

This document is published information as defined by 15 CFR Section 734.7 of the Export Administration Regulations (EAR). As publicly available technology under 15 CFR 74.3(b)(3),
it is not subject to the EAR and does not have an ECCN. It may be exported without an export license.

 16701 Melford Blvd., Suite 120, Bowie, Maryland 20715 USA
 http://www.aviation-ia.com/aeec

To SDL Subcommittee Date May 15, 2015

From Scott L. Smith
smitty@sae-itc.org
tel +1 240-334-2582

Reference 15-059/SDL-095

Subject Draft Circulation
Draft 2 of Supplement 4 to ARINC Report 665: Loadable Software
Standards

Summary The ARINC Industry Activities staff prepared this draft in response to
ARINC Project Initiation/Modification (APIM) 15-003. This draft includes a
number of technical changes supported by the software data loader
community as follows:

 Manufacturer’s Codes and Assignment

 Software Load File naming

 Header File Definition

 Rules for CRC Calculation

 Other technical changes per Errata inputs

Additionally, editorial changes have been made where necessary.

All technical changes are shown in blue bold. Text that has been deleted may
or may not be shown in strikethrough depending on the extent of the
deletions.

Action The Software Data Loader (SDL) Subcommittee will review this draft during
its next meeting, tentatively scheduled for June 16-19, 2015, in Copenhagen,
Denmark. For details of this meeting, refer to the SDL Meeting
Announcement posted on the ARINC website at the following URL:

http://www.aviation-ia.com/events/

If you wish your comments to be considered at the next meeting, please
respond in writing (e-mail) to Scott Smith by June 12, 2015.

cc SAI Subcommittee

 Prepared by the AEEC

Report 665-4 Adopted by the AEEC Executive Committee: TBD

Preamble:

When this Supplement has been completed, adopted and published, Sections A, B and C will be affixed to the
end of the published Specification. These pages, currently numbered a, b, c…, are used to explain the changes
that will be made by this draft Supplement. The content of Sections A, B and C is under development in parallel
with the changes to the body of the existing standard. Therefore, changes to their content are shown in blue
bold in the same manner as changes to the body of the document.

Section A is written as it is expected to read when the Supplement is mature.

When the changes developed in this Supplement are integrated into the existing standard, they will be identified
by blue bold.

Section C contains a cumulative list of entries describing the changes to be incorporated by this Supplement.

DRAFT 2 OF

SUPPLEMENT 4 TO

ARINC REPORT 665

LOADABLE SOFTWARE STANDARDS

Published: TBD

SUPPLEMENT 4 TO ARINC REPORT 665 – Page a

A. PURPOSE OF THIS DOCUMENT

This supplement provides corrections or updates to air transport aircraft loadable
software requirements, including:

 Part number conventions

 Nomenclature considerations

 Security and integrity checking

 Manufacturer’s Code Request processes

The term “software transport media” has been changed throughout the document to
“media set parts” to reflect current and accurate terminology.

In addition, editorial changes include updates to ARINC Industry Activities web,
email, and phone addresses. Material from collected errata and working papers have
been incorporated into the document as well.

B. ORGANIZATION OF THIS SUPPLEMENT

In this document blue bold text is used to indicate those areas of text changed by
the current supplement only.

C. CHANGES TO ARINC REPORT 665 INTRODUCED BY THIS SUPPLEMENT

This section presents a complete listing of the changes to the document introduced
by this supplement. Each change is identified by the section number and the title as
it will appear in the complete document. Where necessary, a brief description of the
change is included.

1.2 Applicability

Text added to reference ARINC Specification 838: Loadable Software Part
Definition as an XML option for air transport software.

2.1.2 Manufacturer’s Codes Assignment

Text modified to correct ARINC Industry Activities’ web address, and to update the
methods of requesting an MMM code.

2.1.3 Check Characters in the Software PN

Text modified referencing document section defining how check characters are
derived.

2.2.1 Software Load Structure

Text added to denote the differences between Loadable Software Parts (LSPs) and
Media Set Parts (MSPs). Guidance for directory structures is also added.

2.2.2 Software Load File Naming

Text updated defining unallowable characters in filenames.

2.2.3.1 Header File Content and Format

Table 2.2.3-1, Header File Content, modified providing guidance on word length and
associated pointer fields.

2.2.3.1.10 Pointer to Number of Target HW ID with Positions

Text added providing guidance on cases where the field is set to zero and
subsequently omitted.

SUPPLEMENT 4 TO ARINC REPORT 665 – Page b

2.2.3.1.18 Load Type ID

Text added recommending that this field should be the same as the intended target.

2.2.3.1.36 Data File PN

Text added recommending that this field is unique within a given LSP.

Commentary added explaining how the data file part number is used.

2.2.3.1.48 Support File PN Length

Text added providing guidance on cases where the field is set to zero and
subsequently omitted.

2.2.3.1.49 Support File PN

Text added recommending that this field is unique within a given LSP.

2.2.3.1.61 Load Check Value

Text modified to clarify the check value type, and on cases where the field is set to
zero and subsequently omitted.

2.2.3.1.63 Load CRC

Text added defining the order and the steps to calculate the 32-bit Load CRC.

2.2.3.2 Data File Content and Format

Text added identifying the LSP supplier as the originator of the data file format.

2.3.1 Batch File

Text added providing guidance on the creation and usage of batch file parts.

Table 2.3.1-1, Batch File Content, modified providing guidance on word length and
associated pointer fields.

2.3.1.8 Batch File PN

Text added recommending that this field is unique from any LSP part numbers.

2.3.1.14 Target HW ID POS

Text added recommending that this field should be the same as the intended target,
as well as consistent with all subordinate target hardware values.

2.3.1.17 Header File Name

Text added recommending that this field should be the same as the Load PN.

3.0 Loadable Media Set Parts

Title of Section 3 changed to reflect current and accurate terminology.

4.3.1 8-Bit CRC

Text added describing the 8-Bit CRC calculation process and results.

4.3.2 16-Bit CRC

Text added describing the 16-Bit CRC calculation process and results.

3.2.4.1.1 Storage of ARINC 615 Parts

Reference to ARINC 641 added.

4.2 Rules for CRC Calculation

Text added prescribing the order of operations for computing CRC values.

SUPPLEMENT 4 TO ARINC REPORT 665 – Page c

4.3.1 8-Bit CRC

Text added describing the 8-Bit CRC calculation process and results.

4.3.2 16-Bit CRC

Text added describing the 16-Bit CRC calculation process and results

5.1 Integrity Check Methods

Text added defining the order of operations for calculating check values.

5.2 Data Check Value Enumeration

Text added providing guidance for 8-Bit CRC checks used only for part number
integrity.

Attachment 1 Manufacturer’s Code Assignments

Text modified to reference ARINC Industry Activities web addresses.

Appendix C File Formats

Table of definitions modified with correct field titles.

Appendix I Reference Guide

Table of air transport software standards updates.

Appendix J Airplane Loadable Software – Request for Manufacturer’s Code
Designation

Text modified to reference ARINC Industry Activities web and fax addresses.

Appendix M Considerations for Implementing Supplement 2 to
ARINC Report 665

This appendix was added from material originally published as a working paper. The
material provides guidance for a subset of software developments that conform to
ARINC Report 665-2. Minor differences between Supplements 1, 2, and 3 needed
clarifications and the working paper provided these.

By adding Appendix M, the working paper is given higher visibility to software
developers and implementers.

SAE Industry Technologies Consortia (SAE-ITC)
16701 Melford Blvd., Suite 120
Bowie, Maryland 20715 USA

This document is based on material submitted by various participants during the draft process. Neither AEEC nor SAE-
ITC has made any determination as to whether these materials could be subject to the claims of patent or other
proprietary right by third parties, and no representation or warranty, expressed or implied, is made in this regard. Any use
of or reliance on this document shall constitute an acceptance hereof “as is” and is subject to this disclaimer.

This is a working paper for the AEEC. It does not constitute air transport industry or SAE-ITC approved policy, nor is it
endorsed by the U.S. Federal Government, any of its agencies or others who may have participated in its preparation.

DRAFT 2 OF

SUPPLEMENT 4 TO

ARINC REPORT 665

LOADABLE SOFTWARE STANDARDS

This draft dated: May 15, 2015

ARINC REPORT 665
TABLE OF CONTENTS

iii

1.0 INTRODUCTION ... 1
1.1 Purpose .. 1
1.2 Applicability .. 1
1.3 Document Conventions .. 1
1.3.1 Terminology ... 1
1.3.2 Field Formats .. 1
1.3.3 Data Type .. 2
1.4 File Format Evolution ... 2
1.4.1 File Format Version Definition ... 2
1.4.2 File Expansion Points .. 2
1.4.3 Support Tools and Loaders ... 3
1.4.4 Pointer Field Definition .. 3
1.5 Target Hardware ID Definition ... 4
1.6 Electronic Distribution .. 5

2.0 LOADABLE SOFTWARE PARTS .. 6
2.1 Software Load PN .. 6
2.1.1 Software Load PN Format ... 6
2.1.2 Manufacturer’s Codes Assignment ... 7
2.1.3 Check Characters in the Software PN ... 8
2.1.4 Commercial Software .. 8
2.2 Software Load Content and Format ... 8
2.2.1 Software Load Structure .. 8
2.2.2 Software Load File Naming ... 9
2.2.2.1 Header File Name Extension .. 10
2.2.2.2 Data File Name Extension .. 10
2.2.2.3 Support File Name Extensions ... 10
2.2.3 File Content and Format .. 10
2.2.3.1 Header File Content and Format .. 10
2.2.3.1.1 Header File Length .. 12
2.2.3.1.2 Load File Format Version ... 12
2.2.3.1.3 Part Flags ... 12
2.2.3.1.3.1 Download Flag .. 12
2.2.3.1.3.2 Spare Flags ... 13
2.2.3.1.4 Pointer to Load PN Length ... 13
2.2.3.1.5 Pointer to Number of Target .. 13
2.2.3.1.6 Pointer to Number of Data Files ... 13
2.2.3.1.7 Pointer to Number of Support Files .. 13
2.2.3.1.8 Pointer to User Defined Data ... 13
2.2.3.1.9 Pointer to Load Type Description Length ... 13
2.2.3.1.10 Pointer to Number of Target HW ID with Positions .. 14
2.2.3.1.11 Pointer to Load Check Value Length ... 14
2.2.3.1.12 Expansion Point No. 1 ... 14
2.2.3.1.13 Load PN Length ... 14
2.2.3.1.14 Load PN ... 14
2.2.3.1.15 Expansion Point No. 2 ... 14
2.2.3.1.16 Load Type Description Length ... 14
2.2.3.1.17 Load Type Description ... 14
2.2.3.1.18 Load Type ID ... 15
2.2.3.1.19 Expansion Point No. 3 ... 15
2.2.3.1.20 Number of Target HW IDs ... 15
2.2.3.1.21 Target HW ID Length ... 15

ARINC REPORT 665
TABLE OF CONTENTS

2.2.3.1.22 Target HW ID ... 15
2.2.3.1.23 Expansion Point No. 4 ... 16
2.2.3.1.24 Number of Target HW ID with Positions .. 16
2.2.3.1.25 Target HW ID with Positions Length .. 16
2.2.3.1.26 Target HW ID with Positions .. 16
2.2.3.1.27 Number of Target HW ID Positions .. 16
2.2.3.1.28 Position Length .. 16
2.2.3.1.29 Position .. 16
2.2.3.1.30 Expansion Point No. 5 ... 17
2.2.3.1.31 Number of Data Files ... 17
2.2.3.1.32 Data File Pointer .. 17
2.2.3.1.33 Data File Name Length .. 17
2.2.3.1.34 Data File Name .. 17
2.2.3.1.35 Data File PN Length ... 17
2.2.3.1.36 Data File PN ... 17
2.2.3.1.37 Data File Length ... 18
2.2.3.1.38 Data File CRC .. 18
2.2.3.1.39 Data File Length in Bytes ... 18
2.2.3.1.40 Data File Check Value Length ... 18
2.2.3.1.41 Data File Check Value Type .. 18
2.2.3.1.42 Data File Check Value ... 18
2.2.3.1.43 Expansion Point No. 6 ... 18
2.2.3.1.44 Number of Support Files .. 18
2.2.3.1.45 Support File Pointer ... 19
2.2.3.1.46 Support File Name Length ... 19
2.2.3.1.47 Support File Name ... 19
2.2.3.1.48 Support File PN Length .. 19
2.2.3.1.49 Support File PN .. 19
2.2.3.1.50 Support File Length .. 19
2.2.3.1.51 Support File CRC ... 19
2.2.3.1.52 Support File Check Value Length .. 20
2.2.3.1.53 Support File Check Value Type ... 20
2.2.3.1.54 Support File Check Value .. 20
2.2.3.1.55 Expansion Point No. 7 ... 20
2.2.3.1.56 Expansion Point No. 8 ... 20
2.2.3.1.57 User Defined Data ... 20
2.2.3.1.58 Expansion Point No. 9 ... 20
2.2.3.1.59 Load Check Value Length .. 20
2.2.3.1.60 Load Check Value Type ... 20
2.2.3.1.61 Load Check Value .. 20
2.2.3.1.62 Header File CRC .. 21
2.2.3.1.63 Load CRC .. 21
2.2.3.2 Data File Content and Format .. 21
2.2.3.3 Support File Content and Format ... 21
2.2.4 Data and Support File Options .. 21
2.2.4.1 File Compression .. 21
2.2.4.2 File Encryption .. 22
2.3 Optional Files ... 22
2.3.1 Batch File .. 22
2.3.1.1 Batch File Length .. 24
2.3.1.2 Batch File Format Version .. 24
2.3.1.3 Spare .. 24
2.3.1.4 Pointer to Batch File PN Length ... 24
2.3.1.5 Pointer to Number of Target HW ID Load List Blocks .. 24

ARINC REPORT 665
TABLE OF CONTENTS

v

2.3.1.6 Expansion Point 1 ... 24
2.3.1.7 Batch File Length .. 24
2.3.1.8 Batch File PN .. 24
2.3.1.9 Comment Length .. 24
2.3.1.10 Comment .. 24
2.3.1.11 Number of Target HW ID Load-List Blocks... 25
2.3.1.12 Pointer to Next Target HW ID Load-List Block ... 25
2.3.1.13 Target HW ID POS Length ... 25
2.3.1.14 Target HW ID POS ... 25
2.3.1.15 Number of Loads for the Target HW ID POS ... 25
2.3.1.16 Header File Name Length .. 25
2.3.1.17 Header File Name .. 25
2.3.1.18 Load PN Length .. 26
2.3.1.19 Load PN .. 26
2.3.1.20 Batch File CRC ... 26

3.0 LOADABLE MEDIA SET PARTS ... 27
3.1 Transport Media Part Number Assignment .. 27
3.2 Transport Media Set Format, Content, and Organization .. 27
3.2.1 Transport Media Content and Structure .. 27
3.2.2 File Name Extensions ... 28
3.2.3 File Content and Organization ... 28
3.2.3.1 List of Loads File Content and Organization .. 28
3.2.3.1.1 LOADS.LUM File Length ... 30
3.2.3.1.2 Media File Format Version ... 30
3.2.3.1.3 Spare ... 30
3.2.3.1.4 Pointer to Media Set PN Length .. 30
3.2.3.1.5 Pointer to Number of Loads ... 30
3.2.3.1.6 Pointer to User Defined Data ... 30
3.2.3.1.7 Expansion Point No. 1 ... 30
3.2.3.1.8 Media Set PN Length ... 30
3.2.3.1.9 Media Set PN ... 30
3.2.3.1.10 Media Sequence Number (X) .. 30
3.2.3.1.11 Number of Media Set Numbers (Y) .. 30
3.2.3.1.12 Number of Loads ... 31
3.2.3.1.13 Load Pointer ... 31
3.2.3.1.14 Load PN Length ... 31
3.2.3.1.15 Load PN ... 31
3.2.3.1.16 Header File Name Length .. 31
3.2.3.1.17 Header File Name .. 31
3.2.3.1.18 Member Sequence Number ... 31
3.2.3.1.19 Number of Target HW IDs ... 31
3.2.3.1.20 Target HW ID Length ... 32
3.2.3.1.21 Target HW ID ... 32
3.2.3.1.22 Expansion Point No. 2 ... 32
3.2.3.1.23 Expansion Point No. 3 ... 32
3.2.3.1.24 User Defined Data ... 32
3.2.3.1.25 LOADS.LUM File CRC ... 32
3.2.3.2 List of Files File Content and Format .. 32
3.2.3.2.1 FILES.LUM File Length .. 33
3.2.3.2.2 Media File Format Version ... 33
3.2.3.2.3 Spare ... 33

