departure Runway	:R:	040
Airway VIA	-	J36
Arrival Procedure	:A:	DOWNE
Arrival Transition		HECTR
Arrival Runway	(XXX)	(04O)

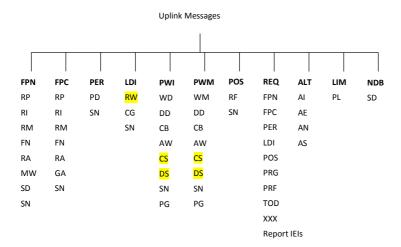
The last four items in the table illustrate the dual role of the special character "." which is context dependent. It can be used as a "VIA" indicator for an airway, or as a transition indicator if it is preceded by an ":A:" (or an ":AP:" or a :D:), as in DOWNE.HECTR(04O).

Example: F P N / R M..N I A . J 4 8 . B E N N Y , N 3 3 2 4 0 W 1 1 6 2 5 0 : A T : N I A - M0400,280,AT1400:A:BENE3.NIA:AP:ILS32R.EDD

- IMI (FPN) followed by
- IEI (RM) followed by
- Direct to waypoint NIA
- Followed by a via airway J48
- To waypoint BENNY with optional lat/lon definition
- Then an along track offset definition of NIA -40.0 with an associated speed restriction of 280 at 14,000 feet
- Followed by a standard arrival BENE3 with a NIA transition and the standard approach of ILS32R with an EDD transition.

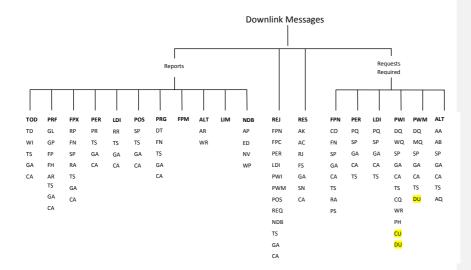
ATTACHMENT 7 FMC/DATALINK INTERFACE

5573	Uplink and Downlink Delimiters
5574 5575 5576	When constructing an uplink or a downlink message, delimiters are used to consistently identify the information in the message. The delimiters supersede each other in the order given (i.e., '/' has the highest priority).
5577	


5616

	ANINO GIANAGIENO 102A - 1 age 102
	ATTACHMENT 7 FMC/DATALINK INTERFACE
5578	IEI Delimiter '/' solidus, Character 2/15
5579 5580 5581	This character precedes each Imbedded Element Identifier which identifies the beginning of predefined group of elements. This delimiter is always followed by two alpha characters.
5582	List Terminator ':' colon, Character 3/10
5583 5584	The colon is an end of list control character. This character is used to terminate a repetitive list structure.
5585	List Entry Terminator '.' period, Character 3/11
5586 5587 5588	The period is a list entry terminator. This character is used to terminate each list entry (group of elements). List entries are groups of parameters or elements that are repeated one or more times.
5589	Element Terminator ',' comma, Character 2/12
5590 5591 5592 5593	Commas are used to separate elements (unless they have been separated by or terminated with another control character; i.e., '/', '.', '.' or another FPE in the case of RI, RM, RP, or RAs). Missing elements are denoted by consecutive commas.
5594	Request Messages
5595 5596 5597 5598 5599	To allow the receiving system to recognize the difference between a message that is transmitting data and a message that is requesting data, a special IMI has been reserved for requests. This IMI ('REQ' is the default) precedes any request message. The data that follows this IMI depends on whether the message is an uplink or a downlink.
5600	Uplink Request A Downlink
5601 5602 5603 5604 5605	The request IMI is followed by an element which contains the IMI of the "reply." This is optionally followed by a comma (element terminator), which is optionally followed by a list of elements that define the IEIs to be included in the downlink (all separated by a list entry terminator). An IMI, or IEIs following the REQ are considered elements in the uplink.
5606	Example: REQPRG,DT.FN
5607 5608	This example is a request from the ground for the current destination and current flight number which results in a downlink of:
5609	PRG/DTKSEA/FNSFOSEA001
5610	Downlink Requesting An Uplink
5611 5612	In a downlink request, the request IMI is followed by the requested information.
5613	Example: REQFPN/COKSEAKSFO02
5614 5615	This example is a request from the FMC for a flight plan, the request includes the entered company route as a data element.

ATTACHMENT 7 FMC/DATALINK INTERFACE


5617 Section 25618 IMI/IEI Relationships

This section identifies the IEIs normally associated with IMIs that have been defined. This section will be updated as the need for new IMIs and IEIs is identified. Users are requested to advise the AEEC staff when such a need arises. The basic IEIs are listed in bold text, the dependent IEIs are listed in italics and the extended IEIs are listed as normal text.

Note that XXX may be an unrecognizable IMI that is followed by recognizable IEIs.

ATTACHMENT 7 FMC/DATALINK INTERFACE

5628 5629

5630

Note that FPX represents FPN and FPC.

ATTACHMENT 7 FMC/DATALINK INTERFACE

5631 Section 35632 Uplink IMI Definitions

This section lists the currently defined uplink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

AEEC Staff when such a need arises.					
IMI	DESCRIPTION	DEFINITION			
ALT	ALTERNATE DATA	Contains alternate airport information generated by the airline.			
FPC	FLIGHT PLAN	Flight plan information supplied by ATC.			
FPN	FLIGHT PLAN	Flight plan information generated by the airline.			
LDI	LOAD INFORMATION	Contains load information for takeoff generated by the airline.			
LIM	PERFORMANCE LIMITS DATA	Contains performance limits data that is provided by the airline.			
NDB	AIRLINE DATABASE	Contains supplemental Navigation Data Base, Effectivity Date, Supplemental Navigation Airport, Navaid, and Waypoint definitions generated by the airline.			
PER	PERFORMANCE INITIALIZATION	Contains performance initialization data generated by the airline.			
POS	POSITION	Contains specified triggers for automatic position report information generated by the airline.			
PWI	PREDICTED WIND DATA	Contains climb, alternate, enroute, descent wind and/or temperature information that is to be applied to the flight plan. Generated by the airline.			
PWM	PREDICTED WIND MODIFICATION	Contains alternate, enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent winds and temperatures data may be applied regardless of the route status. Generated by the airline ground station.			
REQ	REQUEST	Contains a type of request (FPN/FPC, PER, LDI, POS, PRG, PRF, TOD, XXX) for information generated by the airline.			
TAC	RESERVED				
TAR	RESERVED				

ATTACHMENT 7 FMC/DATALINK INTERFACE

5639 Section 4 5640 Downlink

Downlink IMI Definitions

This section lists the currently defined downlink IMIs and provides a brief description of the associated message content. This section will be updated as the need for new IMIs is identified. Users are requested to advise the AEEC staff when such a need arises.

1		
IMI	DESCRIPTION	DEFINITION
ALT	ALTERNATE DATA	Provides the airline with alternate airport information.
FPC	FLIGHT PLAN	Provides flight plan report to ATC.
FPM	FLIGHT PLAN	Provides flight plan modification information to the airline.
FPN	FLIGHT PLAN	Provides flight plan information to the airline.
LDI	LOAD INFORMATION	Provides the airline with a load information data report for a single runway.
LIM	PERFORMANCE LIMITS DATA	Provides the airline with the current FMC performance limits.
NDB	AIRLINE DATA BASE	Provides the contents of the supplemental data base to the airline.
PER	PERFORMANCE INITIALIZATION	Provides performance initialization data report to the airline.
POS	POSITION	Provides the airline with current position report information.
PRF	PREFLIGHT	Provides preflight report to the airline.
PRG	PROGRESS (ETA) REPORT	Provides the airline with progress report data in response to a trigger.
PWI	PREDICTED WIND DATA	Provides the airline with climb, enroute, descent wind and/or temperature information that is to be applied to the flight plan.
PWM	PREDICTED WIND MODIFICATION	Provides the airline with enroute, descent wind and/or temperature information that is to be applied to the modified active flight plan. Descent wind data may be applied regardless of the route status.
REJ	DOWNLINK REJECTION	Provides ATC or the airline with information referencing a rejected uplink message.
REQ	REQUEST	Requests (FPN/FPC, PER, LDI, PWI/PWM) information from the airline or ATC.
RES	DOWNLINK RESPONSE	Provides a response to an uplink message.
TAC	RESERVED	
TAR	RESERVED	
TOD	TOP OF DESCENT	Provides top of descent data to the airline.

ATTACHMENT 7 FMC/DATALINK INTERFACE

5647 Section 5 5648 Uplink IEIs

5649 5650

5651

This section lists the currently defined uplink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

IEI	DESCRIPTION
AE	COMPANY PREFERRED ALTERNATES DATA
Al	ALTERNATE INFORMATION DATA
AN	ALTERNATES INHIBIT DATA
AW	ALTERNATE WIND DATA
AS	ALTERNATES FLIGHT LIST DATA
CA	COMPANY DISTRIBUTION
СВ	CLIMB WIND DATA
CG	TAKEOFF CENTER OF GRAVITY
CS	CLIMB TEMPERATURE DATA
DD	DESCENT FORECASTS
DS	DESCENT TEMPERATURE DATA
FN	FLIGHT NUMBERS
GA	GROUND ADDRESS
MW	MEAN WIND DATA
PD	PERFORMANCE INITIALIZATION DATA
PG	PAGE INFO
PL	PERFORMANCE LIMITS
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RF	POSITION REPORT FIX
RI	INACTIVE ROUTE
RM	ROUTE MODIFICATION
RP	ACTIVE ROUTE
<u>RT</u>	REQUIRED TIME OF ARRIVAL
RW	RUNWAY DATA
SD	SUPPLEMENTAL NAVIGATION DATABASE
SN	MESSAGE SEQUENCE NUMBER
TS	TIME STAMP
WD	ENROUTE WIND DATA
WE	WIND VECTOR MAGNITUDE DIFFERENCE
WL	WAYPOINT LIST
WM	ENROUTE WIND MODIFICATION

ATTACHMENT 7 FMC/DATALINK INTERFACE

5654 Section 65655 Downlink IEIs

5655 **Downlink IE** 5656

5657 5658 This section lists the currently defined downlink IEIs. This section will be updated as the need for new IEIs is identified. Users are requested to advise the AEEC staff when such a need arises.

	,
IEI	DESCRIPTION
AA	COMPANY PREFERRED ALTERNATES REQUEST
AB	ALTERNATES FLIGHT LIST REQUEST
AC	ACCEPT
AK	ACKNOWLEDGE
AP	SUPPLEMENTAL NAV DATA BASE AIRPORTS
AQ	WEATHER REQUEST
AR	ALTERNATE INFORMATION REPORT
CA	COMPANY DISTRIBUTION
CO	COMPANY ROUTE REQUEST
CQ	CLIMB FORECAST REQUEST
CU	CLIMB TEMPERATURE REQUEST
DI	DOWNLINK TIME INFORMATION
DQ	DESCENT FORECAST REQUEST
DT	DESTINATION REPORT
DU	DESCENT TEMPERATURE REQUEST
ED	SUPPLEMENTAL EFFECTIVITY DATE
FH	FLIGHT PLAN HISTORY
FN	FLIGHT NUMBER
FP	FUEL PLANNING
GA	GROUND ADDRESS
GL	GENERAL DATA
GP	GENERAL DIRECTIONS
MQ	MOD WIND REQUEST
NV	SUPPLEMENTAL NAV DATA BASE NAVAIDS
PH	FLIGHT PHASE
PL	PERFORMANCE LIMITS
PQ	PERFORMANCE INITIALIZATION REQUEST
PR	PERFORMANCE INITIALIZATION REPORT
PS	POSITION REPORT
RA	ALTERNATE ACTIVE/INACTIVE ROUTE
RJ	REJECT
RP	ACTIVE ROUTE
RQ	RUNWAY DATA REQUEST
RR	RUNWAY DATA REPORT
SN	MESSAGE SEQUENCE NUMBER
SP	SCRATCHPAD
TD	TOP OF DESCENT REPORT
TS	TIME STAMP
WI	WAYPOINT INFORMATION
WQ	WIND REQUEST
WP	SUPPLEMENTAL NAV DATA BASE WAYPOINTS
WR	ALTERNATE AIRPORT WEATHER REQUEST

ATTACHMENT 7 FMC/DATALINK INTERFACE

5660 5661	Section IEI an	on 7 d Associated Elements	
5662 5663 5664 5665 5666 5667 5668		the default text for all IEIs. This dependent IEIs) and their asso- associated elements, and IMIs IEI content and structure is indi	ne for relating elements to IEIs and defines section is separated into basic IEIs (also ciated elements, extended IEIs and their and their associated elements. The default cated by 'IEI CONTENT'. The content and d by 'LIST ENTRY'. Examples are provided
		BASIC IFIS A	ND ASSOCIATED ELEMENTS
	AC	ACCEPT	Consists of a variable length field defining the message sequence number and stimulus code.
		EXAMPLE: /AC12345,451 IEI CONTENT MESSAGE SEQUENCE NUMBER STIMULUS CODE	
	AK	ACKNOWLEDGE	Consists of a variable length field defining the message sequence number and stimulus code.
		EXAMPLE: /AK12345,451 IEI CONTENT MESSAGE SEQUENCE NUMBER STIMULUS CODE	
	CA	COMPANY DISTRIBUTION EXAMPLE: /CAFLTOPS IEI CONTENT COMPANY DISTRIBUTION	Consists of an airline internal distribution identifier.
	CG	TAKEOFF CENTER OF GRAVITY EXAMPLE: /CG200 IEI CONTENT TAKEOFF CENTER OF GRAVITY	Consists of a variable length field.
	СО	COMPANY ROUTE REQUEST EXAMPLE: /COKBFIKSFO01 IEI CONTENT COMPANY ROUTE	Consists of a variable length field.
	DD	DESCENT FORECAST	Consists of a list of up to ten altitude wind entries, followed by the additional descent forecast elements.
		EXAMPLE: /DD350270060.310270045.14/ IEI CONTENT LIST ENTRY: ALTITUDE AND WIND TAI ON ALTITUDE TAI ON/OFF ALTITUDE DESCENT TRANSITION ALTITUDE DESCENT ISA DEVIATION QNH	0260040.100230020.06030. 180.M04.1013
	DQ	DESCENT FORECAST REQUEST EXAMPLE: /DQ390	Consists of a single parameter element defining the top of descent altitude.
		IEI CONTENT TOP OF DESCENT ALTITUDE	
	DS	DESCENT TEMPERATURE	Consists of a list of up to ten altitude temperature entries

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	EXAMPLE: /DS320M50.250M30.010P10 IEI CONTENT LIST ENTRY: ALTITUDE AND OAT	D AGGGGALED ELEMENTO	
DU	DESCENT TEMPERATURE REQUEST	Consists of a single parameter element defining the top of De Altitude.	scent
	EXAMPLE: /DU370	Aintude.	
	IEI CONTENT		
	TOP OF DESCENT ALTITUDE		
DT	DESTINATION REPORT	Consists of a fixed format, fixed order field.	
	EXAMPLE: /DTKSFO,28L,0234,190023,003 <u>IEI CONTENT</u>	3	
	ARRIVAL AIRPORT IDENT		
	DESTINATION RUNWAY IDENT		
	PREDICTED FUEL REMAINING		
	ETA AT DESTINATION		
	REPORT STIMULUS		
FN	FLIGHT NUMBER	Consists of a variable length field.	
	EXAMPLE: /FNUAL1633A		
	<u>IEI CONTENT</u> FLIGHT NUMBER		
GA	GROUND ADDRESS	Consists of a list of addresses. A copy of the network address	s not
0, .	<u> </u>	directly used for message routing purposes.	
	EXAMPLE: /GATULDDAA.HEQXESA	, , , , , , , , , , , , , , , , , , , ,	
	<u>IEI CONTENT</u>		
	LIST ENTRY: GROUND ADDRESS		
PD	PERFORMANCE INITIALIZATION DAT.	Consists of a fixed format, fixed order field	
	EXAMPLE: /PD2113,,270,,0150,23,,,,P12,N IEI CONTENT	134	
	ZERO FUEL WEIGHT		
	CRUISE CENTER OF GRAVITY		
	CRUISE ALTITUDE		
	PLAN OR BLOCK FUEL		
	RESERVE FUEL		
	COST INDEX		
	CRUISE WIND		
	TOC OR CRUISE TEMPERATURE CLIMB TRANSITION ALTITUDE		
	FUEL FLOW FACTOR		
	DRAG FACTOR		
	PERF FACTOR		
	IDLE FACTOR		
	TROPOPAUSE ALTITUDE		
	TAXI FUEL		
	ZERO FUEL WEIGHT CENTER OF GRAVITY		
	MINIMUM FUEL TEMPERATURE		
PQ	PERFORMANCE INITIALIZATION	Consists of a fixed format, fixed order field.	
	REQUEST	,	
	EXAMPLE: /PD2113,,270,,0150,23,,,,P12,N	134	
	IEI CONTENT		
	ZERO FUEL WEIGHT		
	CRUISE CENTER OF GRAVITY CRUISE ALTITUDE		
	PLAN OR BLOCK FUEL		
	. L		

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

RESERVE FUEL COST INDEX CRUISE WIND TOC OR CRUISE TEMPERATURE CLIMB TRANSITION ALTITUDE FUEL FLOW FACTOR DRAG FACTOR PERF FACTOR IDLE FACTOR TROPOPAUSE ALTITUDE TAXI FUEL ZERO FUEL WEIGHT CENTER OF

GRAVITY

MINIMUM FUEL TEMPERATURE
PERFORMANCE INITIALIZATION PR

REPORT

EXAMPLE: /PR2633,,270,0520,,0150,23,,,,P12,M34

IEI CONTENT

CURRENT GROSS WEIGHT CRUISE CENTER OF GRAVITY

CRUISE ALTITUDE

FUEL REMAINING PLAN OR BLOCK FUEL RESERVE FUEL

COST INDEX CRUISE WIND

TOC OR CRUISE TEMPERATURE

CLIMB TRANSITION ALTITUDE

FUEL FLOW FACTOR DRAG FACTOR PERF FACTOR

IDLE FACTOR
TROPOPAUSE ALTITUDE

TAXI FUEL

ZERO FUEL WEIGHT

ZERO FUEL WEIGHT CENTER OF

MINIMUM FUEL TEMPERATURE

RF POSITION REPORT FIX Consists of a list of reporting points which when sequenced in

Consists of a fixed format, fixed order field

flight, trigger the position report. EXAMPLE: /RFORTIN.SEA.N3545W090256

IEI CONTENT

LIST ENTRY: WAYPOINT SEQUENCE

RI **INACTIVE ROUTE** A variable length field that consists of flight plan elements that

replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance ianguage.

