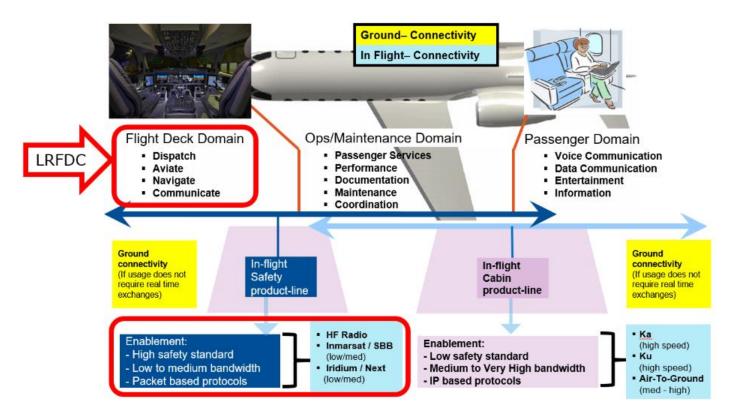


# Long Range Communication Iridium Next and HF Remote

Global Aircraft Tracking - Link Diverse Approach June, 2018




# Agenda

- Long range flight deck comm (LRFDC)
- Technology vulnerabilities
- Legacy HF
- New HF Remote (HFR) system
- HFR development roadmap



## Aircraft Domains and Use Cases...





# ...and Technology Choices

#### VHF

- Limited to line-of-sight
- Good enough voice and data quality
- Less expensive DoC

#### HF

- Long range, broadcast
- Poor voice quality
- Less expensive DoC
- Maintenance actions difficult

#### SATCOM

- Long range, point to point only
- Good voice quality
- Extended data bandwidth
- More expensive DoC





## ... Each with Market Inhibitors and Drivers

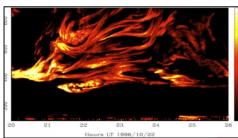
- Emerging/Growing Datalink Requirements
  - Increased ATC services
  - Aircraft tracking
- Link Diversity
  - Does dual SATCOM present a single point of failure?
  - Will dual SATCOM gain approval to meet LRC required communication performance?
  - Connectivity that is secure and private
  - More data, more often
  - Anonymity bizav and government/military
  - Autonomy regional, national, strategic
- Ground Infrastructure
  - There are areas of the world where infrastructure constraints drive interesting technology choices



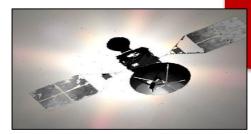




# ...and Longer-Term Considerations


- Continuous connectivity
  - Coverage anywhere in the world, all the time
- Voice and data capability
  - Both needed; only one mandated outside China
  - Bandwidth to support growing data requirements
- Mandate compliance
  - Aircraft tracking
  - HF Voice
- Cyber security
  - For ATC
  - For Principal
  - For connected aircraft ecosystem
- Proliferation of new systems driven by national autonomy goals



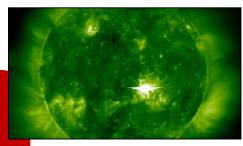



# Single comm technology magnifies vulnerabilities...

## L Band SATCOM



Scintillation




Satellite Outages

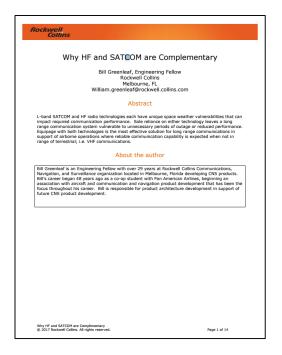


Security

#### **HF Terrestrial Comm**



Solar Flares

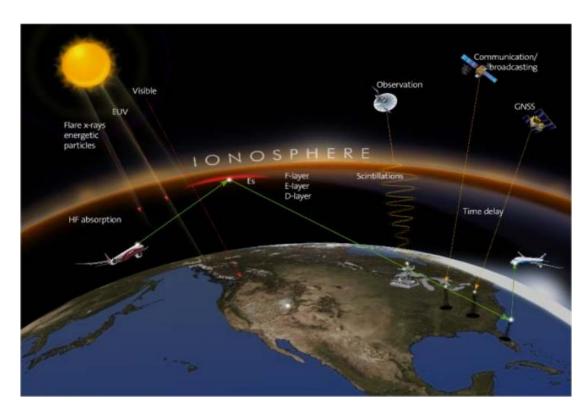



Radiation Storms



# White Paper – Why HF and SATCOM are Complementary

- Voice and Data Needed Everywhere
- Electomagnetic Propagation
  - Impact to HF
  - Impact to SATCOM
- Space Weather and Solar Events
- Information from NOAA
  - Radio Blackout
  - Geomagnetic Storm Impact
  - Solar Storm Effects




https://insights.rockwellcollins.com/2018/02/06/why-hf-and-satcom-are-complementary/



## **Atmospheric Propagation Effects**

- HF LoS and BLoS Propagation
  - Minimally Effected by Ionosphere
  - More Effected in Troposphere by Space Weather
- L-Band LoS Propagation
  - Effected by Space Weather in both Ionosphere and Troposphere





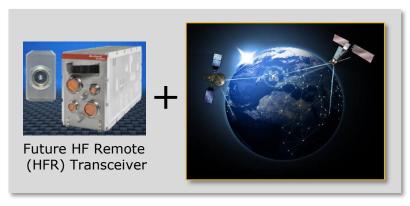
## White Paper Summary

- Solar Weather results in various magnetic, radiation, and propagation effects that impact electronic systems
- HF and L-Band SATCOM are impacted by different changes in Ionosphere
  - HF Effected by D-Layer absorption and F-Layer reflection
  - L-Band Effected by F-Layer scintillation
- Current operational data shows that L-band SATCOM has been available when HF has difficulties and HF has been available when L-band SATCOM has difficulties