ARINC REPORT 665
TABLE OF CONTENTS

3.2.3.2.4 Pointer to Media Set PN Length .. 34
3.2.3.2.5 Pointer to Number of Media Set Files .. 34
3.2.3.2.6 Pointer to User Defined Data ... 34
3.2.3.2.7 Pointer to FILES.LUM Check Value Length ... 34
3.2.3.2.8 Expansion Point No. 1 ... 34
3.2.3.2.9 Media Set PN Length ... 34
3.2.3.2.10 Media Set PN ... 34
3.2.3.2.11 Media Sequence Number (X) .. 34
3.2.3.2.12 Number of Media Set Members (Y) ... 34
3.2.3.2.13 Number of Media Set Files .. 34
3.2.3.2.14 File Pointer ... 34
3.2.3.2.15 File Name Length ... 35
3.2.3.2.16 File Name ... 35
3.2.3.2.17 File Pathname Length .. 35
3.2.3.2.18 File Pathname .. 35
3.2.3.2.19 File Member Sequence No. ... 35
3.2.3.2.20 File CRC .. 35
3.2.3.2.21 File Check Value Length .. 36
3.2.3.2.22 File Check Value Type ... 36
3.2.3.2.23 File Check Value .. 36
3.2.3.2.24 Expansion Point No. 2 ... 36
3.2.3.2.25 Expansion Point No. 3 ... 36
3.2.3.2.26 User Defined Data ... 36
3.2.3.2.27 FILES.LUM File Check Value Length .. 36
3.2.3.2.28 FILES.LUM File Check Value Type ... 36
3.2.3.2.29 FILES.LUM File Check Value .. 36
3.2.3.2.30 FILES.LUM File CRC ... 37
3.2.3.3 List-of-Batch File Content and Organization ... 37
3.2.3.3.1 BATCHES.LUM File Length ... 38
3.2.3.3.2 Media File Format Version ... 38
3.2.3.3.3 Spare ... 38
3.2.3.3.4 Pointer to Media Set PN Length .. 38
3.2.3.3.5 Pointer to Number of Batches .. 38
3.2.3.3.6 Pointer to User Defined Data ... 38
3.2.3.3.7 Expansion Point No. 1 ... 38
3.2.3.3.8 Media Set PN Length ... 38
3.2.3.3.9 Media Set PN ... 38
3.2.3.3.10 Media Sequence Number (X) .. 38
3.2.3.3.11 Number of Media Set Members (Y) ... 39
3.2.3.3.12 Number of Batches .. 39
3.2.3.3.13 Batch Pointer ... 39
3.2.3.3.14 Batch PN Length .. 39
3.2.3.3.15 Batch PN .. 39
3.2.3.3.16 Batch File Name Length .. 39
3.2.3.3.17 Batch File Name .. 39
3.2.3.3.18 Member Sequence Number ... 39
3.2.3.3.19 Expansion Point No. 2 ... 40
3.2.3.3.20 Expansion Point No. 3 ... 40
3.2.3.3.21 User Defined Data ... 40
3.2.3.3.22 BATCHES.LUM File CRC .. 40
3.2.4 Media Set File Organization .. 40
3.2.4.1 Location of Load PN Files .. 40
3.2.4.1.1 Storage of ARINC 615 Parts .. 41
3.2.4.1.2 Storage of Boeing Legacy Compliant Parts ... 41

ARINC REPORT 665
TABLE OF CONTENTS

vii

3.2.4.2 Media Set Parsing Rules .. 42
3.2.4.2.1 Search Within Primary Root Directory ... 42
3.2.4.2.2 Match File CRC Value ... 42
3.2.4.2.3 Choose the First File Found in FILES.LUM ... 42
3.2.4.3 Directory Structure for Electronic Distribution ... 42
3.3 Media Set Labeling .. 42
3.3.1 Label Content .. 42
3.3.2 Label Format ... 44
3.4 Media Type Specific Items ... 45
3.4.1 Disk Sets ... 45
3.4.2 PC Card ... 45
3.4.3 CD-ROM .. 46
3.4.4 Hard Disk ... 46

4.0 CYCLIC REDUNDANCY CODES (CRC) ... 47
4.1 CRC Definition ... 47
4.2 Rules for CRC Calculation ... 47
4.2.1 Bit Ordering ... 48
4.2.2 Bit Shifting ... 48
4.2.3 Transmission Bit Reflection ... 48
4.2.4 Process Bit Reflection ... 48
4.2.5 Post Process Bit Reflection ... 48
4.2.6 Initialization .. 48
4.2.7 Error Detection .. 48
4.2.8 Process Efficiency ... 48
4.2.9 CRC Examples .. 49
4.3 CRC Parameters .. 49
4.3.1 8-Bit CRC .. 49
4.3.2 16-Bit CRC .. 50
4.3.3 32-Bit CRC .. 50
4.4 CRC Conventions .. 51
4.4.1 CRC Self Reflection .. 51
4.4.2 File Size Limitations .. 51

5.0 INTEGRITY CHECK METHODS ... 52
5.1 Integrity Check Methods .. 52
5.2 Data Check Value Enumeration ... 52
5.3 Integrity Check Type .. 53
5.3.1 Message Digest (MD) 5 Integrity Check .. 53
5.3.2 Secure Hash Algorithm-1 (SHA-1) Integrity Check ... 53

ATTACHMENTS

ATTACHMENT 1 MANUFACTURER’S CODE ASSIGNMENTS ... 54

APPENDICES

APPENDIX A LOAD STRUCTURE .. 55
APPENDIX B MEDIA SET STRUCTURE ... 58
APPENDIX C FILE FORMATS ... 59
APPENDIX D EXAMPLES .. 64
APPENDIX E MANUAL METHOD FOR CALCULATING THE “CC” VALUE 65

ARINC REPORT 665
TABLE OF CONTENTS

APPENDIX F IMPLEMENTATION FOR MULTI-STANDARD COMPATIBILITY 66
APPENDIX G ACRONYMS AND ABBREVIATIONS ... 68
APPENDIX H LOADABLE SOFTWARE TERMINOLOGY ... 69
APPENDIX I REFERENCE GUIDE .. 77
APPENDIX J AIRPLANE LOADABLE SOFTWARE – REQUEST FOR

MANUFACTURER’S CODE DESIGNATION ... 78
APPENDIX K CALCULATING LOADABLE SOFTWARE PART CRC 80
APPENDIX L CRC STANDARD REFERENCE FILES FOR SOFTWARE DATA LOADING ... 90
APPENDIX M CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC

REPORT 665 ... 92

ARINC REPORT 665 – Page 1

1.0 INTRODUCTION

1.0 INTRODUCTION

1.1 Purpose

This document defines the aircraft industry’s standards for Loadable Software Parts
(LSPs) and software transport Media Media Set Parts (MSPs). It describes the
common principles and rules to be applied to any part of a data load system to
insure compatibility and inter-operability. It includes part numbering, content,
labeling and formatting of an LSP, and a Media Set containing LSPs.

Loadable Software Airplane [Aircraft] Parts (LSAPs) are a subset of the LSP class of
parts. All requirements for LSPs in this document also apply to LSAPs.

Uniform software LSP and Media Set formats enable suppliers to employ common
(standardized) loadable software processes, procedures, and support tools.

It is intended that software loaders, tools, processes, and aircraft systems reference
this standard for definition of Loadable Software Part and Media Set Part content
and format. This should be independent of any specific data load system, production
process, or aircraft system that uses the LSP.

1.2 Applicability

This standard is applicable to all Loadable Software Parts and Media Set Parts
intended for use in aircraft programs, systems, equipment, and Line Replaceable
Units (LRUs).

Alternately, an Extensible Markup Language (XML) based software standard
for air transport aircraft may be used. ARINC Specification 838: Loadable
Software Part Definition provides guidance on creating, identifying, and
maintaining LSAPs using XML for human and machine readable needs.

1.3 Document Conventions

1.3.1 Terminology

This document is intended to assure interchangeability and interoperability between
equipment independent of the manufacturer. The capabilities described in this
document must be implemented to ensure a minimum level of compatibility between
software loaders and tools, loadable software, and Media Set Parts designed to
meeting the recommendations of this report.

In this document, “should” is used to define a capability that must be implemented
for the unit to meet the minimum level of compatibility intended by this report. The
terms “does,” “is,” and “will” are used to express a statement of fact based on other
requirements. In this document, the term “may” is used to express an optional
capability. Note in some cases, a capability “may” be implemented, but if it is, a
specific aspect of it “should” be implemented in a specific manner. Otherwise, an
incompatibility may exist with the aircraft or other interfacing equipment.

1.3.2 Field Formats

Data structures are represented by standard Hexadecimal and ASCII nomenclature.
A data byte refers to a string of 8 bits, represented in the form of 0xFF, depicting a
string of 8 bits of value (1). A data word refers to a string of 16 bits, represented in
the form of 0xFFFF, where each F represents a string of 4 bits of value (1).

Tom Williams
Cross-Out

Tom Williams
Inserted Text
MSP

Tom Williams
Inserted Text
and MSP

ARINC REPORT 665 – Page 2

1.0 INTRODUCTION

1.3.3 Data Type

Data fields should recognized as numeric data type, unless otherwise stipulated.
Fields of textual content are identified as ASCII character strings. Selected fields
may reflect either data type, based on specified options. Check value fields can be
either numeric or character based on Check Value Type specifications.

1.4 File Format Evolution

This document defines standard file formats that enable software loaders, verifiers,
electronic routers, and automated processes to accomplish their tasks on Loadable
Software Parts (LSPs). It does so without prior knowledge of the supplier of the part,
affiliated system, or aircraft model. One of the prime advantages of standardization
is the cost saving of stable, long-lived tools for managing “standardized” parts. Long
life requires flexibility to adapt as conditions change.

The specified file formats (and other standards) provide:

 The information necessary to support all anticipated needs.

 Maximum freedom for suppliers to control their own file content and format.

 The ability to evolve to meet unanticipated needs while maintaining
maximum backward compatibility potential.

 Maximum backward compatibility with existing loadable software formats,
loaders, tools, and aircraft systems (e.g., ARINC 615, ARINC 629, airline
and supplier processes, etc.).

1.4.1 File Format Version Definition

Each file format definition includes a File Format Version Number field. This field
indicates the specific version of the file format definition to which the file conforms.

Three classes of files are defined, with sufficient independence between them to
allow independent evolution:

 Load files

 Batch files

 Media files

A specific File Format Version Number is associated with each class is assigned as
follows:

 Load file format version: 0x8004

 Batch file format version: 0x9004

 Media file format version: 0xA004

To allow Load File format version 0x8004 to remain compatible with 0x8003 based
loaders, the Load Check Values fields precede the Header File CRC and the Load
CRC. Without specific pointers, these are recognized as the final 48 bits of the file.

With this design the Load Check Values fields are effectively appended to the User
defined data, and will be so recognized by 0x8003 based loaders.

1.4.2 File Expansion Points

Expansion points are predefined positions in the file where new fields may be added
in future versions of the file format.

Creators of LSPs and/or media sets should not insert fields of their own definition at
any point in the file, except as overtly defined by formal updates to this report. Doing

ARINC REPORT 665 – Page 3

1.0 INTRODUCTION

so will cause incompatibilities with tools and processes that depend on all files
adhering to the “Loadable Software Standard.”

1.4.3 Support Tools and Loaders

Major downstream benefits may be achieved if interfacing tools and LSPs are
designed with future file evolution in mind.

Using the defined “field pointers” to avoid “walking” through an expansion point will
allow a tool to handle newer file format versions as if they were an earlier version.
For example, a tool that understands version 1 files should be able to read a
version 4 file as if it were a version 1 file.

When tools are updated to access fields added by later file versions, they should
retain the ability to detect and deal appropriately with earlier file versions. This
attribute is called backward compatibility.

1.4.4 Pointer Field Definition

The use of pointers in the ARINC 665 file listings (e.g., Header File) offers precise
accounting and placement of all data components of the list. At any given point of
reading, confirming, or transferring the part, a system can define its current point of
reference. Use of pointers enable parts defined by early versions of ARINC 665 to
be read by advanced systems, allowing backward compatibility.

ARINC Report 665-3 refined absolute pointer names to specifically indicate the field
to which they point. However, their application did not change, pointing to the first,
most significant bit of the same field.

Two types of pointers are defined as follows:

Absolute Pointer: number of 16-bit words from the beginning of the file to the field
being pointed to (not including the first 16-bit word of the pointed field). For example,
with actual definition of the Header Field format, the Pointer to Load PN Length field
should have the unsigned integer value of 20 (0x0014).

Relative Pointer: number of 16-bit words between the relative pointer and the first
16-bit word of the pointed-to field. The relative pointer is included in the count, while
the first word of the pointed-to field is not included in the count. In the example in
Figure 1.4.4, the relative pointer value is 5, consisting of one 16-bit word (relative
pointer), plus four 16-bit words (intermediate fields). The value is an unsigned
integer value.

ARINC REPORT 665 – Page 4

1.0 INTRODUCTION

Figure 1.4.4 – Absolute and Relative Pointer Examples

1.5 Target Hardware ID Definition

The Target Hardware (HW) ID definition is based on two hardware classes:

ARINC Specification 429 class: The Target HW ID is the Equipment Code defined in
ARINC Specification 429, and represented as four hexadecimal characters with
ASCII “0” padding on the left.

Manufacturer’s class: The specific Target HW ID may use 4 to 15 characters with
the first three characters reflecting the Manufacturer’s Code. The manufacturer
should administer the remaining characters.

COMMENTARY

Target HW compliant with ARINC 615 should be identified by using
the ARINC 429 equipment identification code. Target HW compliant
with ARINC 615A should be identified using the Manufacturer’s Code
(MMM) identification.

Target HW ID is used by loaders to link parts to selected load
destinations and vice-versa. The target hardware may use Target
HW ID to ensure that incoming loads are compatible.

Increased use of Commercial Off The Shelf (COTS) software and
Integrated Modular Avionics (IMA) makes it desirable to have
software parts that may be applied across multiple LRUs. In this
case, a generic Target HW ID should be chosen for the software part
to prevent software part number changes when new hardware can
accept existing software parts.

ARINC REPORT 665 – Page 5

1.0 INTRODUCTION

Suppliers are encouraged not to specify multiple Target HW IDs for
an LRU, since this increases required Load activity. Systems with
multiple internal channels should manage redundant loads to all
channels internally and not require mechanics to perform multiple
loads for each LSP.

1.6 Electronic Distribution

Section 2 of this document defines the structure of distinct LSPs and related Batch
Parts. These parts are independent of any form of transport media or delivery
method. As such, this definition serves as the basis for Electronic Distribution of
Software (EDS) parts.

Section 3 of this document defines the structure for assembling LSPs and
associated batch files onto physical transport media to create loadable software
Media Set Parts. These specifications facilitate controlled distribution of Media Set
Parts, thus serving to ensure secure delivery of LSPs and Batch Parts contained on
that media.

Under EDS, LSPs and Batch Parts may be delivered irrespective of specifications in
Section 3, where the EDS method provides equivalent security as that offered in
Section 3, ensuring parts received are exactly that which were sent.

Media Sets, recognized as Parts themselves may also be delivered by way of EDS.
In this scenario the physical media may be re-created as exact duplicates of that
sent, retaining the integrity of the LSPs contained on the media.

ARINC REPORT 665 – Page 6

2.0 LOADABLE SOFTWARE PARTS

2.0 LOADABLE SOFTWARE PARTS

2.1 Software Load PN

Each LSP should have only one Part Number (PN). Both the aircraft manufacturer
and the supplier of the software should mutually agree upon the PN.

A new unique PN should be assigned to the part any time a change is made to an
LSP.

COMMENTARY

Any bit change in the LSP (even if the data is not actually transferred
into the unit at load time) requires that a new PN be assigned to the
load. If the same software PN has been assigned to two software
parts with two different bit images, then there is a risk that the wrong
bit image might find its way into an inappropriate situation.

2.1.1 Software Load PN Format

The format for Loadable Software PNs should be MMMCC-SSSS-SSSS, where:

MMM is a unique, upper-case alphanumeric identifier that is assigned to each
software supplier. See Section 2.1.2

CC is two “check characters” generated from the other characters in the PN, as
defined in Section 2.1.3.

SSSS-SSSS is a software supplier defined unique product identifier consisting of
upper-case alphanumeric characters except for alpha characters “I,” “O,” “Q,” and
“Z.” The Load PN should have no embedded blanks.

“-” Hyphens (ASCII 0x2D) are delimiters and are included as part of the software PN
as indicated above. Delimiters do not contribute to the uniqueness of the number.

ARINC 615A loaders should not implement checks for compliance with the specific
PN format rules. ARINC 615A loaders should be able to process loads that are not
fully compliant with the PN characteristics defined herein (e.g., existence/placement
of delimiters, characters used and other format variations). This enables maximum
backward compatibility and flexibility without creating future compatibility problems.

COMMENTARY

Approximately one trillion (1,000,000,000,000) PNs are available for
each supplier identification code (MMM) to be managed by the
supplier’s configuration control organization. The intent is not to
allocate new identification codes to suppliers for new programs,
rather a supplier is expected to continue to use the allocated MMM
code until all numbers are used up. Thus, suppliers should not
allocate large blocks of PNs when only a few are needed.

The MMMCC-SSSS-SSSS format may create numbers that
technically do not meet two Air Transport Association (ATA) part
number format requirements. This report acknowledges the potential
conflicts with ATA 2000, because of more important considerations.
Comments concerning potential conflict areas follow:

 ATA 2000 specifies that delimiters should not be placed next
to letters.

 The bulk of pre-existing LSPs are not constrained by this ATA
delimiter/character restriction. However, limited LSP

ARINC REPORT 665 – Page 7

2.0 LOADABLE SOFTWARE PARTS

management systems have been found to impose this rule.
Under these circumstances, suppliers should select
SSSS-SSSS values that preclude letters from occurring in
positions 7, 10, and 12 of the PN, and which result in a
number value in the second position of the Load PN CC field.

 ATA 2000 specifies that the letter “O” should not be used.

 Some MMM codes contain a letter “O” (e.g., COL is assigned
to the Air Transport Division of Rockwell Collins, Inc.), which
have not produced errors. For MMM codes, commonly
confused characters should be recognized as Alphabetic, by
default, i.e., “O” rather than zero, “I” rather than one.

2.1.2 Manufacturer’s Codes Assignment

The Manufacturer’s Code (MMM) is an identification code assigned to each
organization that develops aircraft software. Three upper-case alphanumeric
characters comprise the code. Attachment 1 describes how an LSP provider can
apply for a Manufacturer’s Code. The list of MMM Codes is posted on the ARINC
Website with a link from the AEEC Webpage at the URL:

http://www.aviation-ia.com/aeec/projects/manufacturer_code/index.html

ARINC Industry Activities serves as the administrator of MMM codes.

COMMENTARY

The software part numbering system is intended for decades of use.
Thus, the assignment of MMM codes conserves PNs within each
MMM code block.

To avoid the proliferation of MMM codes, only one MMM code is
assigned to each organization.

In some cases, a given organization may be composed of more than
one subsidiary that has an independent configuration control
organization. In this case, it is acceptable to assign more than one
MMM code to each organization. Otherwise, multiple MMM codes
may be assigned only when an organization can show that they have
depleted the number of PNs for their designator.

Airframe manufacturers are expected to monitor the use of MMM
codes and work together to resolve any PN assignment problems
that might arise, e.g., LSP numbers with MMM codes that are not
formally assigned to the creator of the software.

The role of the MMM administrator is to:

 Maintain a database of all assigned MMM codes, which is
posted on the ARINC Industry Activities website.