I

DEPARTURE AIRPORT IDENT :DA:

-ARRIVAL AIRPORT IDENT :AA: :CR:

COMPANY ROUTE DEPARTURE RUNWAY IDENT :R: DEPARTURE PROCEDURE :D:

LATITUDE/LONGITUDE

FLIGHT PLAN SEGMENT PUBLISHED IDENT

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

PLACE BEARING/PLACE BEARING PLACE BEARING DISTANCE

:ON: -START OF DESIGNATED FLIGHT PLAN SEGMENT

:A: ARRIVAL PROCEDURE :AP: APPROACH PROCEDURE (): ARRIVAL RUNWAY IDENT

:V: WAYPOINT SPEED/ALTITUDE/TIME

:H: HOLD AT WAYPOINT:WS: WAYPOINT STEP CLIMB:AT: ALONG TRACK WAYPOINT:RP: REPORTING POINTS

DIRECT FIX

. TRANSITION OR AIRWAY VIA :F:. AIRWAY INTERCEPT :IC: INTERCEPT COURSE FROM

RJ REJECT Consists of a variable length field defining the message sequence

number and the stimulus code.

EXAMPLE: /RJ12345,451

IEI CONTENT

MESSAGE SEQUENCE NUMBER

STIMULUS CODE

RP <u>ACTIVE/INACTIVE ROUTE</u>

A variable length field that consists of flight plan elements. These flight plan elements define a flight plan in approximately the same

fashion as ATC clearance language.
THE FORMAT IS THE SAME AS DESCRIBED FOR THE RI IEI DESCRIPTION.

RQ RUNWAY DATA REQUEST Consists of a fixed-list format, fixed order field consisting of data

for up to two runway/intersection combinations.

EXAMPLE: /RQKSEA,31L,A9,,,156,2613,,P15,140012,1,15,2,,P40

IEI CONTENT

DEPARTURE AIRPORT IDENT

TAKEOFF RUNWAY IDENT RUNWAY INTERSECTION

POSITION SHIFT

RUNWAY LENGTH REMAINING TAKEOFF CENTER OF GRAVITY CURRENT GROSS WEIGHT

REFERENCE TAKEOFF GROSS WEIGHT

OAT OR SAT

TAKEOFF RUNWAY WIND
TAKEOFF RUNWAY CONDITION
TAKEOFF FLAPS
TAKEOFF THRUST RATING
VTR PERCENTAGE
SELECTED TEMPERATURE
BARO SETTING
FLAP/SLAT CONFIGURATION
THRUST REDUCTION ALTITUDE
ACCELERATION ALTITUDE

ACCELERATION ALTITUDE ENGINE-OUT ACCELERATION ALTITUDE

REQUIRED TIME OF ARRIVAL

Consists of a fixed format, fixed order field

EXAMPLE: /RTVAMPS,143000 IEI CONTENT

<u>RT</u>

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

RTA WAYPOINT IDENT RTA TIME

RW **RUNWAY DATA** Consists of a fixed-list entry format field consisting of data for up to six runway/intersection combinations followed by a departure

airport EXAMPLE: /RW13R,A9,PO9,,0,1125,2613,2850,P23,U05,250015,1,15,1,08,P38,131139147,0, 15,1135,,130137145.31L,ETC:KBFI

IEI CONTENT

LIST ENTRY:

TAKEOFF RUNWAY IDENT **RUNWAY INTERSECTION** POSITION SHIFT

RUNWAY LENGTH REMAINING

INVALID FLAG

TRIM

REFERENCE TAKEOFF GROSS WEIGHT STANDARD LIMIT TAKEOFF GROSS WEIGHT

OAT OR SAT

TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY WIND TAKEOFF RUNWAY CONDITION

TAKEOFF FLAPS

TAKEOFF THRUST RATING VTR PERCENTAGE
ASSUMED TEMPERATURE

TAKEOFF SPEEDS ALTERNATE THRUST RATING

ALTERNATE FLAPS

ALTERNATE TRIM

ALTERNATE LIMIT TAKEOFF GROSS WEIGHT

ALTERNATE TAKEOFF SPEEDS ALTERNATE ASSUMED TEMPERATURE

FLAP/SLAT CONFIGURATION

ALTERNATE FLAP/SLAT CONFIGURATION

ALTERNATE VTR PERCENTAGE

DPARTURE AIRPORT IDENT

BARO SETTING

THRUST REDUCTION ALTITUDE ACCELERATION ALTITUDE

ENGINE-OUT ACCELERATION ALTITUDE NOISE ABATEMENT END ALTITUDE

NOISE ABATEMENT SPEED

NOISE ABATEMENT DERATE THRUST

NOISE ABATEMENT THRUST

NOISE ABATEMENT START ALTITUDE MESSAGE SEQUENCE

Consists of a variable length format field defining the message

sequence number. EXAMPLE: /SN12345

IEI CONTENT

SCRATCHPAD

SN

SP

MESSAGE SEQUENCE NUMBER

Consists of a variable length field that contains the contents of the

CDU scratch pad.

EXAMPLE: /SPSCRATCHPADMESSAGE

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

	BASIC IEIs AN	D ASSOCIATED ELEMENTS
	<u>IEI CONTENT</u>	
	SCRATCHPAD	
TS	TIME STAMP EXAMPLE: /TS152533,200290 IEI CONTENT GREENWICH MEAN TIME	Consists of a fixed length field.
	DATE	
WD	ENROUTE WIND DATA	Consists of an altitude and a variable length list of entries that include the waypoint, the waypoint winds that apply to that altitude and the waypoint temperature.
	EXAMPLE: /WD310,SEA,120015,350M35, N IEI CONTENT WIND ALTITUDE LIST ENTRY:	N04030W120,130090
	WAYPOINT NAME OR POSITION WAYPOINT WIND WAYPOINT ALTITUDE/OAT	
WQ	WIND REQUEST	Consists of a list of elements defining altitudes for which winds are requested, followed by a list of elements defining waypoints in the route for which the request is being made.
	EXAMPLE: /WQ350.370.390.410:SEA.N403 IEI CONTENT LIST ENTRY: WIND LEVEL ALTITUDE	10W110.ORD.ETC
	LIST ENTRY: WIND LEVEL WAYPOINT	
POS	POSITION REPORT	Consists of elements used to define a position report. 118,350,ORTIN,093436,BARRO,M32,120015,0485,784
	CURRENT POSITION (CROSSED) WAYPOINT IDENT GREENWICH MEAN TIME	
	CURRENT ALTITUDE GOTO (NEXT) WAYPOINT IDENT ETA AT GOTO WAYPOINT	
	GOTO+1 (FOLLOWING) WAYPOINT IDENT STATIC AIR TEMPERATURE (SAT) ACTUAL WIND	
	FUEL REMAINING TARGET MACH	
REJ	REJECT	Consists of the uplinked IMI, time uplink is received and a list of error codes.
	REJPWI,HHMMSS,103,,006,CB/.108,,CB,/CI UPLINKED IMI	B.109,,001,NOVALIDIEI/TShhmmss,mmddyy
	TIME UPLINK RECEIVED LIST ENTRY:	
	ERROR TYPE CODE ERROR DATA CODE	
	LITERAL ERROR DATA EXTENDED REJECTION DATA	
RES	RESPONSE	Consists of the uplinked IMI, time uplink is received and a list of
INLO	EXAMPLE:	error codes. RESFPN/AC,073
AA	COMPANY PREFERRED ALTERNATES RE	·
	EXAMPLE: /AAN47261W122185,BOE123,K	

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

FLIGHT NUMBER DEPARTURE AIRPORT IDENT ARRIVAL AIRPORT IDENT **COMPANY ROUTE**

AB ALTERNATES FLIGHT LIST REQUEST

EXAMPLE: /ABN47261W122185,BOE123,KSEA,KSFO, SEASFO

CURRENT POSITION FLIGHT NUMBER

DEPARTURE AIRPORT IDENT ARRIVAL AIRPORT IDENT COMPANY ROUTE

ΑE COMPANY PREFERRED ALTERNATES DATA

EXAMPLE:/aeksea,1,09020,350P10,HUMPP,KM.WH,2,080100,300M5,ELN:300,1290

LIST ENTRY

COMPANY PREFERRED ALTN IDENT COMPANY PREFERRED ALTN PRIORITY COMPANY PREFERRED ALTN WIND COMPANY PREFERRED ALTN ALTITUDE/OAT

COMPANY PREFERRED ALTN ALTITUDE COMPANY PREFERRED ALTN SPEED COMPANY PREFERRED ALTN OFFSET

ΑI ALTERNATE INFORMATION DATA Consists of a variable length list of entries consisting of alternate

information EXAMPLE: /AIKSFO,D,1423,230,120045,M15.KLAX,M,1700,310,325020,P34

IEL CONTENT

LIST ENTRY:

ALTERNATE IDENT ALTERNATE TYPE DISTANCE TO ALTERNATE ALTITUDE TO ALTERNATE ESTIMATED WIND TO ALTERNATE TEMPERATURE AT ALTERNATE

AN ALTERNATES INHIBIT DATA EXAMPLE: /ANKPAE.KSEA

LIST ENTRY: ALTN INHIBIT

AP SUPPLEMENTAL NDB AIRPORTS Consists of a list of airports to be included in the supplemental navigation data base

EXAMPLE:

/APKABC,N39152W121185,01740,E10.K DEF,N37440W119118,00900,W12

IEI CONTENT

LIST ENTRY:

AIRPORT IDENT AIRPORT LAT/LON AIRPORT ELEVATION AIRPORT MAGVAR

AQ WEATHER REQUEST

EXAMPLE: /AQKSFO.KLAX.KONT:KPHX

LIST ENTRY:

AR

COMPANY PREFERRED ALTN IDENT

ARRIVAL AIRPORT IDENT

ALTERNATE INFORMATION REPORT Consists of a variable length list consisting of alternate destination

EXAMPLE: /ARKSFO,D,132456,0120,0123,310,310050.KLAX,D,142523,0109,0206,325,340100

ATTACHMENT 7 FMC/DATALINK INTERFACE

	BASIC IEIS AN	ID ASSOCIATED ELEMENTS	
	<u>IEI CONTENT</u>		
	LIST ENTRY ALTERNATE IDENT		
	ALTERNATE IDENT		
	ETA AT ALTERNATE DESTINATIO	N	
	FUEL REMAINING AT ALTERNATI		
	DISTANCE TOALTERNATE		
	ALTITUDE TO ALTERNATE CRUISE WIND TO ALTERNATE		
AS	ALTERNATES FLIGHT LIST DATA		
	EXAMPLE: /ASKDEN,18030,350M5.KLAX,	02040,350P10	
	LIST ENTRY:		
	ALTN FLIGHT LIST IDENT ALTN FLIGHT LIST WIND		
	ALTN FLIGHT LIST WIND ALTN FLIGHT LIST ALTITUDE/OA	т	
AW	ALTERNATE WIND DATA	Consists of a multi-parameter element defining the altitude and	d
		wind.	
	EXAMPLE: /AW220035040 IEI CONTENT		
	ALTITUDE AND WIND		
СВ	CLIMB WIND DATA	Consists of a list of up to ten altitude wind entries.	
	EXAMPLE: /CB350270060.310270045.140	260040.100230020	
	IEI CONTENT LIST ENTRY: ALTITUDE AND WIND		
CQ	CLIMB FORECAST REQUEST	Consists of a single parameter element defining the top of clim	nb
		altitude.	
	EXAMPLE: /CQ370 IEI CONTENT		
	CRUISE ALTITUDE		
CS	CLIMB TEMPERATURE DATA	Consists of a list of up to ten altitude temperature entries.	
	EXAMPLE: /CS120P05.250M30.300M40		
	IEI CONTENT		
CU	LIST ENTRY: ALTITUDE AND OAT CLIMB TEMPERATURE REQUEST	Consists of a single parameter element defining the top of clim	nh
00	OLIMB TEMI ENVIONE REGOLOT	altitude.	ıb
	EXAMPLE: /CS370		
	IEI CONTENT CRUISE ALTITUDE		
DI	DOWNLINK TIME INFORMATION	Consists of a fixed format, fixed order field containing time	
	<u> </u>	information.	
	EXAMPLE: /D105163251635.051636		
	IEI CONTENT TRIGGER TRIPPED TIME		
	DOWNLINK GENERATION TIME		
	GREENWICH MEAN TIME		
ED	SUPPLEMENTAL EFFECTIVITY DATE	Consists of a fixed length field defining the effectivity date of the	ne
	EXAMPLE: /EDJAN0191/	supplemental navigation data base.	
	IEI CONTENT		
	EFFECTIVITY DATE/		
FH	FLIGHT PLAN HISTORY	Consists of a variable length list of parameters that are linked	to
	EXAMPLE: /FHLACRE 132034 240K 0700 0	the different waypoints of the flight plan. 0197,P23,132016,235,Y,150,012,ILS32R,1100,etc	
	IEI CONTENT	7.07,1 20,102010,200,1,100,012,1200211,1100,010	

1

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

LIST ENTRY: ETA AT PREDICTED WAYPOINT PREDICTED WAYPOINT IDENT PREDICTED AIRSPEED ALTITUDE TO PREDICTED WAYPOINT FUEL REMAINING AT PREDICTED WAYPOINT OAT AT PREDICTED WAYPOINT WIND AT PREDICTED WAYPOINT

TAS AT PREDICTED WAYPOINT PROCEDURE INDICATOR COURSE INTO PREDICTED WAYPOINT

DISTANCE TO PREDICTED WAYPOINT PROCEDURE IDENTIFIER

CURRENT GROSS WEIGHT

FUEL PLANNING Consists (
EXAMPLE: /FP1605,1100,12,220,08,140,110,P26,360 FP Consists of a fixed format, fixed order field.

IEI CONTENT

TAKEOFF GROSS WEIGHT

LANDING GROSS WEIGHT TAXI FUEL TRIP FUEL RESERVE FUEL ALTERNATE FUEL FINAL FUEL EXTRA FUEL

PLAN OR BLOCK FUEL GL **GENERAL DATA** Consists of a fixed order field.

EXAMPLE: /GL290690,757-200,,BE49005001,NWA105,BFMWH01,KBFI,KMWH,10,1750,PW2040,KPDX,BFIMWO02.230.255

IEI CONTENT DATE

AIRCRAFT TYPE

ENGINE THRUST
NAVIGATION DATA BASE IDENT

FLIGHT NUMBER COMPANY ROUTE

DEPARTURE AIRPORT IDENT

ARRIVAL AIRPORT IDENT

COST INDEX ZERO FUEL WEIGHT

ENGINE TYPE

ALTERNATE DESTINATION

ALTERNATE COMPANY ROUTE

CRUISE ALTITUDE CENTER OF GRAVITY

GP **GENERAL PREDICTIONS** Consists of a fixed format, fixed order field.

EXAMPLE: /GPKBFI,140000,0201,0280,230,2700,2180,,,,,,,255,KSEA,0140,14033,206,230

IEI CONTENT

ARRIVAL AIRPORT IDENT ETA AT DESTINATION DISTANCE TO DESTINATION PREDICTED DESTINATION FUEL PRIMARY ACTIVE CRUISE ALTITUDE

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

TAKEOFF GROSS WEIGHT LANDING GROSS WEIGHT TOTAL FUELFOB PLAN OR BLOCK FUEL TRIP FUEL RESERVE FUEL EXTRA FUEL FINAL FUEL CENTER OF GRAVITY
ALTERNATE DESTINATION ALTERNATE FUEL ALTERNATE TIME DISTANCE TO ALTERNATE

ALTERNATE CRUISE ALTITUDE MQ MOD WIND REQUEST

Consists of a list of elements defining altitudes for which winds are requested, followed by a list of elements defining waypoints in the modified route for which the request is being made.

EXAMPLE: /MQ350.370.390.410:SEA.N4030W110.ORD.ETC

IEI CONTENT
LIST ENTRY: WIND LEVEL ALTITUDE
LIST ENTRY: WIND LEVEL WAYPOINT

MW MEAN WIND DATA Consists of a fixed order, fixed format field.

EXAMPLE: /MWKBFI,KMWH,P045 **IEI CONTENT**

DEPARTURE AIRPORT IDENT ARRIVAL AIRPORT IDENT

MEAN WIND

NV SUPPLEMENTAL NDB NAVAIDS

EXAMPLE: /NVABCD,N25131W108473,11300,VTH,01250,W11

IEI CONTENT

LIST ENTRY:

NAVAID IDENT NAVAID LAT/LON FREQUENCY CLASS OF NAVAID NAVAID ELEVATION NAVAID MAGVAR

PG PAGE INFO

PH

EXAMPLE: /PG13

PAGE INFO

FLIGHT PHASE EXAMPLE: /PH2 Consists of a fixed format field defining FMC flight phase.

IEI CONTENT FLIGHT PHASE

PL PERFORMANCE LIMITS Consists of a fixed format, fixed order field.