# Coverage / Capability / Bandwidth / Cost Analysis: Critical Gaps

|                              | HF                      | Iridium              | Inmarsat             |
|------------------------------|-------------------------|----------------------|----------------------|
| Global<br>Coverage           | Yes                     | Yes                  | Polar<br>Limitations |
| Voice and Data<br>Capability | Yes                     | Yes                  | Yes                  |
| Bandwidth                    | May Not<br>Support IPS* | Currently<br>Limited | Yes                  |
| Acquisition Cost             |                         |                      |                      |
| Service Cost                 |                         |                      |                      |


## **Link Diversity Analysis: Critical Gaps**

|          | HF  | Iridium                     | Inmarsat                 |
|----------|-----|-----------------------------|--------------------------|
| HF       | No  | Yes                         | Yes                      |
| Iridium  | Yes | No                          | No Spectral<br>Diversity |
| Inmarsat | Yes | No<br>Spectral<br>Diversity | No                       |

\*Internet Protocol

Long Range Flight Deck Comm

# ...Link Diversity mitigates technology vulnerabilities



Conclusion: SATCOM – only equipment is inadequate



## Legacy HF

# ...about that HF performance...



HF systems have not substantially improved in many decades



## Legacy HF

## Current HF deficits

- Voice quality market expects
   SATCOM clarity that analog HF does not deliver
- Datalink
  - Availability: slow, unreliable, disconnects
  - Data rate: not sufficient to support ATC/AOC needs
- Size bulky, multiple LRUs, excessive cabling, production impact
- Weight problem for long range aircraft performance
- Pilot workload cumbersome





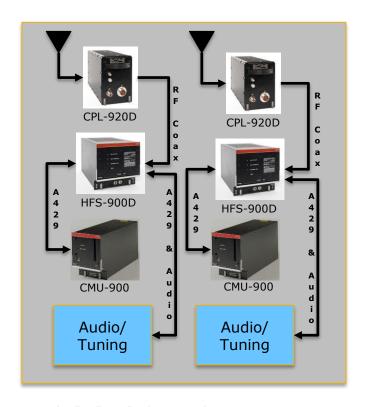
## **New Generation HF**

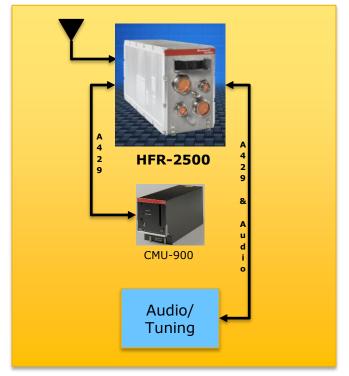
- Remote mounted integrated transceiver
  - 4 MCU, mounted at coupler location
- XCVR location near antenna minimizes RF loss and impact of heavy coax cables
  - Transmit output power can be lower integrated unit does not have to make up for coax losses
  - Units can be smaller and lighter using modern design standards
- Voice communication transition to data packets similar to our current IP telephones
- Advanced SDR features enable simultaneous voice and data

Current HF System (Providing Dual HF Capability)



Future HFR (Providing Dual HF Capability)



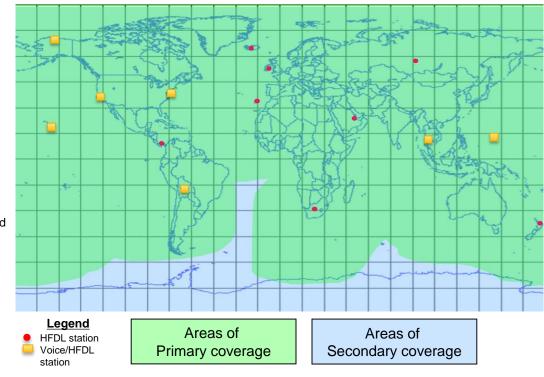


#### **Key Benefits**

- Significant weight reduction (>90 lbs)
- Significant Volume reduction (>80%)
- Eased installation eliminates Fiber Optic interface, simplifies cable runs



# HF System Block Diagram Comparison








# Ground stations already in place worldwide

# HF Ground Stations

- Alaska
- Bahrain
- Bolivia
- California
- Canary Islands
- Guam
- Hawaii
- Iceland
- Ireland
- New York
- New Zealand
- Panama
- Russia
- South Africa
- Thailand



- 16 ground stations collocated at existing sites
  - Transmitters
  - RX & TX antennas
  - Shelters
  - GS computers
  - Routers
- Updated software protocol
  - Integrated voice/data
  - Enables worldwide voice
  - Supports RCP-240 (FANS)



## Development Roadmap

# **HFR Summary**

- Modernization of HF communications
  - Quality (voice clarity, link availability)
  - Multifunctional/multi channel
  - Higher data rate (100+ kpbs)
  - SWaP reductions
- LRC link diversity
  - HF and SATCOM complementary for best solution (coverage & reliability)
    - Value for your fleet
      - ✓ Link diversity for aircraft dispatch ability
      - ✓ Reduced operating cost
      - Optional advanced features increase mission capability
      - Reduced size, weight and power requirements
      - ✓ Ease of installation operation maintenance





Building trust every day