 Assign MMM codes upon written request, to organizations
according to the guidelines and restrictions provided in this
document.

 Publish the list of the approved MMM codes.

ARINC REPORT 665 – Page 8

2.0 LOADABLE SOFTWARE PARTS

Written requests should be submitted to the ARINC 665
Manufacturer’s Code Administrator. Appendix J provides a formthe
methods for requesting a Manufacturer’s Code assignment.

2.1.3 Check Characters in the Software PN

The purpose of the Check Characters (CC) is to increase the integrity of the aircraft
configuration report. The FAA/JAA concern being addressed by the CCs is that an
incorrect PN reported by a system might be corrupted by a lower integrity display
system in a manner that causes it to be displayed as correct. See Appendix E for
computation methods.

Check Characters (CC) should be computed as specified in Section 4.3.1 and
Appendix E.

2.1.4 Commercial Software

The use of commercial software not specifically designed for airplane applications
may be incorporated as an integral part of airplane systems. Suppliers of systems
incorporating commercial software will do so under the identification of a Software
Load PN compliant with Section 2.1.1. The system supplier will include their own
MMM code in that PN. Patch upgrades to commercial software necessitates release
of a new PN.

2.2 Software Load Content and Format

2.2.1 Software Load Structure

A load consists of a Header File plus one or more Data Files. A load may also
include support files as needed. See Appendix A, Figure A.1 for a load structure
diagram. File names within a load should be unique. File names within ARINC 665
header files should be treated as if they were case-sensitive.

The Header File and each Data File should consist of an integral number of 16-bit
words. It is recommended (but not required) that all Support Files also consist of an
integral number of 16-bit words. As a minimum, Support Files should consist of an
integral number of 8-bit bytes.

COMMENTARY

Appendix F, Implementation for Multi-Standard Compatibility,
contains specific part format, filename, and media set requirements
when creating loads that can be loaded by ARINC 615A loaders,
ARINC 615-2 and later loaders, and Boeing 777 ARINC 629 loaders.

It is important to note the independence of an LSP from a Media Set Part
(MSP). LSPs may be separated from MSPs for electronic storage and
distribution.

LSPs should be created without including any data that ties the LSP to any
MSP structure, loadable media set parts, or directory structure external to the
LSP.

LSPs can be managed independent of any form of loadable media set parts or
delivery method. The independence of LSPs from MSP structure allows for
electronic distribution of LSPs.

LSP header, data, and support files cannot be dependent on placement within
directory structures on support tools since some transport protocols (e.g.,
some e-mail, ARINC 615A) cannot transport directories. Also, support tools
may need to restructure the organization of the LSP files for transport or

ARINC REPORT 665 – Page 9

2.0 LOADABLE SOFTWARE PARTS

storage as needed. Note that the LSP header file does not allow path name
references.

However, LSP data and support files can contain internal directory structure if
the directory structure is packaged into a single data or support file (e.g., ZIP
format). This allows the LSP data and support files to be easily handled on the
ground and loaded to target hardware (within which the directories can be
expanded).

For more information, see ARINC Project Paper 641: Logical Software Part
Packaging for Transport.

LSPs should not contain file names that only have a difference in uppercase
and lower-case letters, e.g., “file” and “File.”

2.2.2 Software Load File Naming

The File name for the Header, Data, and Support files that comprises the load
should be a maximum of 255 characters long including delimiter “.” and extension
characters.

The first three characters of the Header filename should be the Manufacturer’s
Code of the creator file, described in Sections 2.1.1 and 2.1.2. The rest of the
filename should be assigned such that it is unique for each load associated to the
Manufacturer’s Code.

Restriction of characters in the header, data and support file, and directory names is
defined to avoid non-printable characters in filenames, or filenames, which are not
cross-platform usable. Data and support filenames should only consist of printable
characters, excluding “~”, “/”, “:”, “\”, “I”, “O”, “Q”, and Blank. The filenames “.” And
“..” are not allowed.

Restriction of characters in the header, data, and support file names is
defined to avoid non-printable characters in filenames, or filenames which are
not cross-platform usable.

Filenames shall not contain the English letters “I (i), O (o), or Q (q).

Filenames shall not contain the following restricted subset of 7-bit US-ASCII
printable characters:

Space * \ / “ < > ? | ~

The filenames “.” and “..” are not allowed.

Data files and support files should have unique file names across all LSPs
that may be loaded to a particular target hardware if the target hardware is
loaded via ARINC 615A data loading protocol during one uninterrupted load
session.

File references in ARINC 665 formatted files should match the case of the
referenced files.

COMMENTARY

The properties of the underlying file system of an actual media set
may impose additional constraints for file naming.

A chosen file name may be valid for the file system of one media type
and invalid for another. An example would be the file name

Tom Williams
Sticky Note
What happened to ":"? Does ARINC 665 now allow the use of ":" in file names?

ARINC REPORT 665 – Page 10

2.0 LOADABLE SOFTWARE PARTS

"123456789.LUP". This file name is valid for an ISO file system of a
data CD, but not for a DOS 3.1 floppy file system.

File names on ARINC 665 media and references to them from within
ARINC 665 files are case-sensitive. The properties of the underlying
file system of an actual media set may not be able to handle case
sensitivity. For example, the two file names "ABC" and "abc" are
completely distinct. Two files of these names may reside within the
same directory in the case that the underlying file system supports
case sensitivity.

2.2.2.1 Header File Name Extension

The LSP Header Filename Extension should be “LUH.”

2.2.2.2 Data File Name Extension

In general, Data File Name extensions are user defined and can technically be
anything that does not violate the Section 3.2.2 list of reserved extensions. It is
highly recommended that Data File Name extensions be “LUP.”

2.2.2.3 Support File Name Extensions

Support Files extensions are user defined and can be named anything that does not
violate the list of reserved extensions included in Section 3.2.2.

2.2.3 File Content and Format

2.2.3.1 Header File Content and Format

The Header File for each LSP should contain the information defined in Table
2.2.3-1, Header File Content.

The placement of the fields, respecting byte significance and conditional use of NUL
values within the Load Header File, should be as defined in Figure C-1 of
Appendix C, Header File Format.

All values should be expressed as binary numbers except the noted ASCII character
fields.

Detailed Field descriptions are listed and explained in the order they appear in
Table 2.2.3-1.

ARINC REPORT 665 – Page 11

2.0 LOADABLE SOFTWARE PARTS

Table 2.2.3-1 – Header File Content

Name of Field Field Size (bits) Note
Header File Length 32
Load File Format Version 16
Part Flags 16
Pointer to Load PN Length 32
Pointer to Number of Target HW IDs 32
Pointer to Number of Data Files 32
Pointer to Number of Support Files 32
Pointer to User Defined Data 32
Pointer to Load Type Description Length 32
Pointer to Number of Target HW ID with
Positions

32

Pointer to Load Check Value Length 32
Expansion Point No.1 0
Load PN Length 16
Load PN 16 1
Expansion Point No. 2 0
Load Type Description Length 16 2
Load Type Description 16 1, 2
Load Type ID 16 2
Expansion Point No. 3 0
Number of Target HW IDs 16
 * Target HW ID Length 16
 * Target HW ID 16 1
Expansion Point No. 4 0
Number of Target HW ID with Positions 16 2
 % Target HW ID with Positions Length 16 2
 % Target HW ID with Positions 16 1, 2
 % Number of Target HW ID Positions 16 2
 %& Position Length 16 2
 %& Position 16 1, 2
Expansion Point No. 5 0
Number of Data Files 16
 + Data File Pointer 16
 + Data File Name Length 16
 + Data File Name 16 1
 + Data File PN Length 16
 + Data File PN 16 1
 + Data File Length 32
 + Data File CRC 16
 + Data File Length in Bytes 64
 + Data File Check Value Length 16
 + Data File Check Value Type 16 2
 + Data File Check Value 16 1, 2
 + Expansion Point No. 6 0
Expansion Point No. [] 0
Number of Support Files 16 2
 # Support File Pointer 16 2
 # Support File Name Length 16 2
 # Support File Name 16 1, 2

Tom Williams
Sticky Note
I don't think the Load Type set of fields are optional for ARINC 665-3 and 665-4. I really struggle with this set of fields being set to optional. So, I guess I disagree with the Note 2 being added to this set of fields.

ARINC REPORT 665 – Page 12

2.0 LOADABLE SOFTWARE PARTS

Name of Field Field Size (bits) Note
 # Support File PN Length 16 2
 # Support File PN 16 1, 2
 # Support File Length 32 2
 # Support File CRC 16 2
 # Support File Check Value Length 16 2
 # Support File Check Value Type 16 2
 # Support File Check Value 16 1, 2
 # Expansion Point No. 7 0
Expansion Point No. 8 0
User Defined Data Multiples of 16 1, 2
Expansion Point No. 9 0
Load Check Value Length 16
Load Check Value Type 16 2
Load Check Value 16 1, 2
Header File CRC 16
Load CRC 32

Notes:

1. One or more 16-bit words.Variable length field of 16-bit words.

2. Zero or more 16-bit words.Optional and is omitted if the
associated pointer field is zero (see field descriptions).

* Fields repeated as a group for each Target HW ID.

% Fields repeated as a group for each Target HW ID with
Positions.

& Fields repeated as a group for each Position within a Target
HW ID with Positions group.

+ Fields are repeated as a group for each Data File.

Fields are repeated as a group for each Support File. If no
support files are included in the load, then these fields are
omitted.

2.2.3.1.1 Header File Length

Header File Length is defined as the number of 16-bit words in the header file
including this field.

2.2.3.1.2 Load File Format Version

The Load File Format Version is defined by a 16-bit word as directed in
Section 1.4.1, File Format Version Definition.

2.2.3.1.3 Part Flags

The Part Flags are defined by a 16 bit word. They are used to indicate extra
information to help operators and systems distinguish and understand the purpose
of a part.

2.2.3.1.3.1 Download Flag

The Least Significant Bit is used to indicate an upload/download part. The value of 0
indicates an upload. The value of 1 indicates that the part contains instructions for
download. A dataloader may use this field to help the operator select parts that
correspond with an operation.

Tom Williams
Sticky Note
I believe the added text is supplemental to the original text and not a replacement for the original text.

Tom Williams
Sticky Note
why add note 1 to this field.

Tom Williams
Inserted Text
variable length field

Tom Williams
Sticky Note
What if pointer to Load Check Value Length is zero? Maybe this set of fields also need a note 2, like was added to Load Type. i am just playing devil's advocate. I don't want either set of fields to be optional for ARINC 665-4.

Tom Williams
Cross-Out

Tom Williams
Sticky Note
download operation versus an upload

Tom Williams
Sticky Note
Variable is not definitive enough. Leave original text and use blue text as supplemental text.

ARINC REPORT 665 – Page 13

2.0 LOADABLE SOFTWARE PARTS

COMMENTARY

In an upload operation, a dataloader uses information from the LSP
to cause a transfer of specific information from the LSP to the target.
In a download operation, a dataloader uses information from the LSP
to cause a transfer of specific information from the target to the
dataloader.

The purpose of assigning a PN to a download LSP is to identify,
control, and provide integrity for the files in the LSP which describe to
the dataloader how to perform the specific download operation. The
PN of the download LSP only pertains to the files that are provided to
the dataloader which cause the download. The download PN does
not provide configuration data for the data downloaded from the
target.

2.2.3.1.3.2 Spare Flags

The other 15 bits of the 16 bit Part Flags field are reserved for future use and should
be set to binary 0.

2.2.3.1.4 Pointer to Load PN Length

This is an absolute pointer (number of 16-bit words from start of file) to the Load PN
Length field.

2.2.3.1.5 Pointer to Number of Target

This is an absolute pointer (number of 16-bit words from start of file) to the Number
of Target HW IDs field.

2.2.3.1.6 Pointer to Number of Data Files

This is an absolute pointer (number of 16-bit words from start of file) to the Number
of Data Files field.

2.2.3.1.7 Pointer to Number of Support Files

This is an absolute pointer (number of 16-bit words from start of file) to the Number
of Support Files field.

Set the value to 0x0000 if there are no support files and omit the Number of Support
Files field as well as subordinate Support Files fields; those listed with a prefix of “#”
in the table of Header File Content (Table 2.2.3-1).

2.2.3.1.8 Pointer to User Defined Data

This is an absolute pointer (number of 16-bit words from start of file) to the first word
of the User Defined Data field. Set the value to 0x0000 if there is no user defined
data field.

2.2.3.1.9 Pointer to Load Type Description Length

This is an absolute pointer (number of 16-bit words from start of file) to the first word
of the Load Type Description Length field. Set the value to 0x0000 if there is no
Load Type Description field.

ARINC REPORT 665 – Page 14

2.0 LOADABLE SOFTWARE PARTS

2.2.3.1.10 Pointer to Number of Target HW ID with Positions

This is an absolute pointer (number of 16-bit words from start of file) to the first word
of the Number of Target HW ID with Positions field. Set the value to 0x0000 if there
is no Target HW ID with Positions field.

This field should be set to zero if the Number of Target HW ID with Positions
field is not used. In this case, the Number of Target HW ID with Positions field,
and subordinate target hardware with positions field identified with a prefix
of”%” and “%&” in Table 2.2.3-1, will be omitted.

2.2.3.1.11 Pointer to Load Check Value Length

This is an absolute pointer to the Load Check Value Length field.

2.2.3.1.12 Expansion Point No. 1

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.13 Load PN Length

This is the number of 8-bit ASCII characters in the load PN, including delimiters.
This number does not include any NULs appended to fill out the field if the number
of characters in the Load PN is odd.

2.2.3.1.14 Load PN

This field contains the string of 8-bit ASCII characters representing the Load PN
whose length is defined by the Load PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the PN is compliant with the recommendations of
Section 2.1.1, Software Load PN Format.

2.2.3.1.15 Expansion Point No. 2

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.16 Load Type Description Length

This is the number of 8-bit ASCII characters in the Load Type Description. This
number does not include any NULs appended to fill out the field if the number of
characters in the Load Type Description is odd. This field is omitted if the Pointer to
Load Type Description Length is set to 0x0000.

2.2.3.1.17 Load Type Description

This field contains the string of 8-bit ASCII characters representing the Load Type
Description, whose length is defined by the Load Type Description Length field. This
field is omitted if the Pointer to Load Type Description is set to 0x0000.

The field is allocated on an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

The Load Type Description string describes the load or the function the load
performs (e.g., “EEC Operational Software,” “FMS Navigation Data Base,” etc.).

Tom Williams
Sticky Note
This pointer should also be allowed to be set to a value of zero if the Load Type and THW_ID with Position pointers are allowed to be set to zero, since the check value length is allowed to be set to a value of zero.

ARINC REPORT 665 – Page 15

2.0 LOADABLE SOFTWARE PARTS

2.2.3.1.18 Load Type ID

The Load Type ID is a 16-bit hexadecimal numeric value set by the manufacturer or
system integrator. The value in this field should correspond with the content of the
Load Type Description field. This field is omitted if the Pointer to Load Type
Description is set to 0x0000.

Load Type ID should be unique for each LSP type which is loaded to a
particular target hardware type.

COMMENTARY

Load Type ID is used to easily identify the software part type. This
allows the target to identify which load the incoming load replaces
and where to place it in memory.

Operational Software Loads could have a value of 0x0001, FMS
Navigation Data Base Loads could have a value of 0x0020, etc. The
specific Load Type Description strings and Load Type ID values are
left up to the product manufacturer or system integrator for a
particular program. All of the loads that have different Load Type
Descriptions for a particular program would have different Load Type
ID values. All the loads that have the same Load Type Description
would have the same Load Type ID value.

Load Type Descriptions and Load Type IDs could vary from program
to program; however, loads with similar Load Descriptions, yet on
different programs, could have the same Load Type ID value. That is,
“EEC Operational Software” could have a Load Type ID value of
0x0001, and “FMC Operational Software” could also have a Load
Type ID of 0x0001, where both loads are operational software loads.
This only works as long as “EEC Operational Software” and “FMC
Operational Software” are never loaded in the same Target HW.

2.2.3.1.19 Expansion Point No. 3

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.20 Number of Target HW IDs

This is the number of Target HW IDs in the following Target HW ID list. Refer to
Section 1.5 for use of Target HW IDs.

2.2.3.1.21 Target HW ID Length

This is the number of characters in the Target HW ID. This number does not include
any NULs appended to fill out the field if the number of characters in the Target HW
ID is odd.

2.2.3.1.22 Target HW ID

This field contains the string of 8-bit ASCII characters representing a Target HW ID
whose length is defined by the Target HW ID Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

ARINC REPORT 665 – Page 16

2.0 LOADABLE SOFTWARE PARTS

2.2.3.1.23 Expansion Point No. 4

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.24 Number of Target HW ID with Positions

This is the Number of Target HW IDs with Positions in the following Target HW IDs
with Positions list. If the LSP is applicable to all positions of Target HW IDs listed in
the Target HW ID list, then this, and subsequent related fields should be omitted
and the Pointer to Number of Target HW ID with Positions is set to 0x0000.

COMMENTARY

Target HW ID with Position is not intended to replace the Target HW
ID defined above, which remains mandatory.

Target HW ID with Positions is only used to restrict the LSP upload
into a specific position of a Target HW ID (e.g., allow upload only into
equipment in the left position but not in the right position).

2.2.3.1.25 Target HW ID with Positions Length

This is the Number of 8-bit ASCII characters in the Target HW ID with Positions
field. This number does not include any NULs appended to fill out the field if the
number of characters in the Target HW ID is odd. This field is omitted if the Pointer
to Number of Target HW ID with Positions is set to 0x0000.

2.2.3.1.26 Target HW ID with Positions

This field contains the string of 8-bit ASCII characters representing the Target HW
ID with Positions whose length is defined by the Target HW ID with Positions Length
field. This field is omitted if the Pointer to Number of Target HW ID with Positions is
set to 0x0000.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string. This field
follows the same definition rules as the Target HW ID.

This field should also match one of the Target HW IDs listed in the Target HW ID
list.

2.2.3.1.27 Number of Target HW ID Positions

This is the number of Target HW ID Positions in the following Position list. If there
are no Target HW IDs with Positions, then this field should be omitted if the Pointer
to Number of Target HW ID with Positions is set to 0x0000.