EXAMPLE: /PL25,210340,220340,240320,500820,650820,500780

IEI CONTENT

TIME ERROR TOLERANCE CLIMB CAS LIMITS CRUISE CAS LIMITS DESCENT CAS LIMITS **CLIMB MACH LIMITS** CRUISE MACH LIMITS

DESCENT MACH LIMITS

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

PS **POSITION REPORT** EXAMPLE: /PSN47261W122185,SEA,093118,350,ORTIN,093436,BARRO,M32,120015,0485,789,ECON **CURRENT POSITION** CROSSED WAYPOINT IDENT GREENWICH MEAN TIME **CURRENT ALTITUDE** GOTO (NEXT) WAYPOINT IDENT ETA AT GOTO WAYPOINT GOTO + 1 (FOLLOWING) WAYPOINT IDENT STATIC AIR TEMPERATURE (SAT) **ACTUAL WIND FUEL REMAINING** TARGET MACH CRUISE SPEED MODE **ENGINE OUT STATUS** ZERO FUEL WEIGHT RA A variable length field that consists of flight plan elements that **ALTERNATE ROUTE** replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance EXAMPLE: THE FORMAT IS THE SAME AS DESCRIBED FOR THE RI IEI DESCRIPTION. A variable length field that that consists of flight plan elements that RM **ROUTE MODIFICATION** replace the inactive route. These flight plan elements define a flight plan in approximately the same fashion as ATC clearance language. The RM cannot contain the CR: or :DA: flight plan element identifiers. THE FORMAT IS THE SAME AS DESCRIBED FOR THE RIJEI DESCRIPTION WITH THE ADDITION OF THE FOLLOWING: LO: LATERAL OFFSET RUNWAY DATA REPORT RR Consists of a fixed format, fixed order field EXAMPLE: /RRKBFI,13R,A9,P09,,155,1125,2855,,P25,U35,250015,1,15,2,,P40,108119126 **IEI CONTENT** DEPARTURE AIRPORT IDENT TAKEOFF RUNWAY IDENT **RUNWAY INTERSECTION** POSITION SHIFT RUNWAY LENGTH REMAINING TAKEOFF CENTER OF GRAVITY **CURRENT GROSS WEIGHT** REFERENCE TAKEOFF GROSS WEIGHT OAT OR SAT TAKEOFF RUNWAY SLOPE TAKEOFF RUNWAY WIND TAKEOFF RUNWAY CONDITION TAKEOFF FLAPS TAKEOFF THRUST RATING VTR PERCENTAGE SELECTED TEMPERATURE TAKEOFF SPEEDS BARO SETTING FLAP/SLAT CONFIGURATION THRUST REDUCTION ALTITUDE **ACCELERATION ALTITUDE**

ENGINE-OUT ACCELERATION ALTITUDE

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

```
SD
        SUPPLEMENTAL NAVIGATION DATA
                                                 Consists of an effectivity date and four separate lists that define
                                                 the supplemental data base airport, navaid, waypoint and runway
                                                 elements in that order.
        EXAMPLE: /SDJAN0190,KABC,N45240W119235,00911,W23.KJLL,etc:ABC,N45354W122506,11550,VTH,00530,W21.SEE,etc:ABCDE,N45354W122506,,,,W22.WPT01,etc:05L,LFBO,N33125E010259,005,131,11125.02R,etc
        IEI CONTENT
EFFECTIVITY DATA
        LIST ENTRY:
               AIRPORT IDENT
               AIRPORT LAT/LON
               AIRPORT ELEVATION
               AIRPORT MAGVAR
        LIST ENTRY:
               NAVAID IDENT
               NAVAID LAT/LON
               FREQUENCY
               CLASS OF NAVAID
               NAVAID ELEVATION
           NAVAID MAGVAR
        LIST ENTRY:
               WAYPOINT IDENT
                WAYPOINT LAT/LON
                REFERENCE IDENT
                REFERENCE LAT/LON
                RADIAL/DISTANCE
                    WAYPOINT MAGVAR
        LIST ENTRY:
        RUNWAY IDENT
        REFERENCE AIRPORT IDENT
        RUNWAY LAT/LON
        RUNWAY COURSE
        RUNWAY ELEVATION
        RUNWAY LENGTH
        TOP OF DESCENT REPORT
TD
                                                 Consists of top of descent time and location, and current weight.
        EXAMPLE: /TD134230,N59151W132251,3153,001
        IEI CONTENT
        TOP OF DESCENT ETA
TOP OF DESCENT LOCATION
        CURRENT GROSS WEIGHT
        STIMULUS CODE
                                                 Consists of a fixed length field used to define the downlink trigger
WF
        WIND VECTOR MAGNITUDE
        DIFFERENCE
                                                 threshold for wind discrepancies.
        EXAMPLE: /WE020
        IEI CONTENT
        WIND VECTOR MAGNITUDE
        DIFFERENCE
WI
        WAYPOINT INFORMATION
                                                 Contains a list of waypoints and their ETAs.
        EXAMPLE: /WIBDX,143205.CGC,144510.N33E010,153512
        IEI CONTENT
        WAYPOINT NAME OR POSITION
        ETA AT PREDICTED WAYPOINT
```

ATTACHMENT 7 FMC/DATALINK INTERFACE

BASIC IEIS AND ASSOCIATED ELEMENTS

WL WAYPOINT LIST Contains a list of waypoints for which data is to be included in a top of descent downlink.

EXAMPLE: /WLBDX.CGC.NSG.N33E010

IEI CONTENT LIST ENTRY:

WAYPOINT NAME OR POSITION

WM ENROUTE WIND MODIFICATION Consists of an altitude and a variable length list of entries that

include the waypoint, the waypoint winds that apply to that altitude

Consists of a variable length list of entries defining destination and

and the waypoint temperature. EXAMPLE: /WM310,SEA,120075,350M35.N04030W120,130090

IEI CONTENT WIND ALTITUDE

LIST ENTRY: WAYPOINT NAME OR POSITION WAYPOINT WIND WAYPOINT ALTITUDE/OAT

WP SUPPLEMNTAL NDB WAYPOINTS Consists of a list of waypoints to be included in the supplemental navigation data base.

alternate identifiers.

EXAMPLE: /WPEFGH,N21421W101113,SRP,1090020,W09

IEI CONTENT

WAYPOINT IDENT WAYPOINT LAT/LON REFERENCE IDENT RADIAL/DISTANCE WAYPOINT MAGVAR

WR ALTERNATE AIRPORT WEATHER

REQUEST EXAMPLE: /WRKLAX.KSFO.KPHX

IEI CONTENT

LIST ENTRY: **DESTINATION AND ALTERNATE IDENTS**

ATTACHMENT 7 FMC/DATALINK INTERFACE

Section 8
Element Definitions

5671

5672

5673

5674

5675 5676

5677

5678

5679 5680

5681

5682

5683

This section contains an alphabetical table of defined elements indicating the formats and attributes of each element. This section will be updated as the need for new elements is identified. Users are requested to advise the AEEC staff when such a need arises.

Notes:

- This element may require one or more elements to completely define the desired data.
- Some implementations require that this element be uplinked in a fixed length format of maximum character length.
- 3. See Section 10 for further definition of codes.
- 4. Millibars = Hectopascals = 100 newton/meter2

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ACARS CONFIG IDENT NUMBER	V	S	AN	10			
ACCELERATION ALTITUDE	V	S	N	5	1	Feet	
ACT PLAN CRUISE ALTITUDE	٧	S	N	3	100	Feet	
ACTIVE CRZ WAYPOINT	V	S	AN	13			
ACTIVE CRZ WAYPOINT/WIND	V	S	AN	13			
ACTIVE DESCENT WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	٧	S	N	3	1	Knots	2
ACTUAL WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
AIRCRAFT TYPE	V	S	AN	11			
AIRPORT ELEVATION	V	S	N	5	1	Feet	
AIRPORT IDENT	V	S	AN	4			
AIRPORT LAT/LON	F	S	AN	13			

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

$$\label{eq:Alpha} \begin{split} A &= \mathsf{ALPHA} \\ \mathsf{AN} &= \mathsf{ALPHANUMERIC} \end{split}$$

N = NUMERIC
D = DIRECTIONAL

Formatted: Numbering: Continuous

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
AIRPORT MAGVAR	V	S	AN	3			
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
ALTERNATE ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
ALTERNATE COMPANY ROUTE	V	S	AN	10			
ALTERNATE CRUISE ALTITUDE	V	S	N	3	100	Feet	
ALTERNATE DESTINATION	V	S	AN	4			1
ALTERNATE FLAP/SLAT							
CONFIGURATION	F	S	N	1			
ALTERNATE FLAPS	V	S	N	2	1	Degrees	
ALTERNATE FUEL	V	S	N	5	0.1	Klbs	
ALTERNATE IDENT	V	S	AN	10			

ALTERNATE LIMIT TAKEOFF

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUMERIC

D = DIRECTIONAL

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
GROSS WT	V	S	N	5	0.1	Klbs	
ALTERNATE TAKEOFF SPEEDS	F	М	N	9			
V1	F	S	N	3	1	Knots	
VR	F	S	N	3	1	Knots	
V2	F	S	N	3	1	Knots	
ALTERNATE THRUST RATING	F	s	N	1		0 = No derate	
						1 = Derate 1	
						2 = Derate 2	
						I	
						9 = Derate 9	
ALTERNATE TIME	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ALTERNATE TRIM	V	D	AN	5			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	4	0.01	Degrees	
ALTERNATE TYPE	F	S	Α	1		M=Missed	1
						Appr	
						D=Dir to	
						from	
S = SINGLE PARAMER	A = .	ALPHA		N = NUME	RIC		
M = MULTIPARAMETER	AN =	= ALPHANUME	RIC	D = DIREC	CTIONAL		

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						Present Pos	
ALTERNATE VTR PERCENTAGE	V	s	N	2	1	Percent	
ALTERNATE WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
ALTITUDE AND WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
ALTITUDE TO ALTERNATE	V	S	N	3	100	Feet	1
ALTITUDE TO PREDICTED WPT	V	S	N	4	10	Feet	
ALTN FLIGHT LIST ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	N	3	100		
DIRECTIONAL	F	D	Α	1			
MAGNITUDE	٧		N	2	1		
ALTN FLIGHT LIST IDENT	V	S	AN	4			
ALTN FLIGHT LIST WIND	V	D	N	6			
DIRECTIONAL	F		N	3	1		
MAGNITUDE	V		N	3	1		
ALTN INHIBIT	٧	S	AN	4			
ARRIVAL AIRPORT IDENT	٧	S	AN	4			
ASSUMED TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	

V = VARIABLE F = FIXED

S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHA

N = NUMERIC D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
BARO SETTING	V	D	AN	5			
DIRECTIONAL	F		Α	1		H=QNH	
						E=QFE	
MAGNITUDE	V		N	4	1	Hecto- pascals	4
CENTER IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
CENTER OF GRAVITY	V	S	N	3	0.1	Percent	
CLASS OF NAVAID	V	S	Α	7			
CLIMB CAS LIMITS	F	М	N	6			
MINIMUM CLB CAS	F	S	N	3	1	Knots	
MAXIMUM CLB CAS	F	S	N	3	1	Knots	
CLIMB MACH LIMITS	F	М	N	6			
MINIMUM CLB MACH	F	S	N	3	0.001	Mach	
MAXIMUM CLB MACH	F	S	N	3	0.001	Mach	
CLIMB TRANSITION ALTITUDE	V	s	N	3	100	Feet	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

AN = ALPHANUMERIC

N = NUMERIC D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
CLIMB WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
COMPANY DISTRIBUTION	V	S	AN	10			
COMPANY PREFERRED ALTN ALTITUDE	V	S	N	3	100	Feet	
COMPANY PREFERRED ALTN ALT/OAT	V	М	AN	6			
ALTITUDE	F	S	N	3	100		
DIRECTIONAL	F	D	Α	1			
MAGNITUDE	V		N	2	1		
COMPANY PREFERRED ALTN IDENT	V	S	AN	4			
COMPANY PREFERRED ALTN OFFSET	V	D	AN	3			
DIRECTIONAL	F		Α	1			
DISTANCE	V		N	2	1		
COMPANY PREF ALTN OVERHEAD FIX	V	S	AN	13			
COMPANY PREFERRED ALTN PRIORITY	F	S	N	1			
COMPANY PREFERRED ALTN SPEED	V	М	N	4			
TYPE	F	S	N	1			
SPEED VALUE	V	S	N	S	1, 0.001		
COMPANY PREFERRED ALTN WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1		
MAGNITUDE	V	S	N	3	1		
COMPANY ROUTE	V	S	AN	10			
COST INDEX	V	S	N	4			
COURSE IN	F	S	N	3	1	Degrees	
S = SINGLE PARAMER	A =	ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC N = NUME

D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
COURSE INTO PREDICTED WAYPOINT	٧	S	N	3	1	Degrees	1
CROSS TRACK DEVIATION	٧	D	AN	4			
DIRECTIONAL	F		Α	1		L or R	
DISTANCE	٧		N	3	0.1	NM	
CROSSED WAYPOINT IDENT	٧	S	AN	13			
CRUISE ALTITUDE	٧	S	N	3	100	Feet	
CRUISE CAS LIMITS	F	М	N	6			
MINIMUM CRZ CAS	F	S	N	3	1	Knots	
MAXIMUM CRZ CAS	F	S	N	3	1	Knots	
CRUISE CENTER OF GRAVITY	٧	S	N	3	0.1	Percent	
CRUISE MACH LIMITS	F	М	N	6			
MINIMUM CRZ MACH	F	S	N	3	0.001	Mach	
MAXIMUM CRZ MACH	F	S	N	3	0.001	Mach	
CRUISE SPEED MODE	V	S	AN	17		Active Cruise	
						Page Title	
CRUISE WAYPOINT WIND	٧	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	٧	S	N	3	1	Knots	2
CRUISE WIND	٧	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2
CRUISE WIND TO ALTERNATE	٧	М	N	6			1
DIRECTIONAL	F	s	N	3	1	Degrees	
MAGNITUDE	٧	S	N	3	1	Knots	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
CURRENT ALTITUDE	٧	S	N	3	100	Feet	
CURRENT CALIBRATED AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		Α	1		K or M	
CURRENT GROSS WEIGHT	V	S	N	5	0.1	Klbs	
CURRENT GROSS WEIGHT AT PRED WPT	V	S	N	5	0.1	Klbs	
CURRENT GROUND SPEED	F	S	N	3	1	Knots	
CURRENT POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
CURRENT TRUE AIRSPEED	F	D	AN	4	1 or		
SPEED VALUE CAS/MACH	F		N	3	0.001	Knots, Mach	
UNIT IDENTIFIER	F		Α	1		K or M	
CURRENT VERTICAL SPEED	V	D	AN	5			
DIRECTIONAL	F		Α	1		U or D	
SPEED VALUE	V		N	4	1	Feet/min	
DATE	F	М	N	6			
DAY	F	S	N	2		Day	
DAY		S	N	2 N – NI IME	.DIC		Day

V = VARIABLE F = FIXED

S = SINGLE PARAMER M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MONTH	F	S	N	2		Month	
YEAR	F	S	N	2		Year	
DEPARTURE AIRPORT IDENT	V	s	AN	4			
DESCENT CAS LIMITS	F	М	N	6			
MINIMUM DES CAS	F	S	N	3	1	Knots	
MAXIMUM DES CAS	F	S	N	3	1	Knots	
DESCENT ISA DEVIATION	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
DESCENT MACH LIMITS	F	М	N	6			
MINIMUM DES MACH	F	S	N	3	0.001	Mach	
MAXIMUM DES MACH	F	S	N	3	0.001	Mach	
DESCENT TRANSITION ALTITUDE	V	S	N	3	100	Feet	
DESCENT WIND	V	М	N	9			
ALTITUDE	F	S	N	3	100	Feet	2
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
DESIRED TRACK	V	S	N	3	1	Degrees	
DESTINATION AND ALTERNATE IDENTS	V	S	AN	10			
DESTINATION RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		N	2			
RUNWAY SUFFIX	F		Α	1		L=Left	
						C=Center	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						R=Right	
						O=None	
DISTANCE TO ALTERNATE	V	S	N	4	1	NM	
DISTANCE TO DESTINATION	V	S	N	4	1	NM	
DISTANCE TO PREDICTED WAYPOINT	V	S	N	4	1	NM	1
DISTANCE TO WAYPOINT	V	S	N	4	1	NM	
DOWNLINK GENERATION TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1		
DRAG FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
EFFECTIVITY DATE	F	М	AN	7			
MONTH	F	S	Α	3		Month	
DAY	F	S	Α	2		Day	
YEAR	F	S	N	2		Year	
ENGINE-OUT ACCELERATION							
ALTITUDE	V	S	N	5	1	Feet	
ENGINE-OUT STATUS	٧	S	N	1		0=All Engine	
						1=Engine Out	
ENGINE THRUST	F	S	N	3	0.1	Klbs	
ENGINE TYPE	V	S	AN	15			
S = SINGLE PARAMER	A =	ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
ENTERED IRS HEADING	F	S	N	3	1	Degrees	
ERROR DATA CODE	F	S	N	3			3
ERROR TYPE CODE	F	S	N	3			3
ESTIMATED WIND TO ALTERNATE	V	М	N	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	2
ETA AT ALTERNATE DESTINATION	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT DESTINATION	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT GOTO WAYPOINT	F	М	N	6			1
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA AT PREDICTED WAYPOINT	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Second	
ETA CHANGE VARIABLE	F	S	N	1	1	Minutes	
EXTENDED REJECTION DATA	V	S	AN	25			

V = VARIABLE F = FIXED S = SINGLE PARAMER

M = MULTIPARAMETER

A = ALPHA

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
EXTRA FUEL	V	D	AN	6			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	5	0.1	Klbs	
FINAL FUEL	V	S	N	5	0.1	Klbs	
FLAP/SLAT CONFIGURATION	F	S	N	1			
FLIGHT NUMBER	V	S	AN	10			
FLIGHT PATH ANGLE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
ANGLE	V		N	2	0.1	Degrees	
FLIGHT PHASE	F	S	N	1		0= Preflight	
						1=Takeoff	
						2=Climb	
						3=Cruise	
						4=	
						Descent	
						5= Approach	
						6=Go	
						Around	
						7=Done	
FMC BEST POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
S = SINGLE PARAMER	A =	ALPHA		N = NUME	RIC		
M = MULTIPARAMETER	AN	= ALPHANUME	RIC	D = DIREC	CTIONAL		

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
FMC POSITION PRIOR TO POS UPDATE	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
FMC SOFTWARE PART NUMBER	F	S	N	10			
FMC SYSTEM DATE	F	М	N	6			
DAY	F	S	N	2	1		
MONTH	F	S	N	2	1		
YEAR	F	S	N	2	1		
FMC SYSTEM TIME	F	М	N	6			
HOURS	F	s	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
FREQUENCY	F	S	N	5	0.01	MHz	1
FUEL AT DESTINATION	V	S	N	5	0.1	Klbs	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
FUEL FLOW FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
FUEL REMAINING	V	S	N	5	0.1	Klbs	
FUEL REMAINING AT ALTN DEST	٧	S	N	5	0.1	Klbs	1
FUEL REMAINING AT PREDICTED WPT	٧	S	N	5	0.1	Klbs	1
GOTO (NEXT) WPT IDENT	٧	S	AN	13			
GOTO+1 (FOLLOWING) WPT IDENT	٧	S	AN	13			
GREENWICH MEAN TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
SECONDS	F	S	N	2	1	Seconds	
GROUND ADDRESS	٧	S	AN	7			
HOLD EFC TIME	F	М	N	4			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
IDLE FACTOR	٧	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	٧		N	2	0.1	Percent	
INACTIVE COMPANY ROUTE	٧	S	AN	10			
INVALID FLAG	F	S	N	1		Nothing	
						0=Valid	
						1=Invalid	
S = SINGLE PARAMER	A = 1	ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

M = MULTIPARAMETER

D = DIRECTIONAL

AN = ALPHANUMERIC

V = VARIABLE F = FIXED

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
IRS-C MODE	F	s	N	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-L MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	
IRS-R MODE	F	S	N	1		1=Align	
						2=Nav	
						3=Attitude	
IRS MONITOR	F	М	N	9			
LEFT IRS DRIFT	F	S	N	3	0.1	NM/hour	
CENTER IRS DRIFT	F	S	N	3	0.1	NM/hour	
RIGHT IRS DRIFT	F	S	N	3	0.1	NM/hour	
LABEL CODE	F	S	N	3			
LANDING GROSS WEIGHT	٧	S	N	5	0.1	Klbs	
LEFT DME DISTANCE	٧	S	N	4	0.1	NM	
LEFT DME FREQUENCY	F	S	N	5	0.01	MHz	
LEFT GNSS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MINUTES	F		N	3	0.1	Minutes	
LEFT ILS FREQUENCY	F	S	N	5	0.01	MHz	
LEFT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
LEFT VOR BEARING	F	S	N	4	0.1	Degrees	
LEFT VOR FREQUENCY	F	s	N	5	0.01	MHz	
LITERAL ERROR DATA	٧	s	AN	13			
LOCALIZER DEVIATION	٧	D	AN	4		DDM	
DIRECTIONAL	F		Α	1		L = Left	
						R = Right	
MAGNITUDE	٧		N	3	0.001		
MANEUVER MARGIN	٧	s	N	3	0.01		
MAXIMUM CLIMB CAS	F	S	N	3	1	Knots	
MAXIMUM CLIMB MACH	F	S	N	3	0.001	Mach	
MAXIMUM CRUISE CAS	F	S	N	3	1	Knots	
MAXIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MAXIMUM DESCENT CAS	F	S	N	3	1	Knots	
MAXIMUM DESCENT MACH	F	S	N	3	0.001	Mach	
S = SINGLE PARAMER	A	= ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

M = MULTIPARAMETER

D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
MEAN WIND	V	D	AN	4			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	3	1	Knots	
MESSAGE SEQUENCE NUMBER	V	S	AN	10			
MINIMUM CLIMB CAS	F	S	N	3	1	Knots	
MINIMUM CLIMB MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE CAS	F	S	N	3	1	Knots	
MINIMUM CRUISE MACH	F	S	N	3	0.001	Mach	
MINIMUM CRUISE TIME	F	S	N	1	1	Minutes	
MINIMUM DESCENT CAS	F	S	N	3	1	Knots	
MINIMUM DESCENT MACH	F	S	N	3	0.001	Mach	
MINIMUM FUEL TEMPERATURE	V	D	AN	3		P=Plus	
DIRECTIONAL	F		Α	1		M=Minus	
MAGNITUDE	V		N	2	1	°C	
MINIMUM R/C - CLB	V	S	N	3	1	Feet/min	
MINIMUM R/C - CRZ	V	S	N	3	1	Feet/min	
MINIMUM R/C - ENG OUT	V	S	N	3	1	Feet/min	
MOD CRZ WAYPOINTS	V	S	AN	13			
MOD PLAN CRUISE ALTITUDE	V	S	N	3	100	Feet	
MONITOR CODE	F	S	N	2			
NAVAID ELEVATION	V	S	N	5	1	Feet	
NAVAID IDENT	V	S	AN	4			
NAVAID LAT/LON	F	S	AN	13			1

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
NAVAID MAGVAR	٧	D	AN	3			1
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
NAVAID TYPE	F	S	Α	1		D=DME	
						V=VOR	
NAVIGATION DATA BASE IDENT	٧	S	AN	10			
NETWORK ADDRESS	٧	S	AN	7			
NOISE ABATEMENT AND ALTITUDE	٧	S	٧	5	1	Feet	
NOISE ABATEMENT SPEED	F	S	N	3	1	Knots	
NOISE ABATEMENT DERATE THRUST	F	S	N	1		N=as required	
						N=0 (no noise derate Thrust)	
						N=1 (Derate 1)	
						N=2 (Derate 2)	
S = SINGLE PARAMER		ALPHA		N = NUME			
M = MULTIPARAMETER	AN	= ALPHANUME	RIC	D = DIREC	CTIONAL		

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						N=3 (Max Climb)	
NOISE ABATEMENT THRUST	V	М	AN	6			
THRUST TYPE	F	S	Α	1		n=n1	
						N=N1	
						E=EPR	
THRUST VALUE	V	S	N	S	0.01	PERCENT OR EPR	
NOISE ABATEMENT START ALTITUDE	V	S	N	S	1	Feet	
OAT OR SAT	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	٧		N	2	1	°C	
OAT AT PREDICTED WAYPOINT	٧	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
PAGE ID	٧	М	AN	3			
PAGE NUMBER	V		N	2	1		
LAST PAGE FLAG	F		N	1		Blank= Page	
						to Follow	
						E=End	
PAGE INFO	F	М	N	2			
PAGE NUMBER	F	S	N	1			
NUMBER OF PAGES	F	s	N	1			

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
PERF DEFAULTS CONFIG NO.	V	S	Α	10			
PERF FACTOR	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	0.1	Percent	
PLAN OR BLOCK FUEL	V	S	N	5	0.1	Klbs	
POSITION SHIFT	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
SHIFT	V		N	2	100	Feet	
PREDICTED AIRSPEED	F	D	AN	4			1
SPEED	F		N	3	1 or		
TYPE	F		Α	1	0.001	K=Knot	
						M=Mach	
PREDICTED DESTINATION FUEL	V	S	N	5	0.1	Klbs	1
PREDICTED FUEL REMAINING	V	S	N	5	0.1	Klbs	1
PREDICTED WAYPOINT IDENT	V	S	AN	13			
PRIMARY ACTIVE CRUISE ALTITUDE	V	S	N	3	100	Feet	
PROCEDURE INDICATOR	F	S	Α	1		Y=	1
						Proc.mbr.	
						N=Not	
						Proc.mbr.	
PROCEDURE IDENT	V	S	AN	6			1
PROCEDURE WAYPOINT	F	S	Α	1		Y or N	
S = SINGLE PARAMER	A =	: ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

S = SINGLE PARAMER M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Not
QNH	V	S	N	4	1	Hecto pascals	4
QRH T/O SPD CONFIG NUM	V	S	Α	10			
RADIAL/DISTANCE	F	М	AN	7			1
RADIAL	F	S	N	3	1	Degrees	
DASH	F	S	AN	1			
DISTANCE	F	S	N	3	1	NM	
RADIO MEASUREMENT	V	S	N	4	0.1	NM or degrees	
REFERENCE AIRPORT IDENT	٧	S	AN	4			
REFERENCE CRZ WAYPOINT IDENT	V	S	AN	13			
REFERENCE IDENT	V	S	AN	5			1
REFERENCE LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
REFERENCE RTA WAYPOINT IDENT	٧	S	AN	13			
REFERENCE TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
REPORT STIMULUS	F	S	N	3			3
RESERVE FUEL	V	S	N	5	0.1	Klbs	
RIGHT DME DISTANCE	V	S	N	4	0.1	NM	
S = SINGLE PARAMER M = MULTIPARAMETER		ALPHA = ALPHANUME	RIC	N = NUME D = DIREC			

V = VARIABLE F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units N	otes
RIGHT DME FREQUENCY	F	S	N	5	0.01	MHz	
RIGHT GPS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT ILS FREQUENCY	F	S	N	5	0.01	MHz	
RIGHT IRS POSITION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RIGHT VOR BEARING	F	S	N	4	0.1	Degrees	
RIGHT VOR FREQUENCY	F	S	N	5	0.01	MHz	
RTA CONSTRAINT	<u>F</u>	<u>s</u>	<u>A</u>	2		AA=AT or AFTER AB=AT or BEFORE	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						AT =AT	
RTA COST INDEX	V	D	AN	5			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
COST INDEX	٧		N	4	1		
RTA TAKEOFF WINDOW TIMES	F	М	N	12			
FIRST HOURS	F	S	N	2	1	Hours	
FIRST MINUTES	F	S	N	2	1	Minutes	
FIRST SECONDS	F	S	N	2	1	Seconds	
LAST HOURS	F	S	N	2	1	Hours	
LAST MINUTES	F	S	N	2	1	Minutes	
LAST SECONDS	F	S	N	2	1	Seconds	
RTA TIME	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
RTA TIME ERROR TOLERANCE	V	S	N	2	1	Seconds	
RTA WAYPOINT IDENT	V	S	AN	13			
RTA WINDOW TIMES	F	М	N	12			
FIRST HOURS	F	S	N	2	1	Hours	
FIRST MINUTES	F	S	N	2	1	Minutes	
FIRST SECONDS	F	S	N	2	1	Seconds	
LAST HOURS	F	s	N	2	1	Hours	
LAST MINUTES	F	s	N	2	1	Minutes	
LAST SECONDS	F	S	N	2	1	Seconds	

V = VARIABLE F = FIXED S = SINGLE PARAMER

M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
RUNWAY COURSE	V	S	N	3	1	Degrees	
RUNWAY ELEVATION	٧	S	N	6	1	Feet	
RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		N	2			
RUNWAY SUFFIX	F		Α	1		L=Left	
						C=Center	
						R=Right	
						O=None	
RUNWAY INTERSECTION	V	s	AN	3			
RUNWAY LAT/LON	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
RUNWAY LENGTH	V	s	N	5	1	Feet	
RUNWAY LENGTH REMAINING	V	S	N	3	100	Feet	
SCRATCHPAD	V	S	AN	24			
SELECTED TEMPERATURE	٧	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
S = SINGLE PARAMER	A =	: ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED

M = MULTIPARAMETER

AN = ALPHANUMERIC

D = DIRECTIONAL

V = VARIABLE F = FIXED

M = MULTIPARAMETER

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
STANDARD LIMIT TAKEOFF GR WT	V	S	N	5	0.1	Klbs	
STATIC AIR TEMPERATURE (SAT)	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
STEADY/INTERMITTENT	F	S	Α	1	S or I		
STIMULUS CODE	F	S	N	3			3
SYSTEM CODE	F	S	N	2			
TAI ON ALTITUDE	V	S	N	3	100	Feet	
TAI ON/OFF ALTITUDE	F	М	N	6			
TAI ON ALTITUDE	F	S	N	3	100	Feet	
TAI OFF ALTITUDE	F	S	N	3	100	Feet	
TAKEOFF CENTER OF GRAVITY	V	S	N	3	0.1	Percent	
TAKEOFF FLAPS	V	S	N	2	1	Degrees	
TAKEOFF GROSS WEIGHT	V	S	N	5	0.1	Klbs	
TAKEOFF RUNWAY CONDITION	F	s	N	1		1=Wet	
						2=Dry	
						3=1/4	
						water	
						4=1/2	
						water	
						5=1/4	
						slush	
						6=1/2 slush	
S = SINGLE PARAMER	A =	ALPHA		N = NUME	RIC		

AN = ALPHANUMERIC

D = DIRECTIONAL

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Note
						7=compact snow	
						8= wet skid resist	
TAKEOFF RUNWAY IDENT	F	D	AN	3			
RUNWAY NUMBER	F		N	2			
RUNWAY SUFFIX	F		Α	1		L=Left	
						C=Center	
						R=Right	
						O=None	
TAKEOFF RUNWAY SLOPE	V	D	AN	3			
DIRECTIONAL	F		Α	1		U=Up	
						D=Down	
MAGNITUDE	V		N	2	0.1	Percent	
TAKEOFF RUNWAY WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degree	
MAGNITUDE	V	S	N	3	1	Knots	2
TAKEOFF SPEEDS	F	М	N	9			
V1	F	S	N	3	1	Knots	
VR	F	S	N	3	1	Knots	
V2	F	s	N	3	1	Knots	2
TAKEOFF THRUST RATING	F	S	N	1		0= No derate	
						1= Derate 1	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
						2= Derate 2	
						I	
						I	
						8=Bump	
						9=Derate	
TAKEOFF TIME							
HOURS	F	S	N	2	1	Hour	
MINUTES	F	S	N	2	1	Minute	
TARGET MACH	V	S	N	3	.001	Mach	
TAS AT PREDICTED WAYPOINT	V	S	N	3	1	Knots	1
TAXI FUEL	V	S	N	5	0.1	Klbs	
TEMPERATURE AT ALTERNATE	V	D	AN	3			1
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
THRUST REDUCTION ALTITUDE	V	S	N	5	1	Feet	
TIME DETERMINED	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	s	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TIME ERROR TOLERANCE	V	S	N	2	1	Seconds	
TIME TO GO TO DESTINATION 1	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 2	V	S	N	3	1	Minutes	
TIME TO GO TO DESTINATION 3	V	s	N	3	1	Minutes	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
TIME TO GO TO DESTINATION 4	V	s	N	3	1	Minutes	
TIME TO GO TO DESTINATION 5	٧	S	N	3	1	Minutes	
TIME TO GO TRIGGER	٧	S	N	3	1	Minutes	
TIME UPLINK IS RECEIVED	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOC OR CRUISE TEMPERATURE	V	D	AN	3			
DIRECTIONAL	F		Α	1		P=Plus	
						M=Minus	
MAGNITUDE	V		N	2	1	°C	
TOP OF DESCENT ALTITUDE	V	S	N	3	100	Feet	
TOP OF DESCENT ETA	F	М	N	6			
HOURS	F	S	N	2	1	Hours	
MINUTES	F	S	N	2	1	Minutes	
SECONDS	F	S	N	2	1	Seconds	
TOP OF DESCENT LOCATION	F	S	AN	13			
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
S = SINGLE PARAMER	Α =	ALPHA		N = NUME	RIC		

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC
D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units Notes
TOTAL FUEL/FOB	٧	S	N	5	0.1	Klbs
TRACK ANGLE MAG	F	S	N	3	1	Degrees
TRIGGER NUMBER	F	S	N	3	1	
TRIGGER TRIPPED TIME	F	М	N	6		
HOURS	F	S	N	2	1	Hours
MINUTES	F	S	N	2	1	Minutes
SECONDS	F	S	N	2	1	Seconds
TRIGGER UPLINK TIME	F	М	N	6		
HOURS	F	S	N	2	1	Hours
MINUTES	F	S	N	2	1	Minutes
SECONDS	F	S	N	2	1	Seconds
TRIM	V	D	AN	5		
DIRECTIONAL	F		Α	1		P=Plus
						M=Minus
MAGNITUDE	V		N	4	0.1	Degrees
TRIP FUEL	٧	S	N	5	0.1	Klbs
TROPOPAUSE ALTITUDE	F	S	N	5	1	Feet
UPLINKED IMI	F	S	Α	3		
VERTICAL DEVIATION	٧	D	AN	6		
DISTANCE	V		N	5	1	Feet
DIRECTIONAL	F		Α	1		H or L
VTR PERCENTAGE	V	S	N	2	1	Percent
WAYPOINT ALTITUDE/OAT	V	М	AN	6		1
ALTITUDE	F	S	N	3	100	Feet

V = VARIABLE F = FIXED

S = SINGLE PARAMER M = MULTIPARAMETER A = ALPHAAN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
OAT DIRECTIONAL	F	D	N	1		P=Plus	
						M=Minus	
OAT MAGNITUDE	V		N	2	1	°C	
WAYPOINT BEARING	F	S	N	3	1	Degrees	1
WAYPOINT IDENT	V	S	AN	5			
WAYPOINT LAT/LON	F	S	AN	13			1
DIRECTIONAL	F		Α	1		N=North	
						S=South	
DEGREES	F		N	2	1	Degrees	F
MINUTES	F		N	3	0.1	Minutes	
DIRECTIONAL	F		Α	1		E=East	
						W=West	
DEGREES	F		N	3	1	Degrees	
MINUTES	F		N	3	0.1	Minutes	
WAYPOINT MAGVAR	V	D	AN	3			1
DIRECTIONAL	F		Α	1		E=East	
						W=West	
MAGNITUDE	V		N	2	1	Degrees	
WAYPOINT NAME OR POSITION	٧	S	AN	13			
WAYPOINT SEQUENCE	V	S	AN	13			
WAYPOINT WIND	V	М	N	6			
DIRECTIONAL	F	S	N	3	1	Degrees	1
MAGNITUDE	V	S	N	3	1	Knots	2
WIND ALTITUDE	V	S	N	3	100	Feet	

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

Element Description	Туре	Length Type	Elem Type	Char Length	Scale	Units	Notes
WIND AT PREDICTED WAYPOINT	V	М	N	6			1
DIRECTIONAL	F	S	N	3	1	Degrees	
MAGNITUDE	V	S	N	3	1	Knots	
WIND LEVEL ALTITUDE	V	S	N	3	100	Feet	
WIND LEVEL WAYPOINT	V	S	AN	13			
WIND VECTOR MAGNITUDE							
DIFFERENCE	V	S	N	3	1	Knots	
ZERO FUEL WEIGHT	٧	S	N	5	0.1	Klbs	
ZERO FUEL WEIGHT CG	V	S	N	3	0.1	Percent	

Section 9 Flight Plan Element Definitions

5684 5685

5686

5687

V = VARIABLE F = FIXED This section contains the flight plan element identifiers and a complete description of each flight plan element.