2.2.3.1.28 Position Length

This is the number of characters in the target hardware Position field. This number
does not include any NULs appended to fill out the field if the number of characters
in the Position field is odd. This field is omitted if the Pointer to Number of Target
HW ID with Positions is set to 0x0000.

2.2.3.1.29 Position

This field contains the string of 8-bit ASCII characters representing a target
hardware Position, for which the LSP is intended, whose length is defined by the
Position Length field. This field is omitted if the Pointer to Number of Target HW ID
with Positions is set to 0x0000.

ARINC REPORT 665 – Page 17

2.0 LOADABLE SOFTWARE PARTS

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

COMMENTARY

The Position field identifies the instantiation of the Target HW ID in
the system. The Position field can be “L,” “R,” “1,” “02,” “3F,” “5-C,”
etc., as defined by the system integrator.

2.2.3.1.30 Expansion Point No. 5

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.31 Number of Data Files

This is the number of Data Files in the software load. The value must be greater
than zero since there must be at least one data file in each load.

It is not necessary for Data Files to be listed in contiguous, alphanumeric, or any
specific order.

2.2.3.1.32 Data File Pointer

This is the relative number of 16-bit words to the next Data File Pointer.

The value of the “Data File Pointer” for the last data file in the list should be 0x0000.

2.2.3.1.33 Data File Name Length

This is the number of characters in the Data File Name. This number does not
include any NULs appended to fill out the field if the number of characters in the
Data File Name is odd.

2.2.3.1.34 Data File Name

This field contains the string of 8-bit ASCII characters representing the Data file
Name whose length is defined by the Data File Name Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

COMMENTARY

Implementers are strongly encouraged to use unique Data File
Names within a given load PN.

2.2.3.1.35 Data File PN Length

This is the number of characters in the Data File PN. This number does not include
any NULs appended to fill out the field if the number of characters in the Data File
PN is odd.

2.2.3.1.36 Data File PN

This field contains the string of 8-bit ASCII characters representing the Data File PN
whose length is defined by the Data File PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

ARINC REPORT 665 – Page 18

2.0 LOADABLE SOFTWARE PARTS

Implementers should ensure that the Data File PN is unique within a given load
PN.It is recommended that LSP suppliers ensure that the data file part number
is unique within a given LSP.

COMMENTARY

The data file part number is assigner by the LSP supplier. The
data file part number is intended to be used to manage changes
in file content as LSPs are changed over time. Data file part
numbers are not used for any LSP configuration control outside
of the LSP supplier.

Target hardware can also use data file part numbers of an LSP
during the load process to determine whether a file presented
for load has changed from the files that are part of its currently
installed LSP. This can be used by target hardware to perform a
short load as described in ARINC 615A data loading protocol.

2.2.3.1.37 Data File Length

The data file length is the number of 16-bit words in the data file. A half-word at the
end of a data file should be counted as a complete word.

2.2.3.1.38 Data File CRC

The Data File CRC is a 16-bit CRC covering the entire Data File. The CRC should
be computed as defined in Section 4.

2.2.3.1.39 Data File Length in Bytes

This is the number of 8-bit bytes in the Data File.

COMMENTARY

This value should be used in conjunction with the Data File Length in
16-bit words.

2.2.3.1.40 Data File Check Value Length

This is the number of 8-bit bytes in the Data File Check Value, including this field
and Data File Check Value Type. The Check Value Length should be implemented
as defined in Section 5. Set value to 0x0000 if not used.

2.2.3.1.41 Data File Check Value Type

This indicates the type of Check Value stored in the Data File Check Value. The
Check Value Type should be implemented as defined in Section 5. Omit if Data File
Check Value Length is set to 0x0000.

2.2.3.1.42 Data File Check Value

This is a variable length and variable data type field containing the Data File Check
Value. The Check Value should be implemented as defined in Section 5, consistent
with the Date File Check Value type. Omit if Data File Check Value Length is set to
0x0000.

2.2.3.1.43 Expansion Point No. 6

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.44 Number of Support Files

This is the number of Support Files in the software load.

Tom Williams
Sticky Note
Previous Errata on this comment:The data file part number is assigned by the LSP supplier. DO-178B states that every separately controlled item should be assigned a unique part number. If separately controlled items are combined into a single LSP, then the part number assigned to the separately controlled items should be used for the Data File part numbers. If a single LSP is made of items that are not separately controlled and are controlled as a group, then the part number assigned to the LSP could be used as the base of the data file part number with each file identifier appended to the LSP part number which is then used as the data file part number. If a separately controlled item needs to be broken into multiple data files, it is recommended that a unique file identifier (i.e., 001, 002, etc.) is appended to the data file part number of the separately controlled item and the concatenated string be used as the unique data file part number of the data file identified by the file identifier. The data file part number is intended to be used by the LSP supplier to manage changes in file content as LSPs are changed over time. Data file part numbers are not used for any LSP configuration control outside of the LSP supplier. Target hardware can also use data file part numbers of an LSP during the load process to determine whether files presented for load have changed from the files that are part of its currently installed LSP. This can be used by target hardware to perform a short load as described in ARINC 615A.

ARINC REPORT 665 – Page 19

2.0 LOADABLE SOFTWARE PARTS

If the Pointer to the Number of Support Files field is set to 0x0000, then the Number
of Support Files field and subordinate Support File fields should be omitted from the
file.

2.2.3.1.45 Support File Pointer

The Support File Pointer is the relative number of 16-bit words to the next Support
File Pointer.

The value of the “Support File Pointer” for the last support file in the list should be
0x0000.

2.2.3.1.46 Support File Name Length

This is the number of characters in the Support File Name. This number does not
include any NULs appended to fill out the field if the number of characters in the
Support File Name is odd.

2.2.3.1.47 Support File Name

This field contains the string of 8-bit ASCII characters representing the Support File
Name whose length is defined by the Support File Name Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

COMMENTARY

Implementers are strongly encouraged to use unique Support File
Names within a given load PN.

2.2.3.1.48 Support File PN Length

This is the number of characters in the Support File PN. This number does not
include any NULs appended to fill out the field if the number of characters in the
Support File PN is odd.

If no part number is assigned to a support file, this field should be set to zero.

2.2.3.1.49 Support File PN

This field contains the string of 8-bit ASCII characters representing the Support File
PN whose length is defined by the Support File PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

If the Support file PN Length is 0x0000, then this field should be omitted from the
file. The PN should be compliant with Section 2.1.1, Software Load PN Format.It is
recommended that LSP suppliers ensure that the support file part number is
unique within a given LSP.

Implementers should ensure that the support file PN is unique within a given
load PN.

2.2.3.1.50 Support File Length

This is the number of 8-bit bytes in the Support File.

2.2.3.1.51 Support File CRC

The Support File CRC is a 16-bit CRC covering the entire Support File. The CRC
should be computed as defined in Section 4.

Tom Williams
Sticky Note
i really struggle with the idea of any configuration management system allowing something which is not controlled by a part number being included in an LSP which is controlled by a part number.

ARINC REPORT 665 – Page 20

2.0 LOADABLE SOFTWARE PARTS

2.2.3.1.52 Support File Check Value Length

This is the number of 8-bit bytes in the Support File Check Value including this field
and Support File Check Value Type. The Check Value Length should be
implemented as defined in Section 5. Set value to 0x0000 if not used.

2.2.3.1.53 Support File Check Value Type

This indicates the type of Check stored in the Support File Check Value. The Check
Value Type should be implemented as defined in Section 5. Omit if support File
Check Value Length is set to 0x0000.

2.2.3.1.54 Support File Check Value

This is a variable length and variable data type field containing the Support File
Check Value. The Check Value should be implemented as defined in Section 5,
consistent with the Support File Check Value type. Omit if Support File Check Value
Length is set to 0x0000.

2.2.3.1.55 Expansion Point No. 7

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.56 Expansion Point No. 8

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.57 User Defined Data

This is the user defined area containing data defined at the discretion of the LSP
supplier. This field may be omitted.

2.2.3.1.58 Expansion Point No. 9

This is a point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.2.3.1.59 Load Check Value Length

This is the number of 8-bit bytes in the Load Check Value including this field and
Load Check Value Type. The Check Value Length should be implemented as
defined in Section 5. Set value to 0x0000 if not used.

2.2.3.1.60 Load Check Value Type

This indicates the type of Check Value stored in the Load Check Value field. The
Check Value Type should be implemented as defined in Section 5. Omit if Header
File Check Value Length is set to 0x0000.

2.2.3.1.61 Load Check Value

This is a variable length and variable data type field containing the Load Check
Value. The Load Check Value should be implemented as defined in Section 5,
consistent with the Support File Load Check Value type. Omit if Header File Check
Value Length is set to 0x0000The Load Check Value should be omitted if Load
Check Value Length is set to zero.

The Load Check Value covers the entire Software Load, including all Data Files,
Support Files and Header File contents excluding the Load Check length Load
Check Value type, the Load Check Value fields, the Header File CRC and the Load
CRC.

Tom Williams
Sticky Note
I think if the Load Type information is optional with its 32-bit pointer being set to a zero, the Load Check Value 32-bit pointer should also be allowed to be set to zero to indicate no Load Check Value fields.
UNLESS, the Load Check Value Length Pointer has become the pointer to the bottom of the file to obtain the 16-bit Header file CRC and the 32-bit Load CRC.
OTHERWISE, the Load Check Value Length Pointer should be allowed to be set to zero, which indicates the Load Check Value set of fields are not included in the file.

ARINC REPORT 665 – Page 21

2.0 LOADABLE SOFTWARE PARTS

2.2.3.1.62 Header File CRC

The Header File CRC is a 16-bit CRC covering fields in the Header file, excluding
the Header File CRC and the Load CRC field.

The Header File CRC should be computed as defined in Section 4.

2.2.3.1.63 Load CRC

The Load CRC is a 32-bit CRC covering the entire Software Load, including all Data
Files, Support Files and Header File contents excluding the “Load CRC” itself.

The Load CRC should be computed and placed in the header file after the Header
File CRC is calculated and inserted into the Header File.

The Load CRC should be computed as defined in Section 4, and calculated in the
following order:

1. Header file contents excluding the Load CRC field

2. Data files in the sequence they are listed in the header file

3. Support files in the sequence they are listed in the header file

2.2.3.2 Data File Content and Format

The content of a data file is entirely up to the supplier of the software load. The
format of the data file content is also up to the supplier of the software load, with the
single exception that each data file should contain an integral number of bytes. The
format of the data file is chosen by the LSP supplier.16-bit words.

2.2.3.3 Support File Content and Format

The content of any Support File is entirely up to the creator of the software load. The
format of the support file content is also up to the creator of the software load, with
the single exception that each support file should contain an integral number of 8-bit
words.

COMMENTARY

Typically, the CONFIG.LDR file, defined in ARINC Report 615-3,
should be used as an ARINC 615A support file to obtain media
compatibility.

2.2.4 Data and Support File Options

Within the User Defined Data field of the Header File, additional information may be
included to manage the data transfer operation.

2.2.4.1 File Compression

Data or Support Files may optionally be compressed in order to save media space,
and to save transmission time when being loaded. The Header File should not be
compressed since loaders and other tools require access to this information.

If data compression is used, the implementer should consider embedding a CRC of
the uncompressed File in the File before compressing it.

COMMENTARY

Implementers should consider embedding a CRC of the software
load with uncompressed data files in the User Defined Data field of
the Header File.

Tom Williams
Sticky Note
and/or storage of the data in NVM and/or validation of the data stored in NVM.

ARINC REPORT 665 – Page 22

2.0 LOADABLE SOFTWARE PARTS

The purpose of these CRCs is to enable the target HW to determine
the validity of the software load (and Files) after decompression.

The target HW would convert the file to its original, expanded form
before storing in program memory and verifying software load/file
validity, etc.

All uses of Load, Data, or Support File CRC, and Check Value should be computed
using the final form of the Data or Support File (after compression).

2.2.4.2 File Encryption

Data or Support Files may optionally be encrypted. The Header File should not be
encrypted since loaders and other tools require access to this information.

If data encryption is used, the implementer should consider embedding a CRC of
the unencrypted File in the File before encrypting it.

COMMENTARY

The purpose of these CRCs is to enable the target HW to determine
the validity of the software load (and Files) after de-encryption.

Implementers should consider embedding a CRC of the software
load with non-encrypted files in the User Defined Data field of the
Header file.

The target would convert the file to its original, non-encrypted form
before storing in program memory and verifying load/file validity.

All use of Load, Data or Support File CRC, and Check Values in the HEADER and
FILES.LUM files should be computed using the final form of the Data and and/or
Support File (after encryption).

2.3 Optional Files

This section defines the optional file formats used by the ARINC 615A data loading
system.

2.3.1 Batch File

There is a desire by the airlines to be able to define a “batch” type file that enables
the maintenance person to select a file that defines for the Data Loader a series of
loads that should be loaded into one or more Target HW. This Batch File should
enable the maintenance person to not have to select all the loads that are desired to
be loaded into each of those Target HW positions.

The Batch File is based on the Load-List block notion, which is that one Load-List
block defines all the loads that belong to one Target HW ID position. More than one
Load-List block can be included in the Batch File.

The Batch File should be identified as: <Batch File>.LUB.

Batch File is identified in the FILES.LUM file.

The placement of Batch File Parts (BFP) fields, respecting byte significance
and conditional use of NUL values within the BFP, should be as defined in
Figure C-6 of Appendix C, Batch File Part Format.

Header file names referenced within BFP files should match the case of the
actual file names.

ARINC REPORT 665 – Page 23

2.0 LOADABLE SOFTWARE PARTS

The first three characters of the BFP name should be the Manufacturer’s Code
of the creator file as described in Sections 2.1.1 and 2.1.2. The remainder of
the BFP name should be assigned as such that is unique for each BFP
defined by the Manufacturer’s Code. Refer to Section 2.2.2 for allowable ASCII
characters in file names.

Header file names referenced within a BFP should be the complete name of
the header files, including extensions and without any path reference.

Batch files are distributed to onboard and off-board ARINC 615A software
data loaders and are used by the loaders only to automate the setup of
multiple LSP loads. BFPs are not transferred to target hardware.

COMMENTARY

Since the Batch File is meant to replace the selections of destinations
and source that a maintenance person would have to make on a
Data Load, the position should be included with the Target HW ID
(THW_ID_POS as defined in ARINC 615A).

The Batch File should contain the information defined in Table 2.3.1-1.

Table 2.3.1-1 – Batch File Content

Note:

1. One or more 16-bit wordsVariable filed length of 16-bit words.

Name of Field Field Size (bits) Note
Batch File Length 32
Batch File Format Version 16
Spare 16
Pointer to Batch File PN Length 32
Pointer to Number of Target HW ID
Load-list Blocks

32

Expansion Point 1 0
Batch File PN Length 16
Batch File PN 16 1
Comment Length 16
Comment 16 1, 2
Expansion Point 2 0
Number of Target HW ID Load-List
Blocks

16

 + Pointer to next Target HW ID Load-
List Block

16

 + Target HW ID POS Length 16
 + Target HW ID POS 16 1
 + Number of Loads for this Target
HW ID POS

16

 + Header File Name Length 16
 + Header File Name 16 1
 + Load PN Length 16
 + Load PN 16 1
Expansion Point 3 0
Batch File CRC 16

Tom Williams
Sticky Note
BFP part numbers should be unique within the set of all parts, both LSP and BFP, defined by the Manufacturer's Code.

Tom Williams
Sticky Note
Please make blue text supplemental text and not replacement text. "Variable" is not definitive enough.

ARINC REPORT 665 – Page 24

2.0 LOADABLE SOFTWARE PARTS

2. Optional field, omitted if the associated length field is set to zero
(see field descriptions).

+ Field is repeated for each Target HW ID Load-List Block.

+ # Field is repeated for each load of one Target HW ID.

Detailed field descriptions are listed in the following sections in the order they
appear in Table 2.3.1-1.

2.3.1.1 Batch File Length

The Batch File Length is defined as the number of 16-bit words in the batch file.

2.3.1.2 Batch File Format Version

Sixteen bits define the Batch File Format Version. The Batch File Format Version is
defined in Section 1.4.1, File Format Version Definition.

2.3.1.3 Spare

The spare field is used to align the pointers that follow, which are defined on 4-byte
boundaries.

2.3.1.4 Pointer to Batch File PN Length

This is the absolute pointer (number of 16-bit words from start of file) to the Batch
File PN length field.

2.3.1.5 Pointer to Number of Target HW ID Load List Blocks

This is the absolute pointer (number of 16-bit words from start of file) to the Number
of Target HW ID Load List Blocks field.

2.3.1.6 Expansion Point 1

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

2.3.1.7 Batch File Length

The number of characters in the Batch File PN does not include any NULs
appended to fill out the field if the number of characters in the Batch File PN is odd.

2.3.1.8 Batch File PN

This field contains the string of 8-bit ASCII characters representing the Batch File
PN field whose length is defined by the Batch File PN Length field. The field is
allocated an even number of bytes. If the number of characters to be defined in the
field is odd, then append a NUL to the character string. Implementers should ensure
that the PN is compliant with Section 2.1.1, Software Load PN Format.

Batch file part numbers should be unique from any LSP part numbers.

2.3.1.9 Comment Length

The number of characters in the comment field should not include any NULs
appended to fill out the field if the number of characters in the Comment field is odd.
If no Comment is associated to the Batch, this field should be set to 0x0000.

2.3.1.10 Comment

This field contains the string of 8-bit ASCII characters representing the batch
Comment whose length is defined by the Comment Length field. The field is
allocated an even number of bytes. If the number of characters to be defined in the

Tom Williams
Sticky Note
Prepend with original text of "Zero or more 16-bit words."

Tom Williams
Inserted Text
variable length

Tom Williams
Inserted Text
and BFP part numbers.

Tom Williams
Comment on Text
Why is this bold italic text?

ARINC REPORT 665 – Page 25

2.0 LOADABLE SOFTWARE PARTS

field is odd, then append a NUL to the character string. If the Comment Length Field
is set to 0x0000, the Comment Field should be omitted.