FPEI	Description		ement scription	Length Type	Elem Type	Char Type	Length	Scale	Units
:DA:	DEPARTURE AIRPORT								
		AIRPORT IE	ENTIFIER	٧	S	AN	4		
:AA:	ARRIVAL AIRPORT								
		AIRPORT IE	ENTIFIER	٧	S	AN	4		
:CR:	COMPANY ROUTE								
		COMPANY	ROUTE	٧	S	AN	10		
:R:	DEPARTURE RUNWAY								
		RUNWAY I	ENTIFIER	F	D	AN	3		
		RWY NU	MBER			N	2		
	S = SINGLE PAR	S = SINGLE PARAMER				N = N	IUMERIC		
	M = MULTIPARA	METER	AN = AI	PHANUMER	C	D = 0	IRECTIONA	AL.	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Uni	its
		RWY SUFFIX			А	1		L=LEFT	
								C=CENTE	ĒR
								R=RIGHT	
	SUFFIX							O=NO	
:D:	DEPARTURE PROCEDURE								
		PROCEDURE IDENT	V	S	AN	10			
:F:	FLIGHT PLAN SEGMENT								
	PUBLISHED IDENT								
		FIX IDENTIFIER	V	s	AN	5			
		OPTIONAL INTRO.(,)							
		OPTIONAL LAT/LON	F	М	AN	13			
		DIRECTIONAL			Α	1		N OR S	
		DEGREES			N	5			
		DIRECTIONAL			Α	1		E OR W	
		DEGREES			N	6			
	LAT/LON								
		LATITUDE/ LONGITUDE	V	М	AN	13			
		DIRECTIONAL			Α	1		N OR S	
		DEGREES			N	5			
		DIRECTIONAL			Α	1		E OR W	
		DEGREES			N	6			

FIX IDENTIFIER V S AN 5

V = VARIABLE F = FIXED

S = SINGLE PARAMER M = MULTIPARAMETER

 $A = ALPHA \\ AN = ALPHANUMERIC \\ D = DIRECTIONAL$

V = VARIABLE F = FIXED

FPEI	Description	Eleme Descrip		Length Type	Elem Type	Char Type	Length	Scale	Units
		OPTIONAL INTE	RO.(,)						
		OPTIONAL LAT	/LON	F	М	AN	13		
		DIRECTION	AL			Α	1		N OR S
		DEGREES				N	5		
		DIRECTION	AL			Α	1		E OR W
		DEGREES				N	6		
		OPTIONAL TER	M.(,)						
		BEARING		F	S	N	3	1	DEGREES
		DASH							
		FIX IDENTIFIER		V	S	AN	5		
		OPTIONAL INTE	RO.(,)						
		OPTIONAL LAT	/LON	F	М	AN	13		
		DIRECTIONA	L			Α	1		N OR S
		DEGREES				N	5		
		DIRECTIONA	AL			Α	1		E OR W
		DEGREES				N	6		
		OPTIONAL TER	:M.(,)						
		BEARING		F	s	N	3	1	DEGREES
	PBD								
		FIX IDENTIFIER		٧	s	AN	5		
		OPTIONAL INTE	RO.(,)						
		OPTIONAL LAT	/LON	F	М	AN	13		
		DIRECTION	AL			Α	1		N OR S
		DEGREES				N	5		
		DIRECTION	AL			Α	1		E OR W
	S = SINGLE PA M = MULTIPAR		A = ALPH AN = ALP	IA PHANUMERI	С		UMERIC IRECTION	AL.	

	FPEI	Description	Element Description	Lengti Type		Char Type	Length	Scale	Units
			DEGREES			N	6		
			OPTIONAL TERM.(,)						
			BEARING	F	S	N	3	1	DEGREES
			DASH						
			DISTANCE	F	S	N	4	0.1	NM
	:ON:	START OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
	:OF:	END OF DESIGNATED FLIGHT PLAN SEGMENT	SAME AS :F:						
		DIRECT FIX	SAME AS :F:						
	:A:	ARRIVAL PROCEDURE							
			PROCEDURE IDENT	V	s	AN	10		
	:AP:	APPROACH PROCEDURE							
	-		PROCEDURE IDENT	٧	S	AN	10		
	0	ARRIVAL RUNWAY							
			RUNWAY IDENTIFIE	R F	М	AN	3		
			RWY NUMBER		S	N	2		
			RWY SUFFIX		S	Α	1		L=LEFT
									C=CENTER
									R=RIGHT
		SUFFIX							O=NO
	:V:	WAYPOINT SPD/ALT/TIME							
			FIX IDENTIFIER	٧	S	AN	13		
= VARIABLE = FIXED		S = SINGLE PAR M = MULTIPARA		= ALPHA N = ALPHANUME	RIC		NUMERIC DIRECTION	ΔΙ	

V = VARIABLE F = FIXED

FPEI	Description	Element Description	ı	Length Type	Elem Type	Char Type	Length	Scale	Units
		COMMA (,)							
		OPTIONAL* SPEED)	F	s	N	3	1	KNOTS
		COMMA (,)							
		OPTIONAL* ALTITU	JDE	V	D	AN	6		
		DIRECTIONAL		F		Α	2		AA=AT OR
									ABOVE
									AB=AT OR
									BELOW
									AT=AT
		ALTITUDE		V		N	4	10	FEET
		COMMA (,)							
		OPTIONAL ALTITUI	DE	V	D	AN	6		
		DIRECTIONAL		F		Α	2		AA=AT OR
									ABOVE
									AB=AT OR
									BELOW
									AT=AT
		ALTITUDE		V		N	4	10	FEET
		COMMA (,)							
		OPTIONAL TIME*		V	D	AN	6		
		DIRECTIONAL		F		Α	2		AA=AT OR AFTER
									AB=AT OR
									BEFORE AT=AT
									AI=AI
	S = SINGLE PA		A = ALPHA				IUMERIC		
	M = MULTIPAR	AMETER ,	AN = ALPH	ANUMERI	С	D = 0	IRECTION	AL	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
		TIME	F		N	4	1	HOURS MINUTES UTC (HHMM)
		* For speed-only, altitu only, or time-only cons						
		Note: Either speed, alt or time, or any combin must be included.						
:	H:	HOLD AT WAYPOINT						
		FIX IDENTIFIER	V	s	AN	13		
		COMMA (,)						
		SPEED	F	S	N	3	1	KNOTS
		COMMA (,)						
		ALTITUDE	V	D	AN	6		
		DIRECTIONAL	F		Α	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	٧	S	N	4	10	FEET
		COMMA (,)						
		TARGET SPEED	F	S	N	3	1	KNOTS
		COMMA (,)						
		TURN DIRECTION	F	S	Α	1		L=LEFT
								R=RIGHT
		COMMA (,)						
		INBOUND COURSE	F	S	N	3	1	DEGREES
		COMMA (,)						
	S = SINGLE PA M = MULTIPAR		= ALPHA N = ALPHANUMER	IC		NUMERIC DIRECTION	ΔI	

V = VARIABLE F = FIXED

V = VARIABLE F = FIXED

FPEI	Description		Element Description		Length Type	Elem Type	Char Type	Length	Scale	Units
			EFC TIME		F	М	N	4		
			HOURS		F	S	N	2	1	00-24 HOURS
			MINUTES		F	s	N	2	1	MINUTES
			COMMA (,)							
			LEG TIME		F	S	N	2	0.1	MINUTES
			COMMA (,)							
			LEG DISTANCE		٧	S	N	3	0.1	NM
WS:	WAYPOINT S CLIMB	STEP								
			FIX IDENTIFIER		٧	S	AN	13		
			COMMA (,)							
			ALTITUDE		V	S	N	3	100	FEET
AT:	ALONG TR WAYPOINT	RACK								
			FIX IDENTIFIER		V	s	AN	5		
			DASH (-)							
			DISTANCE		V	D	AN	5	0.1	NM
			DIRECTIONAL		F		Α	1		P=PLUS
										M=MINUS
			DISTANCE		٧		N	4	0.1	NM
			COMMA (,)							
			SPEED		F	S	N	3	1	KNOTS
			COMMA (,)							
			ALTITUDE		V	D	AN	6		
			DIRECTIONAL		F		Α	2		AA=AT OR
										ABOVE
	S = SINGLE M = MULTIF			A = ALPHA AN = ALPH		С		IUMERIC DIRECTION	AL	

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	٧	S	N	4	10	FEET
		COMMA (,)						
		OPTIONAL ALTITUDE	٧	D	AN	6		
		DIRECTIONAL	F		Α	2		AA=AT OR
								ABOVE
								AB=AT OR
								BELOW
								AT=AT
		ALTITUDE	٧	S	N	4	10	FEET
:RP:	REPORTING POINTS	S						-
	LATITUDE RP	LATITUDE	V	М	AN	3		
		DIRECTIONAL	F	S	Α	1		N=NORTH
								S=SOUTH
		DEGREES	٧	S	N	2		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	V	s	N	2		
	LONGITUDE RP	LONGITUDE	V	М	AN	4		
		DIRECTIONAL	F	s	Α	1		E=EAST
								W=WEST
		DEGREES	V	s	N	3		DEGREES
		OPTIONAL DASH						
		DEGREE INCREMENT	٧	s	N	2		
	S – SINCLE DA	DAMED A - ALD				ILIMEDIC		

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA

N = NUMERIC
D = DIRECTIONAL

AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
	TRANSITION							
		TRANSITION IDENT	٧	S	AN	5		
	AIRWAY VIA/EXIT VIA							
	AIRWAY VIA							
		AIRWAY IDENTIFIER	٧	S	AN	5		
	AIRWAY EXIT VIA							
		FIX IDENTIFIER	V	S	AN	6		
:LO:	LATERAL OFFSET	OFFSET	٧	D	AN	3		
		DIRECTIONAL	F		А	1		L=LEFT R=RIGHT
		DISTANCE	V <u>/F</u>		N	2 2/3	1/0.1	NM
		For backward compatibility, resolution of 1 NM or a fixed systems may not support 0.1	l length of 3 i	numerics w				
		OPTIONAL COMMA (,) OPTIONAL START FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL END FIX IDENTIFIER	V	S	AN	13		
		OPTIONAL COMMA (,)						
		OPTIONAL INTERCEPT ANGLE	V	S	N	3		DEGREES
:F:.	AIRWAY INTERCEPT							

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHAAN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

FPEI	Description	Element Description	Length Type	Elem Type	Char Type	Length	Scale	Units
:IC:	INTERCEPT COURSE FROM							
		PUBLISHED IDENT, PB/PB or PBD as defined in the :F: FLIGHT PLAN FPE, followed by a COMMA (,) and COURSE:						
		COURSE	V	S	N	3	1	DEG
:CS:	CRUISE SPEED SEGMENT							
	FIX IDENTIFIER		٧	S	AN	13		
	COMMA (,)							
	SPEED TARGET		V	S	AN	3		Mach 000-999
								E=Econ
								L=LRC
	OPTIONAL COMMA (,)							
	OPTIONAL ALTITUDE		F	S	N	3	100	FT
	OPTIONAL COMMA (,)							
	OPTIONAL FIX IDENTIFIER	V	S	AN	13			
	OPTIONAL COMMA (,)							
	OPTIONAL SPEED TARGET	V	S	AN	3		Mach 000- 999	
								E=Econ
								L=LR
	S = SINGLE PAR	AAMER A = ALPH	Α		N = N	IUMERIC		
	M = MULTIPARA	METER AN = ALP	HANUMER	IC	D = 0	DIRECTION	AL	

V = VARIABLE

F = FIXED

ATTACHMENT 7 FMC/DATALINK INTERFACE

5688

V = VARIABLE F = FIXED S = SINGLE PARAMER
M = MULTIPARAMETER

A = ALPHA AN = ALPHANUMERIC

ATTACHMENT 7 FMC/DATALINK INTERFACE

5689 Section 105690 Codes and Triggers

5691

5692 5693 5694 ← - - **Formatted:** Sub Header

10.1 Error Type Codes

Error type codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	END TO END CRC
002	002	INVALID ATC
003	003	SYNTAX ERROR
004	004	MISSING ELEMENT
005	005	RESERVED FOR DEFINITION (B-737)
006	006	N/A FOR IN AIR
007	007	MISSING ALL DATA FOR DEPENDENT ELEMENT
800	800	INCOMPATIBLE DATA
009	009	FMC DOWNMODE
010	00A	REFERENCE MISMATCH
011	00B	NOT IN NDB
012	00C	DUPLICATE WAYPOINT
013	00D	ROUTE FULL ERROR
014	00E	DATA BASE FULL ERROR
015	00F	ENTRY SLOT UNAVAILABLE
016	010	DUPLICATE SUPPLEMENT NDB DEFINITION
017	011	RESERVED FOR DEFINITION (B-737)
018	012	RESERVED FOR DEFINITION (B-737)
019	013	RESERVED FOR DEFINITION (B-737)
020	014	RESERVED FOR DEFINITION (B-737)
021	015	NO MINIMUM FLIGHT PLAN
022	016	NO ACTIVE ROUTE FOR DOWNLINK
023	017	UNSOLICITED UPLINK
024	018	DATA NOT ALLOWED IN TAKEOFF PHASE
025	019	DATA NOT ALLOWED IN CLIMB PHASE
026	01A	DATA NOT ALLOWED IN CRUISE PHASE
027	01B	DATA NOT ALLOWED IN DESCENT PHASE
028	01C	INCOMPATIBLE RANGE
029	01D	DEPARTURE AIRPORT DOES NOT EXIST
030	01E	DESTINATION AIRPORT DOES NOT EXIST
031	01F	ATO DISTANCE IS ENTERED OVER AN INVALID LEG
032	020	NEGATIVE ATO IS ENTERED OVER MOD DIRECT TO WPT
033	021	ATO DISTANCE IS GREATER THAN LEG LENGTH
034	022	INITIAL FIX IS FLOATER OR PPOS
035	023	PBPB WAYPOINT WITH NO VALID INTERSECTION
036	024	DIRECT WPT AFTER INTERCEPT WAYPOINT
037	025	HOLD ENTERED ON NON-HARD WAYPOINT

DEC CODE	HEX CODE	DESCRIPTION
038	026	ALTITUDE RESTRICTION ON ALT ONLY WAYPOINT
039	027	TO FIX EQUALS FROM ON ROUTE PAGE
040	028	RESERVED FOR DEFINITION (B-737)
041	029	TO FIX IS NOT ON AIRWAY
042	02A	TO FIX CAUSES CHANGE OF DIRECT ON AIRWAY
043	02B	FROM AND TO NOT ON ENTERED AIRWAY
044	02C	CRUISE ALTITUDE LESS THAN MIN CRUISE ALT
045	02D	EPC MORE THAN 6 HOURS PAST HOLD FIX ETA
046	02E	RUNWAY REMAINING GREATER THAN RUNWAY LENGTH
047	02F	RESERVED FOR DEFINITION (B-737)
048	030	UNSOLICITED MOD WIND BECAUSE OF LONG DELETE
049	031	INAPPROPRIATE DATA TYPE
050	032	RESERVED FOR DEFINITION (B-737)
051	033	UNSOLICITED MOD WIND
052	034	CRUISE WIND IN DESCENT
053	035	DATA NOT ALLOWED IN PHASE
054	036	HOLD ENTERED ON HOLD EXIT WITH EXIT ARMED
055	037	VIA TYPE OF PROCEDURE TO FIX ENTRY NOT ALLOWED
056	038	ENTERED AIRPORT ID – DIRECT
057	039	VIA ENTERED FOR FIRST ROUTE SEGMENT
058	03A	AIRWAY UNPACK WAS UNSUCCESSFUL
059	03B	COMPANY ROUTE UNPACK UNSUCCESSFUL
060	03C	N/A FOR AIRCRAFT STATE
061	03D	PROCEDURE NOT FOUND (FOR ENROUTE AFTER)
062	03E	N/A FOR AIRCRAFT INSTALLATION
063	03F	DATA ELEMENT NOT ALLOWED ON GROUND
064	040	NO OFFSET EXISTS
065	041	NO OFFSET AT LEG
066	042	OFFSET IS ACTIVE
067	043	OFFSET DATA INCOMPATIBLE
068	044	NO OFFSETABLE LEG EXISTS
069	045	IMI LOST DUE TO WARM START
070	046	IMI LOST DUE TO OVERFLOW
071-100	047-064	RESERVED FOR DEFINITION (B-737)
101	065	BUFFER FULL
102	066	INCOMPATIBLE IEI
103	067	INVALID IEI FORMAT
104	068	INVALID IMI FORMAT
105	069	NOT ALLOWED ON GROUND
106	06A	INVALID REQUEST LABEL
107	06B	NO IEIS IN MESSAGE
108	06C	NO DATA IN ELEMENT TEXT
109		
	06D	INVALID FORMAT AND/OR RANGE

DEC CODE	HEX CODE	DESCRIPTION					
111	06F	NO APPLICABLE ROUTE					
112	070	NO APPLICABLE IEI					
113	071	NO REPORTING POINTS CREATED					
114	072	ZERO FUEL WEIGHT CAUSES INVALID GROSS WEIGHT					
115	073	PRIORITY MESSAGE PENDING					
116	074	MULTIPLE ROUTE IEI					
117	075	NO ROUTE IEI					
118	076	NO FLIGHT PLAN ELEMENTS					
119	077	NO ACTIVE ROUTE					
120	078	FIRST FLIGHT PLAN ELEMENT INVALID					
121	079	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
122	07A	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
123	07B	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
124	07C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
125	07D	MULTIPLE DIRECT TO FIX					
126	07E	MULTIPLE OF FLIGHT PLAN ELEMENT NOT ALLOWED					
127	07F	FROM FIX IS NOT ON AIRWAY					
128	080	AIRWAY/AIRWAY INTERSECTION NOT FOUND					
129	081	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
130	082	NO FIX MATCH IN ROUTE					
131	083	MULTIPLE HOLD AT FIX					
132	084	BASE PROCEDURE UNDEFINED					
133	085	LAT/LON REPORTING POINT NOT FOUND					
134	086	CURRENT FLIGHT PLAN CONDITIONS INVALID FOR OFFSET					
135	087	FPEI INCOMPATIBLE WITH IEI					
136	088	NO COMPATIBLE RUNWAYS					
137	089	AIRWAY FLIGHT PLAN ELEMENT IS NOT CLOSED					
138	A80	NO FROM FIX FOR AIRWAY FLIGHT PLAN ELEMENT					
139	08B	SPARE					
140	08C	EXCEEDS CHARACTER LIMIT					
141	08D	DERATE OPTION NOT SELECTED					
142	08E	PAGES OUT OF SEQUENCE					
143	08F	TIMED OUT					
144	090	NO VALID RWY RECORDS					
145-200	091-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)					
201	0C9	DEPENDENT IMI REJECTED					
202	0CA	DUPLICATE IEIS					
203	0CB	REPORT NOT ALLOWED WITH INVALID A/C POSITION					
204	0CC	BLOCK NOT SUFFICIENT FOR TAXI AND ROUTE RESERVE					
205	0CD	WINDOW ALTITUDE CONSTRAINT NOT ALLOWED					
206	0CE	NOT ALLOWED FOR ALTERNATE FLIGHT PLAN					
207	0CF	DESTINATION DOES NOT MATCH ORIGIN OF ALTERNATE					
208	0D0	PILOT DEFINED STORE IS FULL					
209-300	0D1-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)					

ATTACHMENT 7 FMC/DATALINK INTERFACE

5695 10.2 Error Data Codes

5696 5697 5698 Error codes are listed as decimal and hexadecimal values. Depending in implementation, this code may be downlinked as either a decimal or hexadecimal value.