COMMENTARY

This field may be used to include the batch definition design
information or modification history of the Batch File.

2.3.1.11 Number of Target HW ID Load-List Blocks

Number of Target HW ID Load-Lists blocks included in the Batch File.

2.3.1.12 Pointer to Next Target HW ID Load-List Block

The pointer to the first word in the group of data for the next Load-List Block. This is
repeated for each Target HW ID Load-List block. Set to 0 in the last Load-List block.

2.3.1.13 Target HW ID POS Length

Target HW ID POS Length does not include the any NULs appended to fill out the
field if the number of characters in the Target HW ID POS is odd.

2.3.1.14 Target HW ID POS

This field contains the string of 8-bit ASCII characters representing the Target HW
ID POS field whose length is defined by the Target HW ID POS Length field. The
field is allocated an even number of bytes. If the number of characters to be defined
in the field is odd, then append a NUL to the character string. Implementers should
ensure that the Target HW ID POS is consistent with the Target HW IDs listed in the
Header Files of the loads listed under this Target HW ID POS.

The Target HW ID POS value should match the THW_ID_POS value of the
target hardware to be loaded by this BFP. THW_ID_POS is defined in
Section 5.3.4 of ARINC 615A-3, and Section 6.4 of ARINC 615A-2. The
definition is intended for software data loaders to identify the target of an LSP
load.

It is recommended that the Target HW ID POS values be consistent with the
Target HW ID values in the header files of the ARINC 665 LSPs listed under
this Target HW ID POS.

2.3.1.15 Number of Loads for the Target HW ID POS

Number of Loads for the Target HW ID POS defines the number of loads in the
Load-List Block for the Target HW ID POS.

2.3.1.16 Header File Name Length

Number of characters in the Header File Name should not include any NULs
appended to fill out the field if the number of characters in the Header File Name is
odd.

2.3.1.17 Header File Name

The Header File Name defines the actual Header File Name including delimiters.

This field contains the string of 8-bit ASCII characters representing the Header File
Name whose length is defined by the Header File Name Length field. The field is
allocated an even number of bytes. If the number of characters to be defined in the
field is odd, then append a NUL to the character string.

Tom Williams
Sticky Note
These two paragraphs say essentially the same thing, I think.

ARINC REPORT 665 – Page 26

2.0 LOADABLE SOFTWARE PARTS

The header file name shall match the header file name of the LSP identified by
the Load PN field specified in Section 2.3.1.19.

Implementers should ensure that the file name is compliant with the
recommendations of Section 2.2.2. The “File Name” is the name of the file, without
any information relative to its path. A file name should never begin with a backslash
nor contain any backslash. File names, should include all extensions and delimiters.

2.3.1.18 Load PN Length

Load PN Length is defined by the number of characters in the Load PN. This
number does not include any NULs appended to fill out the field if the number of
characters in the Load PN is odd.

2.3.1.19 Load PN

The Load PN is defined by the actual Load PN including delimiters.

This field contains the string of 8-bit ASCII characters representing the Load PN
whose length is defined by the Load PN Length field. The field is allocated an even
number of bytes. If the number of characters to be defined in the field is odd, then
append a NUL to the character string. Implementers should ensure that the Load
PN is compliant with the recommendations of Section 2.1.1.

2.3.1.20 Batch File CRC

The Batch File CRC is defined as the 16-bit CRC covering only the Batch File with
the Batch File CRC field excluded. The Batch File CRC should be computed as
defined in Section 4.

ARINC REPORT 665 – Page 27

3.0 LOADABLE MEDIA SET PARTS

3.0 LOADABLE MEDIA SET PARTS

3.1 Transport Media Part Number Assignment

Each transport media set should have only one Part Number (PN) which is mutually
agreed to by both the aircraft manufacturer and the creator of the software.

Each member of a transport media set is uniquely identifiable by the Media Set PN
and the member sequence number.

The Media Set PN should be no longer than 15 characters (including delimiters).
The media set PN uniquely identifies a particular configuration of the physical
media, label and the software content of the media set.

It is recommended that the Media Set PN comply with the ATA 2000 part number
rules. It is recommended that the alphabetic characters “I,” “Q,” and “Z” not be used
due to potential reader confusion with other characters. Note: ATA 2000 does not
allow the use of the letter “O” in PNs.

The Media Set PN should have no embedded blanks.

The last character of the Media Set PN should not be a hyphen (“-”).

3.2 Transport Media Set Format, Content, and Organization

This section defines the format, content and organization of all types of transport
media.

A media set consists of from one to two hundred fifty five media items (members of
the set).

Each media set should be comprised of members of the same type (i.e., all 3.5”
disks, all PC Cards, etc.).

Media labeling should be as specified in Section 3.3.

COMMENTARY

Appendix F contains specific part format, filename, and media set
requirements when creating loads that can be loaded by ARINC
615A loaders, ARINC 615-2 loaders, ARINC 615-3 loaders, and
Boeing 777 ARINC 629 loaders.

3.2.1 Transport Media Content and Structure

Each media set member contains a list of the loads on the media set (LOADS.LUM
file), a list of all the files on the media set (FILES.LUM file), and a list of all the Batch
files on the media set (BATCHES.LUM file). See Appendix B, Figure B-1 for a
standard Media Set Structure diagram.

The files that comprise the loads (header, data, and support) need not all be
contained on the same media set member. However, a given file should be
completely contained on a single media member (i.e., files should not be broken
across multiple media members).

The List-of-Loads file named LOADS.LUM should be in the root directory of each
member of the media set. See Section 3.2.3.1 for file content and organization.

The List-of-Files file named FILES.LUM should be in the root directory of each
member of the media set. See Section 3.2.3.2 for file content and organization.

ARINC REPORT 665 – Page 28

3.0 LOADABLE MEDIA SET PARTS

The List-of-Batches file named BATCHES.LUM should be in the root directory of
each member of the media set. See Section 3.2.3.3 for file content and organization.

All files should be contained in the first four directory levels of the media member.

COMMENTARY

The purpose of this restriction is to enable merging of independent
media directory structures into a single structure without exceeding
the maximum allowable. For example, CD-ROMs are limited to eight
levels of directory structure. It has been proposed that all the stable
software for a given aircraft (or customer fleet) be combined (by the
OEM) onto a single CD-ROM for delivery to the airline. This could not
be done if a single supplier were to use eight levels.

All the files on the media set should be listed in the FILES.LUM, except for the
FILES.LUM itself (LOADS.LUM should be listed in the FILES.LUM; if present on the
media set, BATCHES.LUM should be listed in the FILES.LUM file). The media set
may contain files which are not components of any load, which should be listed in
the FILES.LUM file.

3.2.2 File Name Extensions

The following file name extensions are reserved for specific file usage and should
not be assigned to files other than as defined in Table 3.2.2-1.

Table 3.2.2-1 – File Name Extensions

Ext. Comment
.CRC Used for original Boeing standard NON_LOAD.CRC file.
.DIR Used for original Boeing standard media directory file.
.HDR Used for original Boeing standard load header file.
.LDR Used for an ARINC 615 CONFIG.LDR file.
.LCI Load Configuration Initialization: Defined by ARINC Report 615A.
.LCL Load Configuration List: Defined by ARINC Report 615A.
.LCS Load Configuration Status: Defined by ARINC Report 615A.
.LNA Load Download Answer
.LND Load Download Disk defined: Defined by ARINC Report 615A.
.LNL Load Download List: Defined by ARINC Report 615A.
.LNO Load Download Operator defined: Defined by ARINC Report 615A.
.LNR Load Download Request: Defined by ARINC Report 615A.
.LNS Load Download Status: Defined by ARINC Report 615A.
.LUB Load Upload Batch: Defined by ARINC Report 665
.LUH Load Upload Header: Defined by ARINC Report 665.
.LUI Load Upload Initialization: Defined by ARINC Report 615A.
.LUM Load Upload Media: Defined by ARINC Report 665.
.LUP Load Upload Part (Data File): Defined by ARINC Report 665.
.LUR Load Upload Request: Defined by ARINC Report 615A.
.LUS Load Upload Status: Defined by ARINC Report 615A.

3.2.3 File Content and Organization

3.2.3.1 List of Loads File Content and Organization

The purpose of the LOADS.LUM file is to provide an efficient access to basic
information about each load contained on the media set.

ARINC REPORT 665 – Page 29

3.0 LOADABLE MEDIA SET PARTS

The LOADS.LUM file should contain the information defined in Table 3.2.3-1. The
placement of the fields within the LOADS.LUM file should be as defined in
Appendix C, Figure C-4, LOADS.LUM File Format.

The LOADS.LUM file should list every load on the media set.

Any unused field (e.g., spare field) should be set to a bit image of all zeros.

The LOADS.LUM file on each member of a media set should be identical except for
the media sequence number and the LOADS.LUM file CRC fields.

Detailed field descriptions are defined in the following sections in the order they
appear in Table 3.2.3.1.

Table 3.2.3.1 - LOADS.LUM File Content

Name of Field Field Size (bits) Note
LOADS.LUM File Length 32
Media File Format Version 16
Spare 16
Pointer to Media Set PN Length 32
Pointer to Number of Loads 32
Pointer to User Defined Data 32
Expansion Point No. 1 0
Media Set PN Length 16
Media Set PN 16 1
Media Sequence Number (X) 8
Number Of Media Set Members (Y) 8
Number of Loads 16
 + Load Pointer 16
 + Load PN Length 16
 + Load PN 16 1
 + Header File Name Length 16
 + Header File Name 16
 + Member Sequence Number 16
 + Number of Target HW IDs 16
 +* Target HW ID Length 16
 +* Target HW ID 16 1
 + Expansion Point No. 2 0
Expansion Point No. 3 0
User Defined Data Multiples of 16 2
LOADS.LUM File CRC 16

Notes:

1. One or more 16-bit words.

2. Zero or more 16-bit words.

+ Fields are repeated as a group for each load in the media set.

* Fields are repeated as a group for each Target HW ID.

All values should be expressed as binary numbers except the noted ASCII character
fields.

ARINC REPORT 665 – Page 30

3.0 LOADABLE MEDIA SET PARTS

3.2.3.1.1 LOADS.LUM File Length

The LOADS.LUM File Length is the number of 16-bit words in the LOADS.LUM file,
including this field.

3.2.3.1.2 Media File Format Version

The Media File Format Version is defined by 16-bits. The Media File Format Version
is defined in Section 1.4.1, File Format Version Definition.

3.2.3.1.3 Spare

The spare field is used to align the pointers that follow, which are defined on 4-byte
boundaries.

3.2.3.1.4 Pointer to Media Set PN Length

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the “Media Set PN Length” field.

3.2.3.1.5 Pointer to Number of Loads

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the “Number of Loads” field.

3.2.3.1.6 Pointer to User Defined Data

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the “User Defined Data” field. Set to if there is no user defined data field.

3.2.3.1.7 Expansion Point No. 1

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

3.2.3.1.8 Media Set PN Length

This is the number of characters in the Media Set PN.

This number does not include any NULs appended fill out the field if the number of
characters in the Media Set PN is odd.

3.2.3.1.9 Media Set PN

The Media Set PN is defined as the actual Media Set PN including delimiters.

This field contains the string of 8-bit ASCII characters representing the Media Set
PN whose length is defined by the Media Set PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the Media Set PN is compliant with the
recommendations of Section 3.1.

3.2.3.1.10 Media Sequence Number (X)

This is the number of this specific member in the media set. Members are numbered
1 through 255. Zero (0x0000) is not used to number members.

3.2.3.1.11 Number of Media Set Numbers (Y)

This is the number of media members in the media set. For a set consisting of a
single member, X = 1 and Y = 1.

ARINC REPORT 665 – Page 31

3.0 LOADABLE MEDIA SET PARTS

3.2.3.1.12 Number of Loads

This is the number of software loads included in the load list. All loads in the media
set should be included in the load list.

3.2.3.1.13 Load Pointer

The Load Pointer is the relative number of 16-bit words to the next Load Pointer.

The value of the “Load Pointer” for the last load in the list should be 0x0000.

3.2.3.1.14 Load PN Length

This is the number of characters in the Load PN.

This number does not include any NULs appended to fill out the field if the number
of characters in the Load PN is odd.

3.2.3.1.15 Load PN

The Load PN is defined as the actual Load PN including delimiters.

This field contains the string of 8-bit ASCII characters representing the Load PN
string whose length is defined by the Load PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL (ASCII 0x00) to the character string.

Although the file format allows definition of up to 65535 characters, implementers
should not define this character string to be longer than specified elsewhere in this
standard (see Section 2.1.1).

3.2.3.1.16 Header File Name Length

This is the number of characters in the Header File Name field.

This number does not include any NULs appended to fill out the field, if the number
of characters in the Header File Name is odd.

3.2.3.1.17 Header File Name

This field contains the string of 8-bit ASCII characters representing the Header File
Name whose length is defined by the Header File Name Length field. The Header
File Name field should be allocated an even number of bytes. If the number of
characters to be defined in the field is odd, then append a NUL to the character
string.

The “Header File Name” is the complete name of the header file, without any
information relative to its path. A file name should neither begin with a backslash nor
contain any backslash. File names should include all extensions and delimiters.
Implementers should ensure that the Header File Name is compliant with the
recommendations of Section 2.2.2.

3.2.3.1.18 Member Sequence Number

This is the sequence number of the media member where the header file for this
load is located.

3.2.3.1.19 Number of Target HW IDs

This is the number of Target HW IDs in the list.

ARINC REPORT 665 – Page 32

3.0 LOADABLE MEDIA SET PARTS

3.2.3.1.20 Target HW ID Length

This is the number of characters in the Target HW ID.

This number does not include any NULs appended to fill out the field if the number
of characters in the Target HW ID is odd.

3.2.3.1.21 Target HW ID

This field contains the string of 8-bit ASCII characters representing the Target HW
ID whose length is defined by the Target HW ID Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL (ASCII 0x00) to the character string.

The list of Target HW IDs, for each software load (the fields marked with an
asterisk) should be the same list that appears in the header file of the specific load
(Ref: Target HW ID List in “Header File Content and Format,” Section 2.2.3.1).

3.2.3.1.22 Expansion Point No. 2

The size of Expansion Point No. 2 should not cause the Load Pointer to overflow.

3.2.3.1.23 Expansion Point No. 3

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

3.2.3.1.24 User Defined Data

This is the user defined area. The Pointer to User Defined Data field is set to
0x0000, this field should be omitted.

3.2.3.1.25 LOADS.LUM File CRC

The LOADS.LUM File CRC is a 16-bit CRC covering the entire LOADS.LUM file,
excluding the LOADS.LUM File CRC field. The CRC should be calculated as
defined in Section 4.

3.2.3.2 List of Files File Content and Format

The purpose of the FILES.LUM file is to determine if a specific file is included on the
media set and on which member of the media set it is located. The file is be used to
determine path of files in the media member. Path file information is supported only
by this file, allowing load definition to be independent of media type.

The FILES.LUM file should contain the information defined in Table 3.2.3.2. The
placement of the fields within the FILES.LUM file should be as defined in
Appendix C, Figure C-5, FILES.LUM File Format.

Any unused field (e.g., spare field) should be set to a bit image of all zeros.

The FILES.LUM files on all members of a media set will be identical except for the
media sequence number and the FILES.LUM file CRC fields.

Table 3.2.3.2 - FILES.LUM File Content

Name of Field Field Size
(bits)

Note

FILES.LUM File Length 32
Media File Format Version 16
Spare 16
Pointer to Media Set PN Length 32
Pointer to File Number of Media Set Files 32

ARINC REPORT 665 – Page 33

3.0 LOADABLE MEDIA SET PARTS

Name of Field Field Size
(bits)

Note

Pointer To User Defined Data 32
Pointer to FILES.LUM File Check Value
Length

32

Expansion Point No. 1 0
Media Set PN Length 16
Media Set PN 16 1
Media Sequence Number (X) 8
No. Of Media Set Members (Y) 8
Number of Media Set Files 16
 # File Pointer 16
 # File Name Length 16
 # File Name 16 1
 # File Pathname Length 16
 # File Pathname 16 1
 # File Member Sequence No. 16
 # File CRC 16
 # File Check Value Length 16
 # File Check Value Type 16
 # File Check Value 16 1
 # Expansion Point No. 2 0
Expansion Point No. 3 0
User Defined Data Multiples of 16 2
FILES.LUM File Check Value Length 16
FILES.LUM File Check Value Type 16
FILES.LUM File Check Value 16 1
FILES.LUM File CRC 16

Notes:

1. One or more 16-bit words.

2. Zero or more 16-bit words.

Fields are repeated as a group for each file in the media set
(excluding the FILES.LUM File).

All values should be expressed as binary numbers except the noted ASCII character
fields.

3.2.3.2.1 FILES.LUM File Length

The FILES.LUM File Length is the number of 16-bit words in the FILES.LUM file
including this field.

3.2.3.2.2 Media File Format Version

The Media File Format Version is defined by 16-bits. The Media File Format Version
is defined in Section 1.4.1, File Format Version Definition.

3.2.3.2.3 Spare

The spare field is used to align the pointers that follow, which are defined on 4-byte
boundaries.

ARINC REPORT 665 – Page 34

3.0 LOADABLE MEDIA SET PARTS

3.2.3.2.4 Pointer to Media Set PN Length

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the Media Set PN Length field.

3.2.3.2.5 Pointer to Number of Media Set Files

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the Number of Media Set Files field.

3.2.3.2.6 Pointer to User Defined Data

This is the absolute pointer (number of 16-bit words from start of file) to the first
word of the User Defined Data field. Set to 0x0000 if there is no user defined data
field.

3.2.3.2.7 Pointer to FILES.LUM Check Value Length

This is the absolute pointer (Number of 16-bit words from the start of file) to the first
word of the FILES.LUM Check Value Length.

3.2.3.2.8 Expansion Point No. 1

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

3.2.3.2.9 Media Set PN Length

This is the number of characters in the Media Set PN.

This number does not include any NULs appended to fill out the field if the number
of characters in the Media Set PN is odd.

3.2.3.2.10 Media Set PN

The Media Set PN is the actual Media Set PN including delimiters.

The Media Set PN field is an 8-bit ASCII character string whose length is defined by
the Media Set PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the Media Set PN is compliant with the
recommendations of Section 3.1.

3.2.3.2.11 Media Sequence Number (X)

This is the number of this member in the media set. Members are numbered 1
through 255. Zero (0) is not used to number members.

3.2.3.2.12 Number of Media Set Members (Y)

This is the number of media members in the media set. For a set consisting of a
single member, X = 1 and Y = 1.

3.2.3.2.13 Number of Media Set Files

This is the number of files listed in the file list. All files on the media set should be
included in the file list except the FILES.LUM.

3.2.3.2.14 File Pointer

The File Pointer is the relative number of 16-bit words to the next File Pointer.

The value of the File Pointer for the last File in the list should be 0x0000.

ARINC REPORT 665 – Page 35

3.0 LOADABLE MEDIA SET PARTS

3.2.3.2.15 File Name Length

The File Name Length is the number of characters in the “File Name.”

This number does not include any NULs appended to fill out the field if the number
of characters in the File Name is odd.

3.2.3.2.16 File Name

The File Name field is an 8-bit ASCII character string whose length is defined by the
File Name Length field.

The File Name field should be allocated an even number of bytes. If the number of
characters to be defined in the field is odd, then append an NUL to the character
string.

Implementers should ensure that the File Name is compliant with the
recommendations of Section 2.2.2.

The “File Name” is the name of the file, without any information relative to its path. A
File Name should never begin with a backslash nor contain any backslash. File
Names.

3.2.3.2.17 File Pathname Length

The File Pathname Length is defined as the number of characters in the File
Pathname field. This number does not include any NULs appended to fill out the
field if the number of characters in the File Name field is odd.

3.2.3.2.18 File Pathname

The File Pathname field is an 8-bit ASCII character string whose length is defined by
the File Pathname Length field.

The field should be allocated an even number of bytes. If the number of characters
to be defined in the field is odd, then append a NUL to the character string.

The File Pathname is the complete path to the file, without the name of the file. A
Pathname should always begin at the root directory of the media member (indicated
by a leading backslash). A Pathname should always finish with a backslash. When a
Pathname includes one or more directory names, the Pathname is constructed with
the most significant (i.e., parent) directory name first, followed by lower level (i.e.,
child) directory name(s). The backslash character (“\”) is used as the delimiter
between concatenated directories. Files located on the top level of the media have
the File Pathname field equal to “\”.

3.2.3.2.19 File Member Sequence No.

This is the number of the member in the media set that contains the subject file.

3.2.3.2.20 File CRC

The File CRC is a 16-bit CRC covering the entire file. The CRC should be calculated
as defined in Section 4.3.2.

COMMENTARY

If the subject file is a header file, then the File CRC will be different
than the Header File CRC embedded in the subject file. This is
because the File CRC field of the FILES.LUM file includes the
Header File CRC field of the subject file, whereas the Header File

ARINC REPORT 665 – Page 36

3.0 LOADABLE MEDIA SET PARTS

CRC field of the header file excludes itself and the Load CRC field of
the header file.

The calculated File CRC of the entire LOADS.LUM file will be 0x0000
because it includes the LOADS.LUM file CRC field. The calculated
File CRC of the entire BATCHES.LUM file will be 0x0000 because it
includes the BATCHES.LUM file CRC field. This demonstrates
validity of the files and corresponding CRCs.

3.2.3.2.21 File Check Value Length

This is the number of 8-bit bytes in the File Check Value including this field and File
Check Value Type. The Check Value Length should be implemented as defined in
Section 5. Set value to 0x0000 when not used.

3.2.3.2.22 File Check Value Type

This indicates the type of Check Value stored in the File Check Value. The Check
Value Type should be implemented as defined in Section 5. Set value to zero when
not used. Omit if File Check Value Length is set to 0x0000.

3.2.3.2.23 File Check Value

This is a variable length and variable data type field containing the File Check
Value. The Check Value should be implemented as defined in Section 5, consistent
with the Files.Lum File Check Value type. Omit if File Check Value Length is set to
0x0000.

3.2.3.2.24 Expansion Point No. 2

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

3.2.3.2.25 Expansion Point No. 3

This is the point where file format growth may occur (new fields may be defined) in
subsequent versions of the file format.

3.2.3.2.26 User Defined Data

User Defined Data is recorded in 16-bit blocks. This is an option that may be
omitted. If omitted, the pointer to User Defined Data field should be set to a value of
0x0000.

3.2.3.2.27 FILES.LUM File Check Value Length

This is the number of 8-bit bytes in the Support File Check Value including this field
and FILES.LUM File Check Value Type. The Check Value Length should be
implemented as defined in Section 5. Value may be set to 0x0000 if not used.

3.2.3.2.28 FILES.LUM File Check Value Type

This indicates the type of Check Value stored in the FILES.LUM File Check Value.
The Check Value Type should be implemented as defined in Section 5. Omit if
FILES.LUM File Check Value Length is set to 0x0000.

3.2.3.2.29 FILES.LUM File Check Value

This is a variable length and variable data type field containing FILES.LUM File
Check Value. The Check Value should be implemented as defined in Section 5,
consistent with the FILES.LUM File Check Value type. Omit if FILES.LUM File
Check Value Length is set to 0x0000.

ARINC REPORT 665 – Page 37

3.0 LOADABLE MEDIA SET PARTS

3.2.3.2.30 FILES.LUM File CRC

The FILES.LUM File CRC is a 16-bit CRC covering the entire file, excluding the
FILES.LUM File CRC field. The CRC should be calculated as defined in Section 4.

3.2.3.3 List-of-Batch File Content and Organization

The purpose of the BATCHES.LUM file is to provide an efficient access to basic
information about each Optional Batch File contained on the media set.

If at least one Batch File is contained on the media set, the BATCHES.LUM should
be present on each member of the media set. The BATCHES.LUM file should list
every Batch File on the media set.

The BATCHES.LUM file should contain the information defined in Table 3.2.3.3-1.

Any unused field (e.g., spare field) should be set to zero.

The BATCHES.LUM file on each member of a media set should be identical except
for the media sequence number and the BATCHES.LUM file CRC fields.

Table 3.2.3.3-1 - BATCHES.LUM File Content

Name of Field Field Size
(bits)

Note

BATCHES.LUM File Length 32
Media File Format Version 16
Spare 16
Pointer to Media Set PN Length 32
Pointer to Number of Batches 32
Pointer to User Defined Data 32
Expansion Point No. 1 0
Media Set PN Length 16
Media Set PN 16 1
Media Sequence Number (X) 8
Number of Media Set Members (Y) 8
Number of Batches 16
 + Batch Pointer 16
 + Batch PN Length 16
 + Batch PN 16 1
 + Batch File Name Length 16
 + Batch File Name 16 1
 + Member Sequence Number 16
 + Expansion Point No. 2 0
Expansion Point No. 3 0
User Defined Data Multiples of 16 2
BATCHES.LUM File CRC 16

Notes:

1. One or more 16-bit words.

2. Zero or more 16-bit words.

+ Fields are repeated as a group for each Batch in the media
set.

ARINC REPORT 665 – Page 38

3.0 LOADABLE MEDIA SET PARTS

All values should be expressed as binary numbers except the noted for ASCII
character fields.

Detailed field descriptions are listed in the following sections in the order they
appear in Table 3.2.3.3-1.

3.2.3.3.1 BATCHES.LUM File Length

The BATCHES.LUM File Length is the number of 16-bit words in the
BATCHES.LUM file, including this field.

3.2.3.3.2 Media File Format Version

The Media File Format Version is defined by 16-bits. The Media File Format Version
is defined in Section 1.4.1, File Format Version Definition.

3.2.3.3.3 Spare

The spare field is used to align the pointers that follow, which are defined on 4-byte
boundaries.

3.2.3.3.4 Pointer to Media Set PN Length

The Pointer to Media Information is defined as the absolute pointer, which is the
number of 16-bit words from start of file to the Media Set PN Length field.

3.2.3.3.5 Pointer to Number of Batches

Pointer to Batch List is defined as the absolute pointer, which is the number of 16-bit
words from start of file, to the first word of the “Number of Batches” field.

3.2.3.3.6 Pointer to User Defined Data

Pointer to User Defined Data is defined as the absolute pointer, which is the number
of 16-bit words from start of file, to the first word of the “User Defined Data” field.
The value should be set equal to 0x0000, if there is no User Defined Data field.

3.2.3.3.7 Expansion Point No. 1

Expansion Point No. 1 is the point where file format growth may occur, that is,
where new fields may be defined in subsequent versions of the file format.

3.2.3.3.8 Media Set PN Length

The Media Set PN Length is the number of characters in the Media Set PN. This
number does not include any NULs appended to fill out the field if the number of
characters in the Media Set PN is odd.

3.2.3.3.9 Media Set PN

The Media Set PN is defined by the actual Media Set PN including delimiters.

This field contains the string of 8-bit ASCII characters representing the Media Set
PN whose length is defined by the Media Set PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the Media Set PN is compliant with the
recommendations of Section 3.1.

3.2.3.3.10 Media Sequence Number (X)

The Media Sequence Number (X) is defined as the number of this specific member
in the media set. Members are numbered 1 through 255. Zero (0) is not used to
number members.

ARINC REPORT 665 – Page 39

3.0 LOADABLE MEDIA SET PARTS

3.2.3.3.11 Number of Media Set Members (Y)

The Number of Media Set Members (Y) is defined as the number of media members
in the media set. For a set consisting of a single member, X should be set equal to 1
and Y should be set equal to 1.

3.2.3.3.12 Number of Batches

Number of Batches is defined as the number of Batch Files included in the Batch
List. All batches in the media set should be included in the batch list.

3.2.3.3.13 Batch Pointer

Batch Pointer is the relative pointer, which is the number of 16-bit words to the next
Batch Pointer. The value of the Batch Pointer for the last Batch in the list should be
0x0000.

3.2.3.3.14 Batch PN Length

Batch PN Length is defined as the number of characters in the Batch PN. This
number does not include any NULs appended to fill out the field if the number of
characters in the Batch PN is odd.

3.2.3.3.15 Batch PN

Batch PN is defined as the actual Batch PN including delimiters.

This field contains the string of 8-bit ASCII characters representing the Batch PN
whose length is defined by the Batch PN Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the Batch PN is compliant with the
recommendations of Section 2.1.1.

3.2.3.3.16 Batch File Name Length

Number of characters in the Batch File Name does not include any NULs appended
to fill out the field if the number of characters in the Batch File Name is odd.

3.2.3.3.17 Batch File Name

This field contains the string of 8-bit ASCII characters representing the Batch File
Name whose length is defined by the Batch File Name Length field.

The field is allocated an even number of bytes. If the number of characters to be
defined in the field is odd, then append a NUL to the character string.

Implementers should ensure that the Batch File Name is compliant with the
recommendations of Section 2.2.2.

The Batch File Name is the name of the file, without any information relative to its
path. A Batch File Name should never begin with a backslash nor contain any
backslash. Batch File Names should include all extensions and delimiters.

3.2.3.3.18 Member Sequence Number

Member Sequence Number is defined as the sequence number of the media
member where the Batch File for this Batch is located.

ARINC REPORT 665 – Page 40

3.0 LOADABLE MEDIA SET PARTS

3.2.3.3.19 Expansion Point No. 2

Expansion Point No. 2 is the point where file format growth may occur, that is, new
fields may be defined, in subsequent versions of the file format. The size of the
Expansion Point No. 2 should not cause the Batch Pointer to overflow.

3.2.3.3.20 Expansion Point No. 3

Expansion Point No. 3 is defined as the point where file format growth may occur,
that is, new fields may be defined, in subsequent versions of the file format.

3.2.3.3.21 User Defined Data

User Defined Data is defined as an option that may be omitted. If omitted, the
pointer to User Defined Data field should be set to a value of zero.

3.2.3.3.22 BATCHES.LUM File CRC

The BATCHES.LUM File CRC is defined as a 16-bit CRC covering the entire
BATCHES.LUM file, excluding the BATCHES.LUM File CRC field. The CRC should
be calculated as defined in Section 4.

3.2.4 Media Set File Organization

The media set files are organized by the media set creator according to these rules
to allow duplicate file names within media sets.

COMMENTARY

The purpose of the file organization is to support media sets where
parts have duplicate files names across parts and/or within parts.
This allows support for single and multi-disk ARINC 615 parts,
Boeing D6-55562-5 parts on D6-55562-6 media, as well as parts with
filenames that do not completely conform to Section 2.2.2.

The media set creator should ensure that if two or more files from the same PN
have duplicate file names and duplicate CRC values they also contain the same
contents and may be used interchangeably.

3.2.4.1 Location of Load PN Files

All files, including the Header File, and subdirectories for a load PN should be
placed in the Part Root Directory. The header file should only reference files in the
Part Root Directory or in subdirectories of the Part Root Directory.

The Part Root Directory name should be unique for each load PN in a media set
and is recommended to be the PN itself.

If the files for a Load PN are stored on more than one media members in a media
set the identical directory name should be used on each member in the media set
containing the files for the Load PN.

COMMENTARY

Files with duplicate file names may occur more than once in the
subdirectories of the Part Root Directory. This is necessary to support
ARINC 615 and Boeing D6-55562-5 files.

The Header File Name must be unique for each software load, as
discussed earlier in Section 2.2.2, Software Load File Naming. One
way to accomplish this is to embed the load PN in the Header File
Name. It is recommended to use the PN of the Header File as the
name of the Part Root Directory, exclusive of delimiters (“-“).

ARINC REPORT 665 – Page 41

3.0 LOADABLE MEDIA SET PARTS

For a given software load residing on physical transport media, the
Part Root Directory may be unambiguously determined as follows.
First, search LOADS.LUM to obtain the Header File Name
corresponding to the load PN. Second, search FILES.LUM to obtain
the File Pathname for that Header File Name. This File Pathname is
the Part Root Directory.

3.2.4.1.1 Storage of ARINC 615 Parts

ARINC 615 floppy disk media sets may be encoded with ARINC 665 information by
adding the appropriate files to the root directory of each floppy disk in the media set.

If it is desirable to put data from multiple ARINC 615 part floppy disks on to a single
ARINC 665 media set member, the following storage rule should be followed.
ARINC 615 parts should be organized with the files from the first floppy disk in a
directory named disk001, from the second disk in disk002 and NNNth disk in
diskNNN. The diskNNN directories are stored in the Part Root Directory. The
organization of the files in the diskNNN directories should conform to ARINC 615.
The part Header File should be placed in the Part Root Directory.

COMMENTARY

The ARINC 665 media set containing multiple ARINC 615 parts will
not itself be ARINC 615 compliant. It only provides a method of
condensing multi-disk parts onto single media.

For more information, see ARINC Project Paper 641: Logical Software Part
Packaging for Transport.

3.2.4.1.2 Storage of Boeing Legacy Compliant Parts

Disk Media sets designed to pre-665 Boeing specifications (Legacy), found in
Boeing Documents D6-55562-5 D6-55562-6, may be encoded with ARINC 665
information by adding the appropriate files to the root directory of each floppy disk in
the media set. The part header file, FILES.LUM and LOADS.LUM files should not be
added to the disk.dir file.

If it is desirable to put data from multiple Boeing Legacy Part floppy disks on to a
single ARINC 665 media set member, the following storage rule should be followed.
Boeing Legacy parts should be organized with the files from the first disk in a
directory named disk001, from the second disk in disk002 and NNNth disk in
diskNNN. The diskNNN directories are stored in the Part Root Directory. The
organization of the files in the diskNNN directories should conform to the ARINC
615. The part Header File should be placed in the Part Root Directory.

The calculations for the Boeing Legacy disk.dir file should be made as though the
ARINC 665 directory structure did not exist. Any system moving the data from
diskNNN directories will not need to recalculate the disk.dir checksums or adjust any
file paths.

COMMENTARY

The ARINC 665 media set containing multiple Boeing Legacy
Compliant parts will not itself be Legacy compliant. It only provides a
method of condensing multi-disk parts on to single media.

ARINC REPORT 665 – Page 42

3.0 LOADABLE MEDIA SET PARTS

3.2.4.2 Media Set Parsing Rules

Media set parsing rules allow all systems reading the media set to resolve duplicate
file names within PNs and across PNs the same way.

3.2.4.2.1 Search Within Primary Root Directory

If the filename in the header file matches more than one file in FILES.LUM limit the
search to files within the Part Root Directory.

3.2.4.2.2 Match File CRC Value

If the result of Section 3.2.4.2.1 returns more than one filename, use both filename
and CRC value from the header file and FILES.LUM to distinguish the files.

3.2.4.2.3 Choose the First File Found in FILES.LUM

If the result of Section 3.2.4.2.2 returns more than one matching file in FILES.LUM
the first file in FILES.LUM should be used.

COMMENTARY

The media set creator is responsible to ensure that both files are
identical and may be used interchangeably. This rule ensures that the
media set will be read in the same way on any given system.

3.2.4.3 Directory Structure for Electronic Distribution

When establishing a directory structure for a software load for electronic distribution,
there are two cases depending on whether the load files have duplicate names,
described as follows:

If a Loadable Software Part (LSP) is developed in compliance with this standard, all
file names will be unique, per Section 2.2.2, Software Load File Naming; Section
2.2.3.1.33, Data File Name; and Section 2.2.3.1.46, Support File Name. In this case,
any directory structure below the Part Root Directory is of no significance to the
packaging, and may be omitted from the packaging. In effect, the method of
packaging for electronic distribution may consider all files constituting the load to
have been in the Part Root Directory.

If an LSP has duplicate file names in order to support ARINC 615 and Boeing
Legacy formats, then (1) the content of these files, if different one from another,
must be distinguishable by file CRC, and (2) the support computer file system
typically requires the files with duplicated names to reside in separate subdirectories
of the Root Part Directory. In this case, the method of packaging for electronic
distribution should preserve the subdirectory structure required to accommodate the
files with duplicated names. All other directory structure below the Part Root
Directory is of no significance to the packaging, and may be omitted from the
packaging. To resolve duplicate file names, it is necessary to compute the data file
CRC and match the file name and CRC with the contents of the load Header File.