DEC CODE	HEX CODE	DESCRIPTION
001	001	RTA WAYPOINT DATA CODE
002	002	RTA TIME DATA CODE
003	003	ALTERNATE AIRPORT ID DATA CODE
004	004	ALTERNATE AIRPORT TYPE DATA CODE
005	005	ALTERNATE AIRPORT DISTANCE DATA CODE
006	006	ALTERNATE AIRPORT ALTITUDE DATA CODE
007	007	ALTERNATE AIRPORT WIND DATA CODE
800	800	CLEAR FLIGHT PLAN DATA CODE
009	009	FLIGHT NUMBER DATA CODE
010	00A	COST INDEX DATA CODE
011	00B	CRUISE ALTITUDE DATA CODE
012	00C	CRUISE (TOC) TEMP DATA CODE
013	00D	ZERO FUEL WEIGHT DATA CODE
014	00E	CRUISE WIND DATA CODE
015	00F	RESERVE FUEL DATA CODE
016	010	CRUISE CENTER OF GRAVITY DATA CODE
017	011	CLIMB TRANSITION ALTITUDE DATA CODE
018	012	TAKEOFF DEPARTURE RUNWAY ID DATA CODE
019	013	RUNWAY INTERSECTION DATA CODE
020	014	RUNWAY POSITION SHIFT DATA CODE
021	015	RUNWAY LENGTH REMAINING DATA CODE
022	016	T/O RUNWAY INVALID FLAG DATA CODE
023	017	TRIM DATA CODE
024	018	TAKEOFF REFERENCE GROSS WEIGHT DATA CODE
025	019	TAKEOFF FLAPS DATA CODE
026	01A	V1 SPEED DATA CODE
027	01B	V2 SPEED DATA CODE
028	01C	VR SPEED DATA CODE
029	01D	TAKEOFF SEL TEMP DATA CODE (ASSUMED TEMP)
030	01E	T/O RUNWAY SLOPE DATA CODE
031	01F	T/O RUNWAY WIND DATA CODE
032	020	T/O RUNWAY CONDITION DATA CODE
033	021	TAKEOFF DERATE DATA CODE
034	022	RESERVED FOR DEFINITION (B-737)
035	023	OUTSIDE AIR TEMP DATA CODE
036	024	DESCENT WIND ALT DATA CODE
		DECCENT WIND DID MAC DATA CODE
037	025	DESCENT WIND DIR/MAG DATA CODE
037 038	025 026	TAKEOFF CENTER OF GRAVITY DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
040	028	BLOCK FUEL DATA CODE (PLAN FUEL)
041	029	DESCENT TRANSITION ALTITUDE DATA CODE
042	02A	TAI ON DATA CODE
043	02B	TAI ON/OFF ALTITUDE DATA CODE
044	02C	DESCENT ISA DEV DATA CODE
045	02D	QNH DATA CODE
046	02E	TIME ERROR TOLERANCE DATA CODE
047	02F	MIN CLB CAS DATA CODE
048	030	MIN CLB MACH DATA CODE
049	031	MIN CRZ CAS DATA CODE
050	032	MIN CRZ MACH DATA CODE
051	033	MIN DES CAS DATA CODE
052	034	MIN DES MACH DATA CODE
053	035	MAX CLB CAS DATA CODE
054	036	MAX CLB MACH DATA CODE
055	037	MAX CRZ CAS DATA CODE
056	038	MAX CRZ MACH DATA CODE
057	039	MAX DES CAS DATA CODE
058	03A	MAX DES MACH DATA CODE
059	03B	DEPARTURE AIRPORT DATA CODE
060	03C	DESTINATION AIRPORT DATA CODE
061	03D	COMPANY ROUTE DATA CODE
062	03E	DEPARTURE RUNWAY DATA CODE
063	03F	DEPARTURE BASE PROCEDURE DATA CODE
064	040	DEPARTURE TRANSITION PROCEDURE DATA CODE
065	041	AIRWAY VIA DATA CODE
066	042	INITIAL FIX WAYPOINT DATA CODE
067	043	INITIAL FIX PBD DATA CODE
068	044	INITIAL FIX PBPB DATA CODE
069	045	INITIAL FIX LAT/LON DATA CODE
070	046	DIRECT WPT AFTER SID DATA CODE
071	047	DIRECT PBD AFTER SID DATA CODE
072	048	DIRECT PBPB AFTER SID DATA CODE
073	049	DIRECT LAT/LON AFTER SID DATA CODE
074	04A	DIRECT WAYPOINT AFTER STAR DATA CODE
075	04B	DIRECT PBD AFTER STAR DATA CODE
076	04C	DIRECT PBPB AFTER STAR DATA CODE
077	04D	DIRECT LAT/LON AFTER STAR DATA CODE
078	04E	DIRECT WAYPOINT AFTER APPROACH DATA CODE
079	04F	DIRECT PBD AFTER APPROACH DATA CODE
080	050	DIRECT PBPB AFTER APPROACH DATA CODE
081	051	DIRECT LAT/LON AFTER APPROACH DATA CODE
082	052	DIRECT TO WAYPOINT DATA CODE
083	053	DIRECT TO PBD DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
084	054	DIRECT TO PBPB DATA CODE
085	055	DIRECT LAT/LON DATA CODE
086	056	ENROUTE WAYPOINT DATA CODE
087	057	DIRECT WAYPOINT DATA CODE
088	058	DIRECT PBD DATA CODE
089	059	DIRECT PBPB DATA CODE
090	05A	DIRECT LAT/LON DATA CODE
091	05B	RESERVED FOR DEFINITION (B-737)
092	05C	REF WAYPOINT 2 LAT/LON DATA CODE
093	05D	STAR BASE PROCEDURE DATA CODE
094	05E	STAR TRANS PROCEDURE DATA CODE
095	05F	APPROACH BASE PROCEDURE DATA CODE
096	060	APPROACH TRANSITION PROCEDURE DATA CODE
097	061	DESTINATION RUNWAY DATA CODE
098	062	HOLD ID AND ALT RESTRICTION DATA CODE
099	063	HOLD TARGET SPEED DATA CODE
100	064	HOLD TURN DIRECTION DATA CODE
101	065	HOLD INBOUND COURSE DATA CODE
102	066	HOLD EFC TIME DATA CODE
103	067	HOLD LEG TIME DATA CODE
104	068	HOLD LEG DISTANCE DATA CODE
105	069	ATO WAYPOINT INFORMATION DATA CODE
106	06A	UPLINK REQUESTING DOWNLINK DATA CODE
107	06B	WAYPOINT SPD/ALT RESTRICTION DATA CODE
108	06C	NETWORK ADDRESS DATA CODE
109	06D	COMPANY ROUTING ADDRESS DATA CODE
110	06E	MESSAGE SEQUENCE NUMBER DATA CODE
111	06F	REFERENCE CRUISE WIND ALT DATA CODE
112	070	ENROUTE WIND WAYPOINT ID DATA CODE
113	071	ENROUTE WIND DIR/MAG DATA CODE
114	072	SUPP EFFECT DATE DATA CODE
115	073	SUPP AIRPORT ID DATA CODE
116	074	SUPP AIRPORT LAT DATA CODE
117	075	SUPP AIRPORT LON DATA CODE
118	076	SUPP AIRPORT ELEVATION DATA CODE
119	077	SUPP AIRPORT MAG VAR DATA CODE
120	078	SUPP NAVAID ID DATA CODE
121	079	SUPP NAVAID LAT DATA CODE
122	07A	SUPP NAVAID LON DATA CODE
123	07B	SUPP NAVAID ELEVATION DATA CODE
124	07C	SUPP NAVAID MAG VAR DATA CODE
125	07D	SUPP NAVAID FREQUENCY DATA CODE
126	07E	SUPP NAVAID CLASS DATA CODE
127	07F	SUPP WAYPOINT ID DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
128	080	SUPP WAYPOINT LAT DATA CODE
129	081	SUPP WAYPOINT LON DATA CODE
130	082	SUPP WAYPOINT MAG VAR DATA CODE
131	083	SUPP REF WAYPOINT ID DATA CODE
132	084	SUPP REF WAYPOINT REF LAT/LON DATA CODE
133	085	SUPP REF WAYPOINT RADIAL DATA CODE
134	086	SUPP REF WAYPOINT DISTANCE DATA CODE
135	087	WIND VECTOR MAGNITUDE DIFFERENCE DATA CODE
136	088	WAYPOINT SEQUENCE ID DATA CODE
137	089	ETA CHANGE DATA CODE
138	08A	ETA TO DEST 1 DATA CODE
139	08B	ETA TO DEST 2 DATA CODE
140	08C	ETA TO DEST 3 DATA CODE
141	08D	ETA TO DEST 4 DATA CODE
142	08E	ETA TO DEST 5 DATA CODE
143	08F	RESERVED FOR DEFINITION (B-737)
144	090	RESERVED FOR DEFINITION (B-737)
145	091	ROUTE BUILDING PARAMETER DATA CODE
146	092	ROUTE DATA TYPE CODE
147	093	PERF INIT DATA TYPE CODE
148	094	TAKEOFF REF DATA TYPE CODE
149	095	RTA DATA TYPE CODE
150	096	ALTERNATE INFO DATA TYPE CODE
151	097	SUPP NDB DATA TYPE CODE
152	098	AUTO INSERT DATA TYPE CODE
153	099	ACTIVE WIND DATA TYPE CODE
154	09A	MOD WIND DATA TYPE CODE
155	09B	DESCENT FORECAST DATA TYPE CODE
156	O9C	PERF LIMITS DATA TYPE CODE
157	09D	SPARE DATA TYPE CODE
158	09E	LATERAL OFFSET DIST DATA CODE
159	09F	LATERAL OFFSET START WPT DATA CODE
160	0A0	LATERAL OFFSET END WPT DATA CODE
161-200	0A1-0C8	RESERVED FOR DEFINITION (B-737)
201	0C9	FUEL FLOW FACTOR DATA CODE
202	0CA	DRAG FACTOR DATA CODE
203	0CB	LIMIT TAKEOFF GROSS WEIGHT DATA CODE
204	0CC	THRUST RATING DATA CODE
205	0CD	VTR PERCENTAGE DATA CODE
206	0CE	ALTERNATE FLAPS DATA CODE
207	0CF	ALTERNATE TRIM DATA CODE
208	0D0	ALTERNATE LIMIT TAKEOFF GROSS WEIGHT DATA CODE
209	0D1	TAKEOFF SPEEDS DATA CODE
210	0D2	ALTERNATE TAKEOFF SPEEDS DATA CODE

DEC CODE	HEX CODE	DESCRIPTION
211	0D3	WAYPOINT ALTITUDE/OAT DATA CODE
212	0D4	LATERAL OFFSET DATA CODE
213	0D5	ALONG TRACK OFFSET DATA CODE
214	0D6	WAYPOINT STEP CLIMB DATA CODE
215	0D7	LAT/LON REPORTING POINT DATA CODE
216	0D8	GROUND ADDRESS DATA CODE
217	0D9	DIRECT FIX DATA CODE
218	0DA	HOLD SPEED RESTRICTION DATA CODE
219	0DB	POSITION REPORTING POINT DATA CODE
220	0DC	ENROUTE WIND SEGMENT DATA CODE
221	0DD	ENROUTE SEGMENT DATA CODE
222	0DE	OPEN ENDED AIRWAY DATA CODE
223	0DF	ALTERNATE THRUST RATING DATA CODE
224	0E0	SEQUENCE NUMBER DATA CODE
225	0E1	MINIMUM FUEL TEMPERATURE DATA CODE
226	0E2	COMPANY PREFERRED AIRPORT IDENT DATA CODE
227	0E3	COMPANY PREFERRED PRIORITY DATA CODE
228	0E4	COMPANY PREFERRED WIND DATA CODE
229	0E5	COMPANY PREFERRED ALT/OAT DATA CODE
230	0E6	COMPANY PREFERRED OVERHEAD FIX DATA CODE
231	0E7	COMPANY PREFERRED ALTITUDE DATA CODE
232	0E8	COMPANY PREFERRED SPEED DATA CODE
233	0E9	COMPANY PREFERRED OFFSET DATA CODE
234	0EA	FLIGHT LIST AIRPORT IDENT DATA CODE
235	0EB	FLIGHT LIST WIND DATA CODE
236	0EC	FLIGHT LIST ALT/OAT DATA CODE
237	0ED	ALTERNATE INHIBIT AIRPORT IDENT DATA CODE
238	OEE	ALTERNATE TAKEOFF VTR PERCENTAGE DATA CODE
239	0EF	THRUST REDUCTION ALTITUDE DATA CODE
240	0F0	ACCELERATION ALTITUDE DATA CODE
241	0F1	ENGINE-OUT ACCELERATION ALTITUDE DATA CODE
242	0F2	PAGING DATA CODE
243	0F3	INTERCEPT COURSE FROM IDENT DATA CODE
244	0F4	INTERCEPT COURSE FROM COURSE DATA CODE
245	0F5	CRUISE SPEED SEGMENT START WAYPOINT DATA CODE
246	0F6	CRUISE SPEED SEGMENT END WAYPOINT DATA CODE
247	0F7	CRUISE SPEED SEGMENT SPEED DATA CODE
248	0F8	CRUISE SPEED SEGMENT ALTITUDE DATA CODE
249-300	0F9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
301	12D	PERF FACTOR DATA CODE
302	12E	TAXI FUEL DATA CODE
303	12F	ZERO FUEL WEIGHT CG DATA CODE
304	130	TROPOPAUSE ALTITUDE DATA CODE
305	131	IDLE FACTOR DATA CODE

306 132 MEAN WIND DATA CODE 307 133 CLIMB WIND ALTITUDE DATA CODE 308 134 CLIMB WIND DIR/MAG DATA CODE 309 135 ALTERNATE DESTINATION WIND ALTITUDE DATA CO 310 136 ALTERNATE DESTINATION WIND DIR/MAG DATA CO 311 137 STAR/ENROUTE TRANSITION DATA CODE 312 138 THRUST REDUCTION ALTITUDE DATA CODE 313 139 ACCELERATION ALTITUDE DATA CODE	
308 134 CLIMB WIND DIR/MAG DATA CODE 309 135 ALTERNATE DESTINATION WIND ALTITUDE DATA C 310 136 ALTERNATE DESTINATION WIND DIR/MAG DATA CO 311 137 STAR/ENROUTE TRANSITION DATA CODE 312 138 THRUST REDUCTION ALTITUDE DATA CODE	
309 135 ALTERNATE DESTINATION WIND ALTITUDE DATA C 310 136 ALTERNATE DESTINATION WIND DIR/MAG DATA CO 311 137 STAR/ENROUTE TRANSITION DATA CODE 312 138 THRUST REDUCTION ALTITUDE DATA CODE	
310 136 ALTERNATE DESTINATION WIND DIR/MAG DATA CO 311 137 STAR/ENROUTE TRANSITION DATA CODE 312 138 THRUST REDUCTION ALTITUDE DATA CODE	
311 137 STAR/ENROUTE TRANSITION DATA CODE 312 138 THRUST REDUCTION ALTITUDE DATA CODE	DDE
312 138 THRUST REDUCTION ALTITUDE DATA CODE	
313 130 ACCELERATION ALTITUDE DATA CODE	
313 139 ACCELERATION ALTHODE DATA CODE	
314 13A ENGINE-OUT ACCELERATION ALTITUDE DATA COD	ÞΕ
315 13B ALTERNATE ASSUMED TEMP DATA CODE	
316-400 13C-190 RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)	
401 191 NOISE ABATEMENT END ALTITUDE DATA CODE	
402 192 NOISE ABATEMENT SPEED DATA CODE	
403 193 NOISE ABATEMENT DERATED THRUST DATA CODE	Ξ.
404 194 HOLD ALTITUDE DATA CODE	
405 195 NOISE ABATEMENT THRUST DATA CODE	
406 196 NOISE ABATEMENT START ALTITUDE DATA CODE	
407 197 SUPP REF AIRPORT DATA CODE	
408 198 SUPP RUNWAY DATA CODE	
409 199 SUPP RUNWAY LAT DATA CODE	
410 19A SUPP RUNWAY LON DATA CODE	
411 19B SUPP RUNWAY COURSE DATA CODE	
412 19C SUPP RUNWAY ELEVATION DATA CODE	
413 19D SUPP RUNWAY LENGTH DATA CODE	
414 19E CLIMB TEMPERATURE ALTITUDE DATA CODE	
415 19F CLIMB TEMPERATURE DATA CODE	
416 1A0 DESCENT TEMPERATURE ALTITUDE DATA CODE	
417 1A1 DESCENT TEMPERATURE DATA CODE	

ATTACHMENT 7 FMC/DATALINK INTERFACE

5701 10.3 Extended Error Codes 5702 Extended error code 5703 Depending on impli-5704 decimal or hexaded

Extended error codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

Formatted: Sub Header

DEC CODE	HEX CODE	DESCRIPTION
001	001	ALL OF MESSAGE TEXT DISCARDED
002	002	REMAINDER OF MESSAGE TEXT DISCARDED
003	003	ALL OF DATA TYPE DISCARDED
004	004	REMAINDER OF DATA TYPE DISCARDED
005	005	ALL OF ELEMENT TEXT DISCARDED
006	006	REMAINDER OF ELEMENT TEXT DISCARDED
007	007	ALL OF LIST DISCARDED
800	800	REMAINDER OF LIST DISCARDED
009	009	ALL OF LIST ELEMENT DISCARDED
010	00A	ALL OF MULTI-PARAMETER ELEMENT DISCARDED
011	00B	ALL OF ROUTE BUILDING PARAMETER DISCARDED
012	00C	ALL APPROACH PROCEDURE RELATED DATA DISCARDED
013	00D	ALL DEPARTURE AIRPORT RELATED DATA DISCARDED
014	00E	ALL ARRIVAL AIRPORT RELATED DATA DISCARDED
015	00F	ALL SID RELATED DATA DISCARDED
016	010	ALL STAR RELATED DATA DISCARDED
017	011	NEXT AIRWAY DISCARDED
018	012	SINGLE ELEMENT DISCARDED
019-100	013-064	RESERVED FOR DEFINITION (B-737)
101	065	ALL OF LIST ENTRY DISCARDED
102	066	ALL OF ENROUTE SEGMENT DISCARDED
103	067	ALTERNATE RUNWAY DATA DISCARDED
104	068	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
105	069	ALL OF ELEMENT TEXT DISCARDED
106-200	06A-0C8	RESERVED FOR DEFINITION (BOEING AIRCRAFT)
201-300	0C9-12C	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT

5705

ATTACHMENT 7 FMC/DATALINK INTERFACE

10.4 Triggers, Stimulus Code, and Report Stimulus Codes

5707

5708 5709 5710 Triggers, stimulus codes and report stimulus codes are listed as decimal and hexadecimal values. Depending on implementation, this code may be downlinked as either a decimal or hexadecimal value.

	DEC CODE	HEX CODE	DESCRIPTION		
_	001	001	4R INIT REF		
	002	002	4L SUPP NAV DATA INDEX		
	003	003	4R SUPP NAV DATA INDEX		
	004	004	5R PERF INIT		
	005	005	5L PERF LIMITS		
	006	006	5R PERF LIMITS		
	007	007	4L TAKEOFF REF 1/2		
	800	800	6R MOD LEGS EXTENDED DATA		
	009	009	6L ALTERNATE DEST		
	010	00A	1L DATA LINK		
	011	00B	2L DATA LINK		
	012	00C	3L DATA LINK		
	013	00D	4L DATA LINK		
	014	00E	5L DATA LINK		
	015	00F	1R DATA LINK		
	016	010	2R DATA LINK		
	017	011	3R DATA LINK		
	018	012	4R DATA LINK		
	019	013	5R DATA LINK		
	020	014	6R DATA LINK		
	021	015	1R MAINT BITE INDEX		
	022	016	2R MAINT BITE INDEX		
	023	017	3R MAINT BITE INDEX		
	024	018	4R MAINT BITE INDEX		
	025	019	5R MAINT BITE INDEX		
	026	01A	6R MAINT BITE INDEX		
	027	01B	6R FMCS BITE INDEX		
	028	01C	6R FMCS SENSOR STATUS 2/2		
	029	01D	6R FMCS ANALOG DISCRETES		
	030	01E	6R IRS MONITOR		
	031	01F	6R FMCS INFLIGHT FAULTS 3/3		
	032	020	6R FMCS FLIGHT SELECT		
	033	021	6R FMCS FLIGHT 'N'		
	034	022	3R ROUTE		
	035	023	6R ACT LEGS EXTENDED DATA		
	036	024	5L PROGRESS 3/3		
	037	025	5R PROGRESS 3/3		
	038	026	6L PROGRESS 3/3		
	039	027	6R PROGRESS 3/3		

DEC CODE	HEX CODE	DESCRIPTION
040	028	DES FORECAST
041	029	TIME TO DESTINATION 1
042	02A	TIME TO DESTINATION 2
043	02B	TIME TO DESTINATION 3
044	02C	TIME TO DESTINATION 4
045	02D	TIME TO DESTINATION 5
046	02E	CHANGE IN DESTINATION ETA
047	02F	CHANGE IN DESTINATION AIRPORT
048	030	CHANGE IN ARRIVAL RUNWAY
049	031	EFC ENTRY
050	032	WIND DISCREPANCY
051	033	WAYPOINT SEQUENCE
052	034	POS SHIFT TO IRS LEFT
053	035	POS SHIFT TO IRS RIGHT
054	036	POS SHIFT TO IRS CENTER
055	037	POS SHIFT TO RADIO
056	038	POS SHIFT TO GPS LEFT
057	039	POS SHIFT TO GNSS RIGHT
058	03A	VERIFY POSITION MESSAGE
059	03B	INSUFFICIENT FUEL MESSAGE
060	03C	MOD PLAN EXECUTION
061	03D	CRUISE ALTITUDE CHANGE
062	03E	RTA UNACHIEVABLE MESSAGE
063	03F	HOLDING PATTERN EXIT
064	040	HOLDING PATTERN ENTRY
065	041	FMC FAULT
066	042	SENSOR FAILURE
067	043	BAD NAVAID
068	044	INAIR
069	045	COMPANY UPLINK TEXT ERROR
070	046	ATC UPLINK TEXT ERROR
071	047	COMPANY UPLINK ACKNOWLEDGE
072	048	ATC UPLINK ACKNOWLEDGE
073	049	COMPANY ROUTE DATA ACCEPTED
074	04A	ATC ROUTE DATA ACCEPTED
075	04B	COMPANY ROUTE DATA ACCEPTED WITH EDIT
076	04C	ATC ROUTE DATA ACCEPTED WITH EDIT
077	04D	COMPANY ROUTE DATA REJECTED
078	04E	ATC ROUTE DATA REJECTED
079	04F	COMPANY RTA DATA ACCEPTED
080	050	ATC RTA DATA ACCEPTED
081	051	COMPANY RTA DATA ACCEPTED WITH EDIT
082	052	ATC RTA DATA ACCEPTED WITH EDIT
083	053	COMPANY RTA DATA REJECTED

DEC CODE	HEX CODE	DESCRIPTION						
084	054	ATC RTA DATA REJECTED						
085	055	COMPANY WIND TEMP DATA ACCEPTED						
086	056	ATC WIND DATA ACCEPTED						
087	057	COMPANY WIND TEMP DATA ACCEPTED WITH EDIT						
088	058	ATC WIND DATA ACCEPTED WITH EDIT						
089	059	COMPANY WIND TEMP DATA REJECTED						
090	05A	ATC WIND DATA REJECTED						
091	05B	COMPANY DESCENT FORECAST DATA ACCEPTED						
092	05C	ATC DESCENT FORECAST DATA ACCEPTED						
093	05D	COMPANY DESCENT FORECAST DATA ACCEPTED WITH EDIT						
094	05E	ATC DESCENT FORECAST DATA ACCEPTED WITH EDIT						
095	05F	COMPANY DESCENT FORECAST DATA REJECTED						
096	060	ATC DESCENT FORECAST DATA REJECTED						
097	061	COMPANY PERF INIT DATA ACCEPTED						
098	062	ATC PERF INIT DATA ACCEPTED						
099	063	COMPANY PERF INIT DATA ACCEPTED WITH EDIT						
100	064	ATC PERF INIT DATA ACCEPTED WITH EDIT						
101	065	COMPANY PERF INIT DATA REJECTED						
102	066	ATC PERF INIT DATA REJECTED						
103	067	COMPANY PERF LIMIT DATA ACCEPTED						
104	068	ATC PERF LIMIT DATA ACCEPTED						
105	069	COMPANY PERF LIMIT DATA ACCEPTED WITH EDIT						
106	06A	ATC PERF LIMIT DATA ACCEPTED WITH EDIT						
107	06B	COMPANY PERF LIMIT DATA REJECTED						
108	06C	ATC PERF LIMIT DATA REJECTED						
109	06D	RESERVED FOR DEFINITION (B-737)						
110	06E	RESERVED FOR DEFINITION (B-737)						
111	06F	RESERVED FOR DEFINITION (B-737)						
112	070	RESERVED FOR DEFINITION (B-737)						
113	071	RESERVED FOR DEFINITION (B-737)						
114	072	RESERVED FOR DEFINITION (B-737)						
115	073	UPLINK REQUESTING A DOWNLINK						
116	074	TIME TO TOP OF DESCENT 1						
117	075	TIME TO TOP OF DESCENT 2						
118	076	TIME TO TOP OF DESCENT 3						
119	077	TIME TO TOP OF DESCENT 4						
120	078	TIME TO TOP OF DESCENT 5						
121-200	079-0C8	RESERVED FOR DEFINITION (B-737)						
201-300	0C9-12C	RESERVED FOR DEFINITION (BOEING AIRCRAFT)						
301	12D	MULTI-LEVEL WIND TEMP DATA ACCEPTED						
302	12E	MULTI-LEVEL WIND TEMP DATA REJECTED						
303-400	12F-190	RESERVED FOR DEFINITION (AIRBUS AIRCRAFT)						

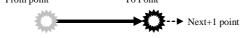
5712 5713

5714

5716 5717

5718 5719

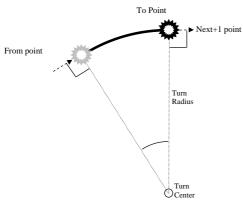
ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES


← - - - **Formatted:** Attachment HEADING 1

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

EXAMPLE 1

Line to Point (Straight), No Vertical Change


5715
From point To Point

Word Type Bits 31-30	Bit 29			Label Bits 8-1					
Full Word	Pad 29-22	, , , , , , , , , , , , , , , , , , ,						Active Intent	
01	00000000		000010	10011010					
Full Word	Characteris	Active Intent							
00	000000000	00000	000000000)				10011010	
Full Word	Point Latitu	ıde						Active Intent	
00	x xxxxxxxx	XXXX	00 xxxxxx					10011010	
Full Word	Point Long	Point Longitude							
00	x xxxxxxxxxxxxxx 00							10011010	
Full Word	Point Altitude							Active Intent	
00	x xxxxxxxx	10011010							
Full Word	Point ETA						Active Intent		
00	Valid	Ηοι	ırs	Minutes	6	Seconds	UTC/Pad	10011010	
00	Х	XXX	XX	XXXXXX		XXXXXX	x00	10011010	
Full Word	Valid	Pat	h RNP					Active Intent	
00	X	x xxxx xxxx xxxx xxxx 0000							
Full Word	Valid	Point CAS						Active Intent	
00	X	xxxx xxxx xxx0 0000 0000						10011010	
Full Word	Valid	Poi	nt Wind Sp	Active Intent					
00	Х	XXX	x xxxx 000	00000	0000			10011010	
Full Word	Point True	Wind	d Direction					Active Intent	
00	x xxxx xxx	x 000	00 0000 00	00				10011010	

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

EXAMPLE 2 Arc to Point (Curve), No Vertical Change

5723

5720 5721

Word Type Bits 31-30	Bit 29		Parameter Bits 28-9					
Full Word 01	Pad 29-22 00000000	Data Type 21-16 000010	Geometry 010	/ 15-13	Vers	ion 12-9 I	Active Intent 10011010	
Full Word 00		stics bits 29-9 000000000000000					Active Intent 10011010	
Full Word 00	Point Latitu	ide xxxxxxxxxx 00					Active Intent 10011010	
Full Word 00	Point Long x xxxxxxxx	itude xxxxxxxxxx 00					Active Intent 10011010	
Full Word 00	Point Altitu x xxxxxxxx	de xxxxxxxxxx 00					Active Intent 10011010	
Full Word 00	Point ETA Valid x		Minutes	Seconds	5	UTC/Pad x00	Active Intent 10011010	
Full Word 00	Valid x	Path RNP xxxx xxxx xxx	xx 0000				Active Intent 10011010	
Full Word 00	Valid x	Point CAS xxxx xxxx xxx0 00	Point CAS xxxx xxxx xxx0 0000 0000					
Full Word 00	Valid x	Point Wind Speed xxxx xxxx 0000 0000 0000					Active Intent 10011010	
Full Word 00	Point True Wind Direction x xxxx xxxx 0000 0000 0000						Active Intent 10011010	
Full Word 00	Turn Radius x xxxxxxxxxxxxx 0000						Active Intent 10011010	
Full Word 00	Turn Center Latitude x xxxxxxxxxxxxxxx 00					Active Intent 10011010		
Full Word 00		er Longitude xxxxxxxxxx 00					Active Intent 10011010	

5724

5725

5726

5727 5728

572957305731

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

EXAMPLE 3

Line to Runway

From point To Point (Runway)

-----→ Next+1 point

Word Type Bits 31-30	Bit 29	Parameter Bits 28-9						Label Bits 8-1
Full Word	Pad 29-2	71 -		Geometry 15-13			rsion 12-9	Active Intent
01	0000000	0 000010		001		00	01	10011010
Full Word	Characte	ristics bits 29-9						Active Intent
00	0000000	0000000100000	00					10011010
Full Word	Point Lat	itude						Active Intent
00	x xxxxxx	xxxxxxxxxx 0	0					10011010
Full Word	Point Lor	ngitude						Active Intent
00	x xxxxxx	xxxxxxxxxx	0					10011010
Full Word	Point Alti	titude						Active Intent
00	x xxxxxx	xxxxxxxxxxx 00					10011010	
Full Word	Point ETA							Active Intent
00	Valid	Hours	Min	utes	Seconds		UTC/Pad	10011010
00	Х	XXXXX	XXX	XXX	XXXXXX		x00	10011010
Full Word	Valid	Path RNP						Active Intent
00	Х	XXXX XXXX XXXX	xxxx (0000				10011010
Full Word	Valid	Point CAS	Point CAS					Active Intent
00	Х	xxxx xxxx xxx0 0000 0000					10011010	
Full Word	Valid	Point Wind Speed					Active Intent	
00	х	xxxx xxxx 0000 0000 0000					10011010	
Full Word	Point Tru	e Wind Direction	n					Active Intent
00	X XXXX XX	xx 0000 0000 0	0000					10011010

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

EXAMPLE 4

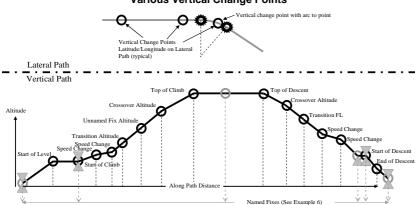
Lateral Discontinuity to Point

To Point

Word Type Bits 31-30	Bit 29		Label Bits 8-1				
Full Word	Pad 29-2	2 Data Type	2 Data Type 21-16		etry 15-13	Version 12-9	Active Intent
01	0000000	0 000010		001		0001	10011010
Full Word	Characte	ristics bits 29-	9				Active Intent
00	0000000	000000100000	000				10011010
Full Word	Point Lat	itude					Active Intent
00	x xxxxxx	XXXXXXXXXXXXXXX	00				10011010
Full Word	Point Lor	ngitude					Active Intent
00	x xxxxxx	xxxxxxxxxxx	00				10011010
Full Word	Point Alti	Point Altitude					
00	x xxxxxx	XXXXXXXXXXXXXXX	00				10011010
Full Word	Point ETA						Active Intent
00	Valid	Hours	Minute	es	Seconds	UTC/Pad	10011010
00	Х	XXXXX	XXXXXX	(XXXXX	x00	10011010
Full Word	Valid	Path RNP					Active Intent
00	х	XXXX XXXX XXX	xxxx C	0000			10011010
Full Word	Valid	Point CAS					Active Intent
00	х	xxxx xxxx xxx0 0000 0000					10011010
Full Word	Valid	Point Wind Speed					Active Intent
00	х	xxxx xxxx 0000 0000 0000					10011010
Full Word	Point Tru	e Wind Directi	on				Active Intent
00	x xxxx xx	0000 0000 xx	0000				10011010

5732

5733 5734


ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

5738 5739

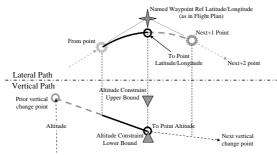
5740

EXAMPLE 5

Various Vertical Change Points

Word Type Bits 31-30 Label Bits 8-1 Bit 29 Parameter Bits 28-9 Geometry 15-13 Full Word Pad 29-22 Data Type 21-16 Version 12-9 Active Intent 001 if line to point 01 00000000 000010 0001 10011010 010 if arc to point Full Word Characteristics bits 29-9 Active Intent xxxxxxx0000000x00000 10011010 00 Full Word Point Latitude Active Intent 00 x xxxxxxxxxxxx 00 10011010 Full Word Point Longitude Active Intent 00 10011010 Full Word Point Altitude Active Intent 00 x xxxxxxxxxxxxx 00 10011010 Point ETA Full Word Active Intent UTC/Pad Valid Hours Minutes Seconds 00 10011010 xxxxx x00 XXXXXX Full Word Valid Path RNP Active Intent 00 10011010 xxxx xxxx xxxx xxxx 0000 Full Word Valid Point CAS Active Intent 00 xxxx xxxx xxx0 0000 0000 10011010 Full Word Valid Point Wind Speed Active Intent xxxx xxxx 0000 0000 0000 00 10011010 Full Word Point True Wind Direction Active Intent x xxxx xxxx 0000 0000 0000 10011010 Full Word' Turn Radius Active Intent 00 10011010 Full Word' Active Intent Turn Center Latitude x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 10011010 00 Full Word' Turn Center Longitude Active Intent

10011010

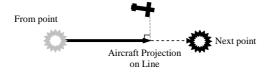

5741 *Included if arc to point

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

5742

EXAMPLE 6

Arc to Named Fix (Fly-by Waypoint with Turn and Altitude Constraint)


5744

Word Type Bits 31-30	Bit 29		Paramete	er Bits 28-9		Label Bits 8-1
Full Word 01	Pad 29-2 0000000	²² 16	13		Version 12-9 0001	Active Intent 10011010
Full Word 00		eristics bits 29 000100000000			1	Active Intent 10011010
Full Word 00	Point La	titude xxxxxxxxxxx	00			Active Intent 10011010
Full Word 00		XXXXXXXXXXX	00			Active Intent 10011010
Full Word 00		XXXXXXXXXXXX	00			Active Intent 10011010
Full Word 00	Point ET Valid x	Hours xxxxx	Minutes xxxxxx	Seconds	UTC/Pad x00	Active Intent 10011010
Full Word 00	Valid x		xx xxxx 0000			Active Intent 10011010
Full Word 00	Valid x		x0 0000 0000			Active Intent 10011010
Full Word 00	Valid x		0000 0000 0000			Active Intent 10011010
Full Word 00	x xxxx x	ue Wind Directory 2000 0000				Active Intent 10011010
Full Word 00		XXXXXXX XXXX	кхх			Active Intent 10011010
Full Word 00		XXXXXXX XXXX	кхх			Active Intent 10011010
Full Word 00		0000000 xxx		Active Intent 10011010		
Full Word 00	x xxxxxx	Named Point Ref Latitude x xxxxxxxxxxxxxxxx 00				Active Intent 10011010
Full Word 00	x xxxxxx	Point Ref Long	Active Intent 10011010			
Full Word 00	x xxxxxx	Constraint Lo	Active Intent 10011010			
Full Word 00	x xxxxxx	Constraint Up				Active Intent 10011010
Full Word 00	Turn Ra	dius xxxxxxxxx 00	00			Active Intent 10011010