3.3 Media Set Labeling

3.3.1 Label Content

The Media Set Parts label should contain all the information defined in
Table 3.3.1-1. The label may also contain the information contained in
Table 3.3.1-2. Any additional information or graphics must not conflict with or hinder
readability of the required information.

Tom Williams
Sticky Note
Part

ARINC REPORT 665 – Page 43

3.0 LOADABLE MEDIA SET PARTS

Information on the label should be clearly identified, e.g., the Media Set PN should
be identified as follows: “Set PN: XXXXXXXXXXX.” Table 3.3.1-3 provides
recommendations for label information identification.

The media label content and layout should be the same for all members of the
media set, except the media sequence number.

Table 3.3.1-1 – Recommended Label Content

Item Description
1. Media set nomenclature The title of the media set. The media set nomenclature

should be composed of the target HW/LRU/System and
the type (e.g., OPS, OPC, OSS, DB) of software. The title
may also include the ATA Chapter.

2. Media set PN The PN of the media set.

3. Media sequence number Two numbers, separated by the word “of,” that represent
the order and total number of members in a set, e.g., XX
of YY.

4. Content Description List of the software loads that are contained on the media
set. If the media contains more software loads than can
be listed on the media label then the label should refer to
the LOADS.LUM file for media content information.

5. Supplier Identification The name and/or Commercial and Government Entity
(CAGE) code of the company from which replacement
parts can be procured.

6. Media set serial number The unique serial number that identifies a specific media
set and is the same on all members in that set.

7. Product acceptance/
release stamp

The supplier’s quality control/assurance or configuration
control group’s stamp. The stamp should uniquely identify
the supplier who owns/uses it and indicate that the LSP
transport media (and its contents) have been accepted by
the supplier’s quality control/assurance or configuration
control group(s).

Table 3.3.1-2 – Optional Label Content

Item Description
1. Validity Date The “use-by” date. (See Note 1)
2. Bar code Bar code specifications are TBD. The intent is that the

industry will adopt a single Bar Code Standard for use on
all parts (LRUs, Media Set Parts, etc.) when such
standard is adopted this document will reference it.

3. Copyright notice The notice that information contained on the media is
copyrighted.

4. Integrity Check Value Supplier specified media integrity check type and value,
as listed in section 5.

5. Label form number A label form number that indicates a pre-printed label
stock.

6. Proprietary notice The notice that the information contained on the media is
proprietary.

7. Spare parts marking Replacement or modification part marking, per FAR
45.15.

8. Media creation date The date that the media set was created. The date should
appear in format “DD XXX YY.” For example: 14 APR 98

Tom Williams
Cross-Out

Tom Williams
Inserted Text
S

Tom Williams
Cross-Out

Tom Williams
Inserted Text
S

ARINC REPORT 665 – Page 44

3.0 LOADABLE MEDIA SET PARTS

Item Description
9. FIN Functional Item Number (defines the function and logical

location of the item).
10. CMS Domestic code

Note: Some media sets (e.g., FMC Nav data base) may contain
information that is valid only for a specific period of time. In
these cases, the label may define the time frame for which the
media content is valid.

Table 3.3.1-3 – Recommended Label Information ID

Item Recommended ID
1. Media set nomenclature No ID required
2. Media set PN “Set PN:”
3. Media set serial number “Set SN:”
4. Content Description “Software PNs:”
5. Media sequence number “Disk x of y”
6. Media creation date “Mfg. Date:”

3.3.2 Label Format

The media label format, color, and lay-out should be the same for all members of
the media set.

The label information should be placed according to its relative importance
(Tables 3.3.1-1 and 3.3.1-2 list the label information in order of relative importance).
The more important information should be placed at the top of the label (when the
Media Set is stowed), and be in a larger and bolder font than the less important
information. For example: The Media Set nomenclature and PN could be positioned
at the top of the label in bold 10-point text, whereas, the supplier identification may
be placed at the bottom of the label in non-bold 6-point text.

The Media Set Nomenclature, Media Set PN and Media Set Sequence Number
should be in bold text. All other information on the label should be in non-bold text.

The Media Set Nomenclature, Media Set PN and Media Set Sequence Number
should be at least 10-point. The Software PN (s) may be the same size or smaller
than the Media Set PN. All other information on the label should be at least 2-points
smaller than the Media Set PN.

COMMENTARY

Certain label information is required for the technicians to locate and
use the media to maintain the aircraft (e.g., the Media Set PN and
nomenclature). Other information is required to allow the airlines to
order spare (or replacement) copies of the media (e.g., the supplier’s
identification). It is important that the location and relative visibility of
information supports the daily use of the media in maintaining the
aircraft system. Key information needs to be visible when the media
is stowed (i.e., in the media binder or file card box, etc.). Proprietary
notice and copyright information on the label should not take
precedence over software content and media identification
information.

All label items should be legible and printed in indelible ink.

The media label should not reduce the life of the media.

ARINC REPORT 665 – Page 45

3.0 LOADABLE MEDIA SET PARTS

The media label should be tamper resistant (i.e., any attempt to change label
information once the label is applied to the media should be obvious).

3.4 Media Type Specific Items

The purpose of this section is to define aspects of Media Set Parts that are
applicable to specific media types.

Inclusion of a specific media type in this section should not be considered an
endorsement of its use. Suppliers should select the specific type of media to use
based on the availability of readers and other criteria. For example, ARINC 615
loaders support 3.5-inch disk. ARINC 615A loaders support PC-Cards, and 3.5-inch
disks and optical disks.

If a specific type of media is used the supplier should implement the following in
order to ensure maximum compatibility with existing and future readers and
systems.

All multi-byte words should be written to media with most significant byte first and
least significant byte last. For example: the most significant 8-bits (MSbyte) of each
16-bit word are written to the media in the first 8-bit byte (n), followed by the least
significant bits (LSbyte) in the next 8-bit byte (n+1). The same byte ordering is used
to derive field information in all files on the media set.

3.4.1 Disk Sets

Each disk of a disk set should be formatted in accordance with media format
specifications defined in the following Microsoft documents:

PSS ID Number: Q140418, Article last modified on 09-10-1996, detailed explanation
of FAT Boot Sectors.

ISBN 1-57231-344-7, October 1996, section About File Systems. This format
specification is the one used for Windows 95 and NT, allowing Long File Names
capability and full downward compatibility with MS-DOS 3.1 file names.

All files should be contained in the root directory of the media member.

It is not recommended to perform concurrent parallel loads using floppy disk media.

3.4.2 PC Card

Each member of a PC Card set should conform to type 1, type 2, or type 3 form
factors as defined by the “PC Card Standard” dated March 1997, including:

Volume 1: Overview and glossary

Volume 2: Electrical specification

Volume 3: Physical specification

Volume 4: Metaformat specification

Volume 5: Card service specification

Volume 6: Socket Services specification

Volume 7: Media storage specification, restricted to MS-DOS FAT format
 supporting Long File Name (cf. ISBN 1-57231-344-7, October
 1996, section about File System)

Volume 8: PC Card ATA specification

ARINC REPORT 665 – Page 46

3.0 LOADABLE MEDIA SET PARTS

Volume 10: Guidelines

Cartridges should be compatible with the “PC Card ATA interface standard.”

COMMENTARY

In this context, ATA refers to the ANSI AT Attachment (ATA)
Interface for disk drives in the PC Card environment. ANSI is the
American National Standards Institute.

All files should be contained in the first four directory levels of the media member.

3.4.3 CD-ROM

Each member of a CD set should be formatted in accordance with ISO 9660 and
Joliet Long file names.

All files should be contained in the first four directory levels of the media member.

The most significant 8-bits (MSbyte) of each 16-bit word are written to the CD in the
first 8-bit byte (n), followed by the least significant bits (LSbyte) in the next 8-bit byte
(n+1). The same byte ordering is used for derived field information in all files on the
media set.

3.4.4 Hard Disk

As an option, a hard disk can be used in the data loader or accessible on the
Ethernet network. The hard disk should support the Long File Name capability,
which allows full backward compatibility with MS-DOS 3.3 file names (8.3 notation).

ARINC REPORT 665 – Page 47

4.0 CYCLIC REDUNDANCY CODES (CRC)

4.0 CYCLIC REDUNDANCY CODES (CRC)

Cyclic Redundancy Codes (CRCs), also known as Cyclic Redundancy Checks, are
used to detect corruption of binary data. A computation is performed on the data to
yield the CRC. Whenever the data is copied or transmitted, the CRC is
re-computed. If the initial and subsequent CRC values disagree, the data has been
corrupted. Conversely, if the two CRCs agree, then the data probably has not been
corrupted. CRC algorithms are chosen so that the chance of not detecting corrupted
data is very, very small.

Section 4.1 offers CRC definition. Section 4.2 addresses rules necessary to ensure
CRC computation is consistent between system environments. Section 4.3 provides
parameters used in calculating CRC of variable string length.

Conventions have emerged with some variation between parameters used for each
size of CRC. To retain compatibility with existing CRC generation and checking
tools, the variances have been accommodated. Integrity is not compromised by
retaining these differences.

Appendix K provides support materials, including a conceptual description of the
CRC calculation process, followed by an example for manual calculation of a CRC.
The flow for an efficient table driven CRC calculation method is also given, followed
by a copy of C code producing a table driven CRC generator.

4.1 CRC Definition

The formal definition of a Cyclic Redundancy Code is described in terms of
algebraic polynomials with binary coefficients. Individual bits of the data represent
the coefficients of a dividend polynomial. A carefully selected nth degree divisor
polynomial is used as a generator for an n-bit CRC. The CRC value is the remainder
obtained after modulo 2 division of the binary data by the generator.

If the individual bits bi of a block of binary data (L bits long) are considered to be the
coefficients of a polynomial of a given variable X,

0
0

1
1

2-L
2-L

1-L
1-L Xb Xb Xb Xb B(X) then the n-bit CRC value of this block

is the remainder (coefficient bits only) obtained from the binary division, modulo 2, of
the dividend polynomial B(X)Xn by an nth degree divisor polynomial,

0
0

1
1

1-n
1-n

n
n Xg Xg Xg Xg G(X)

where 1g andg 0n 1 .

It is important to understand that the dummy variables X never actually enter into
the calculation of a CRC: only the coefficients are used. Polynomial terminology is
introduced only to precisely specify the types of operations that must be performed
in order to satisfy the required algebra and to unambiguously determine bit ordering.

4.2 Rules for CRC Calculation

As required in their respective sections, the Load CRC computation and Load
Check Value computation both process the header file first followed by files in
the order they are listed in the header file.

Within each file, bytes should be processed in the order which they occur
(first byte first and last byte last).

Tom Williams
Sticky Note
Endian of host processor can affect the result of the computed CRC or check value.

ARINC REPORT 665 – Page 48

4.0 CYCLIC REDUNDANCY CODES (CRC)

The conceptual CRC algorithm of Appendix K has two key operations repeated in a
loop: a shift, followed by a conditional Exclusive-OR operation. Unfortunately,
applied algorithms are not so terse. Consideration for error detection and enhanced
processing speed necessitate many adaptations. These adaptations take the
following into account:

4.2.1 Bit Ordering

Each byte processed by the CRC generation tool will have its most significant (left-
most) bit corresponding to the highest power of X in accordance with the definition
of dividend polynomial of Section 4.1.

4.2.2 Bit Shifting

The shifting of large data blocks, as described in Appendix K must be
accommodated in intervals to meet size limitations of processor shift registers.

4.2.3 Transmission Bit Reflection

In the case of a transmitted message to be CRC checked, some hardware transmits
the Least Significant Bit of a byte first, some, the Most Significant Bit first. This
“reverse bit ordering” is equivalent to reflecting the bits about the byte’s center: the
mirror image of the normal bit order.

4.2.4 Process Bit Reflection

Some algorithms reflect the bits of their generator polynomial (with its Most
Significant Bit retained) about its center before using it for CRC computations.
Generally, this will not produce the same CRC value as an unreflected generator
polynomial.

4.2.5 Post Process Bit Reflection

Some algorithms reflect the bits of the final computed CRC.

4.2.6 Initialization

An algorithm adhering strictly to formal CRC definition, fails to detect erroneous
insertion of leading zeros. To prevent this, some algorithms initialize their CRCs to
all “1” bits instead of all “0” bits. Other algorithms “one’s complement” the first n bits
of the data block. These two methods produce the same CRC value as long as the
data block size is greater than the CRC, e.g., for 32-bit CRCs the data length must
be greater than 32 bits. For data less than the size of the CRC register, the result
depends upon the chosen initialization and may vary among implementations. The
implementer should pad data to at least the size of the CRC register.

4.2.7 Error Detection

One error the formal definition fails to detect is “stuck on zero,” where a transmitter
continues to transmit zero bit values, regardless of the actual bits composing the
data block. This can be overcome by “one’s complementing” the final CRC value
prior to transmission.

4.2.8 Process Efficiency

In the algorithm of Appendix K, n bits of zero value must be shifted through the CRC
partition before anything significant happens. This is inefficient. Contemporary
algorithms remove this annoyance.

By applying a technique called look-ahead, CRC algorithms can eliminate the need
for appending n bits of zero value to the end of the data block, thereby further
improving efficiency.

ARINC REPORT 665 – Page 49

4.0 CYCLIC REDUNDANCY CODES (CRC)

An algorithm that computes a CRC value of a large file, one bit at a time, is too slow
to be practical. It is possible to pre-compute a large part of the intermediate results
of the computation. These pre-determined values are then placed in a table which
can be rapidly accessed at run time. CRC processing speed is dramatically
improved using this table-driven approach.

4.2.9 CRC Examples

Appendix K provides guidance on the calculation on Loadable Software Part CRCs.

4.3 CRC Parameters

The following tables record parameters to be applied when calculating the 8-bit, 16-
bit, and 32-bit CRCs.

The tables display how the items in Section 4.2 are resolved for each CRC size.

Additionally, the tables correlate with the examples and code samples given in
Appendix K.

4.3.1 8-Bit CRC

As defined in Table 4.3-1, the 8-bit CRC does not perform any pre-processing
on the first input data, nor does it perform any post-processing on the CRC
result. The 8-bit CRC is not intended to be used for anything besides
determining check characters in the ARINC 665 formatted part numbers. The
integrity of the 8-bit CRC is low enough that it should not be used anywhere
else. Also, part numbers composed of printable characters will never contain
leading zeros nor be all zeros as in a stuck on zero error.

Table 4.3-1 displays parameters to be applied for calculating 8-bit Loadable
Software CRCs.

Table 4.3-1 – CRC-8 Parameters

Parameter Value Description
Width 8 The decimal width of the algorithm expressed in bits is the highest power of X in

the Polynomial
Polynomial X8 + 1 The polynomial in variable X as specified by the formal definition.
Generator 0x01 Coefficients of the polynomial, Most Significant Bit suppressed, in hexadecimal

form. Example: 10111 denotes coefficient of polynomial:
1X 4 + 0X 3 + 1X 2 + 1X 1 + 1X 0. Most Significant Bit suppressed yields 0111, 07
in hexadecimal form. (The generator polynomial is not reflected)

Init 0x00 The initialization value for the CRC in hexadecimal form.
RefIn False If True: data bytes of a block are passed through the CRC algorithm with bits

reflected about the mid-point. Bit 7 becomes bit 0, and converse, bit 6 becomes
bit 1, and converse.
If False: data bytes are processed without reflection.

RefOut False If True: final CRC value has bits reflected as described for “RefIn” prior to
XorOut operation

XorOut 0x00 A hexadecimal value, length same as Generator that is ‘Exclusive-OR’d into the
final CRC value.

AvgPro b 2-8≈3.9x10-3 The average probability of not detecting corrupted data.
Check 0x00 The CRC value for a 256 byte test file with hexadecimal content of:

 00 01 02 … FD FE FF

Note: This CRC does not perform and post-processing on the
calculated result. Therefore, the XorOut step with a zero

ARINC REPORT 665 – Page 50

4.0 CYCLIC REDUNDANCY CODES (CRC)

value may be omitted. It should be noted that this CRC
algorithym does not detect stuck at zero conditions.

4.3.2 16-Bit CRC

As defined in Table 4.3-2, the 16-bit CRC performs pre-processing on the first
input data; however, it does not perform any post processing on the CRC
result. The 16-bit CRC is intended to be used as a simple and quick cursory
check on the correct reception of the LSAP files. It is not intended to be used
as a replacement for any other checks performed naturally in transferring the
LSAP files and it is not intended to be used as the only validation check on
LSAPs stored in NVM. The 16-bit CRC does not have high enough integrity
and due to the limitation on the data size upon which it can reliably detect
errors, the CRC-16 algorithm should not be used as a replacement for other
checks or LSAP validation.

Table 4.3-2 displays parameters to be applied for calculating 16-bit Loadable
Software CRCs.

Table 4.3-2 – CRC-16 Parameters

Parameter Value Description
Width 16 The decimal width of the algorithm expressed in bits is the highest power of X

in the Polynomial
Polynomial X16+X12+

X5+1
The polynomial in variable X as specified by the formal definition.

Generator 0x1021 Coefficients of the polynomial, Most Significant Bit suppressed, in
hexadecimal form. Example: 10111 denotes coefficient of polynomial:
1X 4 + 0X 3 + 1X 2 + 1X 1 + 1X 0. Most Significant Bit suppressed yields 0111,
07 in hexadecimal form. (The generator polynomial is not reflected)

Init 0xFFFF The initialization value for the CRC in hexadecimal form.
RefIn False If True: data bytes of a block are passed through the CRC algorithm with bits

reflected about the mid-point. Bit 7 becomes bit 0, and converse, bit 6
becomes bit 1, and converse.
If False: data bytes are processed without reflection.

RefOut False If True: final CRC value has bits reflected as described for “RefIn” prior to
XorOut operation

XorOut 0x0000 A hexadecimal value, length same as Generator that is ‘Exclusive-OR’d into
the final CRC value.

AvgPro b 2-16≈1.53x10-5 The average probability of not detecting corrupted data.
Check 0x3FBD The CRC value for a 256 byte test file with hexadecimal content of:

00 01 02 … FD FE FF

4.3.3 32-Bit CRC

Table 4.3-3 displays parameters to be applied for calculating 32-bit Loadable
Software CRCs.