ATTACHMENT 8 CODING EXAMPLES OF TRAJECTORY INTENT DATA FILES

Full Word 00	Turn Center Latitude x xxxxxxxxxxxxxxxx 00	Active Intent 10011010
Full Word 00	Turn Center Longitude x xxxxxxxxxxxxxx 00	Active Intent 10011010

 <u>EXAMPLE 7</u>
Line to Aircraft Projection, No Vertical Change

Word Type Bits 31-30	Bit 29	Parameter E	Parameter Bits 28-9				
Full Word	Pad 29-22	71 -	21-16			Version 12-9	Active Intent
01	00000000	000010		001		0001	10011010
Full Word	Characteri	istics bits 29-9					Active Intent
00	00000000	000100000000	00				10011010
Full Word	Point Latit	ude					Active Intent
00	x xxxxxxx	xxxxxxxxx 0)				10011010
Full Word	Point Long	gitude					Active Intent
00	x xxxxxxx	xxxxxxxxx 0)				10011010
Full Word	Point Altitu	ıde					Active Intent
00	x xxxxxxx	x xxxxxxxxxxxxx 00 10011010					
	Point ETA						Active Intent
Full Word		FUIILLIA					10011010
00	Valid	Hours	Minut	es	Seconds	UTC/Pad	
	Х	XXXXX	XXXXX	X	XXXXXX	x00	
Full Word	Valid	Path RNP					Active Intent
00	Х	XXXX XXXX XX	XX XXXX	0000			10011010
Full Word	Valid	Point CAS					Active Intent 10011010
00	Х	XXXX XXXX XX	xxxx xxxx xxx0 0000 0000				
Full Word	Valid		Point Wind Speed				
00	Х	xxxx xxxx 0000 0000 0000 100110					10011010
Full Word	Point True	Wind Direction	n				Active Intent
00	X XXXX XXX	x 0000 0000 C	000				10011010

APPENDIX A REFERENCE DOCUMENTS

APPENDIX A REFERENCE DOCUMENTS

5753

5754	The latest versions of the following documents apply:
5755	1. ARINC Specification 413A: Guidance for Aircraft Electrical Power Utilization and Transient
5756	<u>Protection</u>
5757	4-2. ARINC Specification 424: Navigation System Data Base
5758	2.3. ARINC Specification 429: Digital Information Transfer System (DITS)
5759	3.4. ARINC Specification 600: Air Transport Avionics Equipment Interfaces
5760	4.5ARINC Report 604: Guidance for Design and Use of Built-In Test Equipment (BITE)
5761	6ARINC Report 607: Design Guidance for Avionic Equipment
5762	5-7. ARINC Report 608A: Design Guidance for Avionics Test Equipment
5763	6-8ARINC Report 610B: Guidance for Use of Avionics Equipment and Software in Simulators
5764	7.9. ARINC Specification 615: Airborne Computer High Speed Data Loader
5765	8-10. ARINC Specification 615A: Software Data Loader with High Density Storage Medium
5766	9-11. ARINC Specification 618: Air-Ground Character-Oriented Protocol Specification
5767	40.—ARINC Specification 622: ATS Data Link Applications Over ACARS Air-Ground Network
5768	12. ARINC Specification 623: Character-Oriented Air Traffic Services (ATS) Applications
5769	13. ARINC Report 624: Design Guidance for Onboard Maintenance System
5770	14. ARINC Report 625: Industry Guide for Component Test Development and Management
5771	15. ARINC Report 626: Standard ATLAS Language for Modular Test
5772	11.
5773	12.16. ARINC Specification 646: Ethernet Local Area Network (ELAN)
5774	43.17. ARINC Report 651: Design Guidance for Integrated Modular Avionics
5775	14.18. ARINC Specification 653: Avionics Application Software Standard Interface
5776	45.19. ARINC Report 660B: CNS/ATM Avionics Architectures Supporting NextGen/SESAR
5777	Concepts
5778	46.20. ARINC Specification 661: Cockpit Display System Interfaces to User Systems
5779	21. ARINC Specification 664: Aircraft Data Network
5780	47-22. ARINC Characteristic 701: Flight Control Computer System
5781	48.23. ARINC Characteristic 704: Inertial Reference System
5782	49.24. ARINC Characteristic 705: Attitude and Heading Reference System
5783	20.25. ARINC Characteristic 706: Subsonic Air Data System
5784 5785	21.26. ARINC Characteristic 708A: Airborne Weather Radar with Forward Looking Windshear Detection Capability
5786	22.27. ARINC Characteristic 709: Airborne Distance Measuring Equipment
5787	28. ARINC Characteristic 710: Mark 2 Airborne ILS Receiver
5788	23-29. ARINC Characteristic 711: Mark 2 Airborne VOR ILS Receiver
5789 5790	24.30. ARINC Characteristic 724B: Aircraft Communication Addressing and Reporting System (ACARS)
5791	25.31. ARINC Characteristic 725: Electronic Flight Instruments (EFI)
5792	26.32. ARINC Characteristic 737: On-Board Weight and Balance System
5793	27.33. ARINC Characteristic 738: Air Data and Inertial Reference System (ADIRS)
0.00	

Formatted: Font: Bold

5835 5836

APPENDIX A REFERENCE DOCUMENTS

5794	28.34. ARINC Characteristic 739A: Multi-Purpose Control and Display Unit
5795	29.35. ARINC Characteristic 740: Multiple-Input Cockpit Printer
5796	30.36. ARINC Characteristic 743A: GNSS Sensor
5797	34.37. ARINC Characteristic 743B: GNSS Landing System Sensor Unit (GLSSU)
5798	32.38. ARINC Characteristic 744: Full-Format Printer
5799	33.39. ARINC Characteristic 744A: Full-Format Printer with Graphics Capability
5800	34.40. ARINC Characteristic 745: Automatic Dependent Surveillance
5801	35.41. ARINC Characteristic 755: Multi-Mode Landing System – Digital
5802	36.42. ARINC Characteristic 756: GNSS Navigation and Landing Unit (GNLU)
5803	37.43. ARINC Characteristic 758: Communications Management Unit (CMU) Mark 2
5804	38.44. ARINC Characteristic 760: GNSS Navigation Unit (GNU)
5805	45. EUROCONTROL SPEC-0116: EUROCONTROL Specification on Data Link Services (DLS)
5806	46. ICAO Doc 4444: Procedures for Air Navigation Services - Air Traffic Management
5807	47. ICAO Doc 9613: Performance-Based Navigation Manual
5808 5809	39.48. RTCA DO-160/EUROCAE ED-14: Environmental Conditions and Test Procedures for Airborne Equipment
5810	49. RTCA DO-178/EUROCAE ED-12: Software Considerations in Airborne Systems and
5811	Equipment Certification
5812	50. RTCA DO-200/EUROCAE ED-76: Standards for Processing Aeronautical Data
5813	40.51. RTCA DO-201/EUROCAE ED-77: Standards for Aeronautical Information
5814	41. RTCA DO-212: Minimum Operational Performance Standards for Airborne Automatic
5815	Dependent Surveillance (ADS) Equipment
5816 5817	52. RTCA DO-219: Minimum Operational Performance Standards for ATC Two-Way Data Link Communications
5818	53. RTCA DO-229: Minimum Operational Performance Standards for Global Positioning
5819	System/Satellite-Based Augmentation System Airborne Equipment
5820 5821	42.54. RTCA DO-236/EUROCAE ED-75: Minimum Aviation System Performance Standards: Required Navigation Performance for Area Navigation
5822 5823	43.55. RTCA DO-258/EUROCAE ED-100: Interoperability Requirements for ATS Applications Using ARINC 622 Data Communications
5824 5825	56. RTCA DO-264/EUROCAE ED-78: Guidelines for Approval of the Provision and Use of Air Traffic Services Supported by Data Communications
5826 5827	57. RTCA DO-280/EUROCAE ED-110: Interoperability Requirements Standard for Aeronautical Telecommunication Network Baseline 1
5828 5829	44.58. RTCA DO-283: Minimum Operational Performance Standards for Required Navigation Performance for Area Navigation
5830 5831	59. RTCA DO-290/EUROCAE ED-120: Safety and Performance Requirements Standard for Air Traffic Data Link Services in Continental Airspace
5832 5833 5834	45.60. RTCA DO-305/EUROCAE ED-154: Future Air Navigation Systems 1/A – Aeronautical Telecommunication Network Interoperability Standard (FANS 1/A ATN B1 Interop Standard)

46.61. RTCA DO-306/EUROCAE ED-122: Safety and Performance Standard for Air Traffic Data Link Services in Oceanic and Remote Airspace (Oceanic SPR Standard)

APPENDIX A

	REFERENCE DOCUMENTS
5837 5838	47-62. RTCA DO-308: Operational Services and Environment Definition (OSED) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services
5839 5840	48-63. RTCA DO-324: Safety and Performance Requirements (SPR) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services
5841 5842	49. RTCA DO-328/EUROCAE ED-195: Safety, Performance and Interoperability Requirements Document for Airborne-Spacing — Flight Deck Interval Management (ASPA-FIM)
5843 5844	50. RTCA DO-340: Concept of Use for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services
5845	
5846 5847	64. RTCA DO-350/EUROCAE ED-229: Safety and Performance Standard for Baseline 2 ATS Data Communications
5848 5849	65. RTCA DO-353/EUROCAE ED-231: Interoperability Requirements Standard for Baseline 2 ATS Data Communications
	<u> </u>

Formatted: Not Highlight

5850	APPENDIX B	ACRONYMS
5851	AAC	Aeronautical Administrative Control
5852	AAC	Airline Administrative Communication
5853	ACARS	Aircraft Communications Addressing and Reporting System
5854	ACK	Acknowledgement
5855	ADC	Air Data Computer
5856	ADIRS	Air Data/Inertial Reference System
5857	ADIRU	Air Data/Inertial Reference Unit
5858	ADS	Automatic Dependent Surveillance
5859	ADS-B	Automatic Dependent Surveillance – Broadcast
5860	ADS-C	Automatic Dependent Surveillance - Contract
5861	AEEC	Airlines Electronic Engineering Committee
5862	AF	Arc to a Fix
5863	AFM	Airplane Flight Manual
5864	AFN	ATS Facilities Notification
5865	<u>AFCS</u>	Auto Flight Control System
5866	AHRS	Altitude Heading Reference System
5867	AMI	Airline Modifiable Information
5868	ANP	Actual Navigation Performance
5869	AOC	Airline Operational Communication
	APM	Airplane Personality Module
5871	APC	Airline Passenger Communication
5872	ASAS	Aircraft Separation Assurance System
5873	ATC	Air Traffic Control
5874	ATIS	Automatic Terminal Information Service
5875	ATM	Air Traffic Management
5876	ATN	Aeronautical Telecommunication Network
5877	ATS	Air Traffic Services
5878	ATO	Along Track Offset
5879	ATS	Air Traffic Services
5880	BITE	Built-In Test Equipment
5881	BP	Bottom Plug
5882	CAS	Computed Air Speed
5883	CDTI	Cockpit Display of Traffic Information
5884	CDA	Continuous Descent Approach
5885	CDO	Continuous Descent Operation
5886	CDU	Control Display Unit
5887	CF	Course to a Fix
5888	CMU	Communications Management Unit
5889	CNS	Communications, Navigation and Surveillance

5890	CPDLC	Controller/Pilot Data Link Communication
5891	CRC	Cyclic Redundancy Check
5892	CTS	Clear to Send
5893	DA	Decision Altitude
5894	DG	Directional Gyro
5895	DGNSS	Differential Global Navigation Satellite System
5896	DITS	Digital Information Transfer System
5897	DLIC	Data Link Initiation of Communications
5898	DME	Distance Measurement Equipment
5899	EFIS	Electronic Flight Information System
5900	EIS	Electronic Information System
5901	ELAN	Ethernet Local Area Network
5902	EPU	Estimated Position Uncertainty
5903	ETA	Estimated Time of Arrival
5904	ETE	End-te-EndEstimated Time Enroute
5905	ETOPS	Extended-range Twin-engine Operations
5906	EUROCAE	European Organization for Civil Aviation Electronics
5907	FAF	Final Approach Fix
5908	FANS	Future Air Navigation System
5909	FAS	Final Approach Segment
5910	FASDM	Final Approach Segment Data Message
5911	FCOM	Flight Crew Operations Manual
5912	FEP	Final End Point
5913	FIR	Flight Information Region
5914	FIS	Flight Information Services
5915	FLS	FMS-based Landing System
5916	FMC	Flight Management Computer
5917	FMCS	Flight Management Computer System
5918	FMF	Flight Management Function
5919	FMS	Flight Management System
5920	FRT	Fixed Radius Transition
5921	GBAS	Ground Based Augmentation System
5922	GFI	General Format Identifier
5923	GIU	Gatelink Interface Unit
5924	GLS	GNSS-based Landing System
5925	GLSSU	GPS/SBAS Landing System Sensor Unit
5926	GLU	GNSS-based Landing Unit
5927	GNLU	GNSS-based Navigation and Landing Unit
5928	GNSS	Global Navigation Satellite System
5929	GNSSU	Global Navigation Satellite System Unit
5930	GPS	Global Positioning System

5931	HSI	Horizontal Situation Indicator
5932	IAF	Initial Approach Fix
5933	ICAO	International Civil Aviation Organization
5934	<u>IF</u>	Initial Fix
5935	IFR	Instrument Flight Rules
5936	IGS	Instrument Guidance System
5937	ILS	Instrument Landing System
5938	IMC	Instrument Meteorological Conditions
5939	IMI	Imbedded Message Identifier
5940	IPC	Illustrated Parts Catalog
5941	IRS	Inertial Reference System
5942	IRU	Inertial Reference Unit
5943	ISA	International Standard Atmosphere
5944	LAAS	Local Area Augmentation System
5945	LDA	Localizer Directional Aid
5946	LDU	Link Data Unit
5947	LNAV	Lateral Navigation
5948	LOC	Localizer
5949	LOS	Line of Sight
5950	LP	Localizer Performance
5951	LPV	Localizer Performance with Vertical Guidance
5952	LRC	Long Range Cruise
5953	LRU	Line Replaceable Unit
5954	LSB	Least Significant Bit
5955	LTP	Landing Threshold Point
5956	MAHP	Missed Approach Holding Point
5957	MAP	Missed Approach Decision Point
5958	MASPS	Minimum Airborne System Performance Standards
5959	MCDU	Multi-Purpose Control Display Unit
5960	MCU	Modular Concept Unit
5961	MDA	Minimum Decision Altitude
5962	MDH	Minimum Decision Height
5963	MEA	Minimum Enroute IFR Altitude
5964	MLS	Microwave Landing System
5965	MMO	Maximum Operating Mach
5966	MMR	Multi-Mode Landing System Receiver
5967	MOCA	Minimum Obstruction Clearance Altitude
5968	MOPS	Minimum Operational Performance Standards
5969	MORA	Minimum Off-Route Altitude
5970	MP	Middle Plug
5971	MSB	Most Significant Bit

5972	MTBF	Mean Time Between Failure	
5973	MTBUR	Mean Time Between Unit Removal	
5974	MU	Management Unit	
5975	NAK	Negative Acknowledgement	
5976	ND	Navigational Display	
5977	NDB	Non-Directional Beacon or Navigation Data Base	
5978	NFF	No Fault Found	
5979	NOTAM	Notice to Airmen	ĺ
5980	NUC	— Navigation Uncertainty Category	
5981	OCM	Oceanic Clearance Message	
5982	PBD	Point Bearing/Distance	•
5983	PBN	Performance-Based Navigation	Ī
5984	PDC	Predeparture Clearance	•
5985	PDMV	Procedure Design Magnetic Variation	[
5986	PFD	Primary Flight Display	•
5987	PVT	Position Velocity and Time	
5988	QFE*	Local station barometric pressure setting which provides an altimeter	
5989		reading of indicated altitude of the airplane above the station	
5990 5991	QNH*	Local station barometric pressure setting which provides an altimeter reading of indicated altitude of the airplane above mean sea level	
5992	RAIM	Receiver Autonomous Integrity Monitoring	
5993	RCP	Required Communications Performance	
5994	RF	Constant Radius Arc to a Fix	·
5995	RMP	Required Monitoring Performance	
5996	RNAV	Area Navigation	·
5997	RNP	Required Navigation Performance	
5998	RTA	Required Time of Arrival	
5999	RTS	Request to Send	
6000	RVSM	Reduced Vertical Separation Minima	
6001	SARPS	Standards and Recommended Practices	
6002	SATCOM-	Satellite Communication	
6003	SBAS	Satellite Based Augmentation System	
6004	SCAT	— Special Category	
6005	SDI	Source Destination Identifier	
6006	SICASP	SSR Improvements and Collision Avoidance Systems Panel	
6007	SID	Standard Instrument Departure	·
6008	SITA	Societe International de Telecommunications Aeronautique	
6009	SMGCS	Surface Movement Guidance and Control System	
6010	STAR	Standard Terminal Arrival Route	·
6011	SUA	Special Use Airspace	
6012	TACAN	Tactical Air Navigation System	

6013	TAWS	Terrain Awareness and Warning System
6014	TCC	Thrust Control Computer
6015	TCP	Trajectory Change Point
6016	TDMA	Time Division Multiple Access
6017	TOAC	Time of Arrival Control
6018	TP	Top Plug
6019	TTE	Total Time Error
6020	TWIP	Terminal/Enroute Weather Information for Pilots
6021	UIR	Upper Flight Information Region
6022	UTC	Universal Time Coordinated
6023	VFR	Visual Flight Rules
6024	VG	Vertical Gyro
6025	VMC	Visual Meteorological Conditions
6026	VMO	Maximum Operating Speed
6027	VNAV	Vertical Navigation
6028	VOR	VHF Omni-Range Navigation
6029	VORTAC	Co-Located VOR and TACAN
6030	WAAS	Wide Area Augmentation System
6031	WBS	Weight and Balance System
6025 6026 6027 6028 6029 6030	VMC VMO VNAV VOR VORTAC WAAS	Visual Meteorological Conditions Maximum Operating Speed Vertical Navigation VHF Omni-Range Navigation Co-Located VOR and TACAN Wide Area Augmentation System