Table 4.3-3 – CRC-32 Parameters

Parameter Value Description
Width 32 The decimal width of the algorithm expressed in bits is the highest power of

X in the Polynomial
Polynomial X32+X26+X23+

X22+X16+X12+
X11+X10+X8+
X7+X5+X4+
X2+X+ 1

The polynomial in variable X as specified by the formal definition.

ARINC REPORT 665 – Page 51

4.0 CYCLIC REDUNDANCY CODES (CRC)

Parameter Value Description
Generator 0x04C11DB7 Coefficients of the polynomial, Most Significant Bit suppressed, in

hexadecimal form. Example: 10111 denotes coefficient of polynomial
 1X 4 + 0X 3 + 1X 2 + 1X 1 + 1X 0. Most Significant Bit suppressed yields 0111,
07 in hexadecimal form. (The generator polynomial is not reflected)

Init OxFFFFFFFF The initialization value for the CRC in hexadecimal form.
RefIn False If True: data bytes of a block are passed through the CRC algorithm with bits

reflected about the mid-point.
Bit 7 becomes bit 0, and converse, bit 6 becomes bit 1, and converse.
If False: data bytes are processed without reflection.

RefOut False If True: final CRC value has bits reflected as described for “RefIn” prior to
XorOut operation

XorOut 0xFFFFFFFF A hexadecimal value, length same as Generator that is ‘Exclusive-OR’d into
the final CRC value. (This step effectively ‘ones complements’ bits of final
CRCs.)

AvgPro b 2-32≈2.33x10-10 The average probability of not detecting corrupted data.
Check 0xB6B5EE95 The CRC value for a 256 byte test file with hexadecimal content of:

 00 01 02 … FD FE FF

4.4 CRC Conventions

4.4.1 CRC Self Reflection

For instances where a CRC value is recorded within its subject domain, the field
reserved to house the CRC value, is not taken into account during calculation. The
file is processed as if data on either side of the CRC reserve are sequential.

Instructions for calculating specific CRCs should be specified in the document in
which the specific CRC is named.

4.4.2 File Size Limitations

CRCs provide corruption detection with reasonable probability, for files within a
specified range size. The CRC-8 is sufficient for its application against the part
number. The range for CRC-16 includes files under 32,751 bits, which is
approximately 4093 bytes. The range for CRC-32 includes files less than 512
Mbytes. These measures represent generally accepted ranges, because the exact
point of integrity loss may be altered based on content and structure of the file. The
rate at which integrity degrades also varies. Accordingly, the 512 Mbytes is a
reasonable, conservative gauge.

Files crossing these thresholds should be judicially segmented into distinct files of
acceptable size, at the supplier’s discretion.

ARINC REPORT 665 – Page 52

5.0 INTEGRITY CHECK METHODS

5.0 INTEGRITY CHECK METHODS

5.1 Integrity Check Methods

The term Check Value includes CRC and other calculations which produce a
deterministic output used for data validation. ARINC Report 665 provides for
optional variable length check values for data and support files. In cases where
more than one Check Value or CRC may be used the following table provides for
identification of the method used. All options for 665 files are enumerated in
Section 5.2. Section 5.3 provides references to further check value calculations
beyond those found in Section 4.0.

Each variable length check value is specified with three parameters: an 8-bit length
of the data check value in 8-bit words, 8-bit type and the calculation result. Up to
255 check values may be enumerated with this method.

Check values are stored in “Big Endian” format, aligned on 16-bit words. The
highest ordered bytes are therefore stored at the lower address (first) in the
file.

The length value stored in the ARINC 665 files should be set to 001xX00006 if no
check value is specified and to include the length of the type when it is included.

COMMENTARY:

Even though the table enumerates currently specified check
methods, future check methods may be defined. The length value is
included to allow software, which does not recognize an enumerated
type, to move on to data fields that follow the check value.

The type value should be set to 0x0016 if no check value is specified. Up to 255
check values may be enumerated with this method.

Check values are stored in “Big Endian” format, aligned on 16-bit words. The
highest ordered bytes are therefore stored at the lower address (first) in the file and
a check value that only requires an odd number of bytes for storage should be
preceded by a 0x000016 byte.

5.2 Data Check Value Enumeration

The 8-bit CRC check value type enumeration (Type 1) should not be used
within LSPs. This 8-bit CRC is used in the part number of LSPs and BFPs
only. The 8-bit CRC does not provide adequate error detection for anything
larger that the LSP of BFP part numbers.

In Table 5.1, the columns contain the following data:

 Type: The ARINC 665 Check Value Enumerations.

 Title: Section title for the Check Value.

 Section: Number of the referenced ARINC 665 Section, which defines the
check value calculation.

 Length in 8-bit Words: The length of the check value calculation result.

ARINC REPORT 665 – Page 53

5.0 INTEGRITY CHECK METHODS

Table 5.1 - Check Value Enumeration

Type Title Reference Section of this Report Length in Bytes
1 8-bit CRC 4.3.1 2
2 16-bit CRC 4.3.2 2
3 32-bit CRC 4.3.3 4
4 MD5 5.3.1 16
5 SHA-1 5.3.2 20

5.3 Integrity Check Type

In addition to the ARINC 665 CRC methods of Section 4.0, the following are valid
Integrity Check Methods.

5.3.1 Message Digest (MD) 5 Integrity Check

The implementer should implement the MD5 algorithm as defined by the IETF RFC
1321 – The MD5 Message Digest Algorithm.

5.3.2 Secure Hash Algorithm-1 (SHA-1) Integrity Check

The implementer should implement the SHA-1 value of the data as specified by
ANSI X9.30 (part 2).

Tom Williams
Sticky Note
Security people generally feel MD5 and SHA-1 are broken. With high power computers, both algorithms can be theoretically hacked. SHA-2 is still considered secure at this time.

ARINC REPORT 665 – Page 54

ATTACHMENT 1
MANUFACTURER’S CODE ASSIGNMENTS

ATTACHMENT 1 MANUFACTURER’S CODE ASSIGNMENTS

This attachment refers to a list of assigned Manufacturer’s Codes (MMM).
Organizations may request a Manufacturer’s Code from the ARINC Industry
Activities staff by submitting information requested in Appendix J.

The Manufacturer’s Code list includes software suppliers and airlines. It is
recognized that airlines may be suppliers of software programs. Please note that the
manufacturer code for an airline may be different from their ICAO identification,
appearing in parenthesis after the airline name.

This list of Manufacturer’s Codes is provided in a published MMM List, which is
available from the ARINC Website:

http://www.aviation-ia.com/aeec/projects/manufacturer_code/index.html

The MMM List will be periodically updated with newly assigned or changed MMM
Code Identifiers.

ARINC REPORT 665 – Page 55

APPENDIX A
LOAD STRUCTURE

APPENDIX A LOAD STRUCTURE

Figure A-1 – Structure of Typical ARINC 665 Load

ARINC REPORT 665 – Page 56

APPENDIX A
LOAD STRUCTURE

Figure A-2 – Structure of ARINC 615 Compatible Load

ARINC REPORT 665 – Page 57

APPENDIX A
LOAD STRUCTURE

Header File(MMMCCSSSSSSSS.LUH)

– Load File Format Version

– Load PN

– List of Target HW Ids

List of Data Files

– List of Support Files

– User Defined Data

– Header File CRC
– Load CRC

– Header File

– Data File(s)

– data file #1

– data file #2

..

– data file #mmm

– Support File(s)

– support file #1

– support file #2

– support file #3

–support file #mmm

Data File
(MMMSSSSS.NNN)

Support File (

 File Data (Optional File)

Configuration File (CONFIG.LDR)

Header File (MMMSSSSS.HDR)

SW Load AACC-MMM-SSS-SS

(Length and content of N, S, X, Y, and Z variable strings are assigned at
supplier's discretion)

File Data (per D6-55562-5)

File Data (per D6-55562-5)

File Data (per ARINC 615-2 or 3)

MMMCCYYYYY.ZZZZ)

–

..

..

..

..

..

Figure A-3 – Structure of ARINC 615 and ARINC 629 (Boeing 777) Compatible Load

ARINC REPORT 665 – Page 58

APPENDIX B
MEDIA SET STRUCTURE

APPENDIX B MEDIA SET STRUCTURE

Figure B-1 – Standard Media Set Structure

ARINC REPORT 665 – Page 59

APPENDIX C
FILE FORMATS

APPENDIX C FILE FORMATS

C-1 Header File Format

 MSB Header File —MMMSSSSSSSS.LUH LSB

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Header File Length (Most Significant Word)
 Header File Length (Least Significant Word)
 Load File Format Version
 Part Flags
 Pointer to Load PN Length (Most Significant Word)
 Pointer to Load PN Length (Least Significant Word)
 Pointer to Number of Target HW IDs (Most Significant Word)
 Pointer to Number of Target HW IDs (Least Significant Word)
 Pointer to Number of Data Files (Most Significant Word)
 Pointer to Number of Data Files (Least Significant Word)
 Pointer to Number of Support Files (Most Significant Word)
 Pointer to Number of Support Files (Least Significant Word)
 Pointer to User Defined Data (Most Significant Word)
 Pointer to User Defined Data (Least Significant Word)
 Pointer to Load Type Description Length (Most Significant Word)
 Pointer to Load Type Description Length (Least Significant Word)
 Pointer to Number of Target HW ID with Positions (Most Significant Word)
 Pointer to Number of Target HW ID with Positions (Least Significant Word)
 Pointer to Load Check Value Length (Most Significant Word)
 Pointer to Load Check Value Length (Least Significant Word)

 Load PN Length
 Load PN (MSByte) Load PN (MSByte-1)

 LSByte if Load PN Length odd or

LSByte+1 if Load PN Length even
NUL if Load PN length odd or

LSByte if Load PN Length even

 Load Type Description Length
 Load Type Description (MSByte) Load Type Description (MSByte-1)

 LSByte if Load Type Description Length odd or

LSByte+1 if Load Type Description Length even
NUL if Load Type Description Length odd or

LSByte if Load Type Description Length even
 Load Type ID

 Number of Target HW IDs
* Target HW ID Length
* Target HW ID (MSByte) Target HW ID (MSByte-1)
*
* LSByte if Target HW ID Length odd or

 LSByte+1 if TargetHW ID Length even
NUL if Target HW ID Length odd or
LSByte if Target HW ID Length even

 Number of Target HW ID with Position
% Target HW ID with Positions Length
% Target HW ID with Positions (MSByte) Target HW ID with Positions (MSByte-1)
%
% LSByte if Target HW ID with Positions Length odd or

LSByte+1 if TargetHW ID with Positions Length even
NUL if Target HW ID with Positions Length odd
or LSByte if Target HW ID with Positions Length

even

%& Number of Positions
%& Position Length

ARINC REPORT 665 – Page 60

APPENDIX C
FILE FORMATS

%& Position (MSByte) Position (MSByte-1)
%&
%& LSByte if Position Length odd or

LSByte+1 if Position Length even
NUL if Position Length odd or
LSByte Position Length even

 Number of Data Files
+ Data File Pointer
+ Data File Name Length
+ Data File Name (MSByte) Data File Name Byte (MSByte-1)
+
+ LSByte if Data File Name Length odd or

LSByte+1 if DataFile Name Length even
NUL if Data File Name Length odd or
LSByte if DataFile Name Length even

+ Data File PN Length
+ Data File PN (MSByte) Data File PN Byte (MSByte-1)
+
+ LSByte if Data File PN Length odd or

LSByte+1 if DataFile PN Length even
NUL if Data File PN Length odd or

LSByte if Data File PN Length even
+ Data File Length (Most Significant Word)
+ Data File Length (Least Significant Word)
+ Data File CRC
+ Data File Length in Bytes (Most Significant Word)
+ Data File Length in Bytes (Most-1 Significant Word)
+ Data File Length in Bytes (Least+1 Significant Word)
+ Data File Length in Bytes (Least Significant Word)
+ Data File Check Value Length
+ Data File Check Value Type
+ Data File Check Value (MSByte) Data File Check Value (MSByte-1)
+
+ Data File Check Value (LSByte+1) Data File Check Value (LSByte)

 Number of Support Files
Support File Pointer
Support File Name Length
Support File Name (MSByte) Support File Name (MSByte-1)

LSByte if Support File Name Length odd or

LSByte+1 if Support File Name Length even
NUL if Support File Name Length odd or

LSByte if Support File Name Length even
Support File PN Length
Support File PN (MSByte) Support File PN (MSByte-1)

LSByte if Support File PN Length odd or

LSByte+1 if Support File PN Length even
NUL if Support File PN Length odd or

LSByte if Support File PN Length even
Support File Length (Most Significant Word)
Support File Length (Least Significant Word)
Support File CRC
Support File Length in Bytes (Most Significant Word)
Support File Length in Bytes (Most-1 Significant Word)
Support File Length in Bytes (Least+1 Significant Word)
Support File Length in Bytes (Least Significant Word)
Support File Check Value Length
Support File Check Value Type
Support File Check Value (MSByte) Support File Check Value (MSByte-1)

Support File Check Value (LSByte+1) Support File Check Value (LSByte)

 User Defined Data

ARINC REPORT 665 – Page 61

APPENDIX C
FILE FORMATS

 User Defined Data

 Load Check Value Length
 Load Check Value Type
 Load Check Value (MSByte) Load Check Value (MSByte-1)

 Load Check Value (LSByte+1) Load Check Value (LSByte)
 Header File CRC
 Load CRC (Most Significant Word)
 Load CRC (Least Significant Word)

Notes: Bold horizontal lines indicate the position of expansion points.

* Fields repeated as a group for each Target HW ID.

% Fields repeated as a group for each Target HW ID with
Positions.

& Fields repeated as a group for each Position within a
Target HW ID with Positions group.

+ Fields repeated as a group for each Data File.

Fields repeated as a group for each Support File. If no
support files are included in the load, then these fields
are omitted.

Figure C-1 – Header File Format

C-2 Data File Format

The format of the data file content is up to the LSP supplier, with the single
exception that each data file should contain an integral number of 8-bit bytes. An
odd number of bytes is permitted. unless the Data File Length in Bytes field is
used.

C-3 Support File Format

The format of the support file content is up to the supplier of the software load, with
the single exception that each support file should contain an integral number of 8-bit
words. Note: If the ARINC 615 protocol is used for loading, then the ARINC 615-2 or
later defined CONFIG.LDR file should be included as a support file of the load.

ARINC REPORT 665 – Page 62

APPENDIX C
FILE FORMATS

C-4 LOADS.LUM File Format

 MSB List-of-Loads File — LOADS.LUM LSB

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 LOADS.LUM File Length (Most Significant Word)
 LOADS.LUM File Length (Least Significant Word)
 Media File Format Version
 Spare
 Pointer to Media Information (Most Significant Word)
 Pointer to Media Information (Least Significant Word)
 Pointer to Load List (Most Significant Word)
 Pointer to Load List (Least Significant Word)
 Pointer to User Defined Data (Most Significant Word)
 Pointer to User Defined Data (Least Significant Word)

 Media Set PN Length
 Media Set PN (MSByte) Media Set PN (MSByte-1)

 LSByte if Media Set PN length odd or LSByte+1 if Media

Set PN length even
NUL if Media Set PN length odd or LSByte if

Media Set PN length even
 Media Sequence Number (X) No. Of Media Set Members (Y)

 Number of Loads
+ Load Pointer
+ Load PN Length
+ Load PN (MSByte) Load PN (MSByte-1)
+
+ LSByte if Load PN length odd or LSByte+1 if

Load PN length even
NUL if Load PN length odd or LSByte if

Load PN length even
+ Header File Pathname Length
+ Header File Pathname (MSByte) Header File Pathname (MSByte-1)
+
+ LSByte if Header File Pathname length odd or

LSByte+1 if Header File Pathname length even
NUL if Header File Pathname length odd or

LSByte if Header File Pathname length even
+ Member Sequence Number
+ Number of Target HW IDs
+* Target HW ID Length
+* Target HW ID (MSByte) Target HW ID (MSByte-1)
+*
+* LSByte if Target HW ID length odd or LSByte+1 if Target

HW ID length even
NUL if Target HW ID length odd or LSByte if

Target HW ID length even

 User Defined Data

 User Defined Data
 LOADS.LUM File CRC

Notes: Bold Horizontal lines indicate the position of expansion points.

+ Words are repeated as a group for each load in the
media set.

* Words are repeated as a group for each Target HW ID
defined for the load.

Figure C-4 - LOADS.LUM File Format

ARINC REPORT 665 – Page 63

APPENDIX C
FILE FORMATS

C-5 FILES.LUM File Format

 MSB List-of-Files File — FILES.LUM LSB

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 FILES.LUM File Length (Most Significant Word)
 FILES.LUM File Length (Least Significant Word)
 Media File Format Version
 Spare
 Pointer to Media Information (Most Significant Word)
 Pointer to Media Information (Least Significant Word)
 Pointer to File List (Most Significant Word)
 Pointer to File List (Least Significant Word)
 Pointer to User Defined Data (Most Significant Word)
 Pointer to User Defined Data (Least Significant Word)
 Pointer to FILES.LUM File Check Value Length(Most Significant Word)
 Pointer to FILES.LUM File Check Value Length(Least Significant Word)

 Media Set PN Length
 Media Set PN (MSByte) Media Set PN (MSByte-1)

 LSByte if Media Set PN length odd or LSByte+1 if

Media Set PN length even
NUL if Media Set PN length odd or LSByte if

Media Set PN length even
 Media Sequence Number (X) Number of Media Set Members (Y)

 Number of Media Set Files
File Pointer
File Pathname Length
File Pathname (MSByte) File Pathname (MSByte-1)

LSByte if File Pathname length odd or LSByte+1 if File

Pathname length even
NUL if File Pathname length odd or LSByte if

File Pathname length even
File Member Sequence No.
File CRC
File Check Value Length
File Check Value Type
File Check Value (MSByte) File Check Value (MSByte-1)

File Check Value (LSByte+1) LSByte File Check Value (LSByte)

 User Defined Data

 User Defined Data

 FILES.LUM File Check Value Length
 FILES.LUM File Check Value Type
 FILES.LUM File Check Value (MSByte) FILES.LUM File Check Value (MSByte-1)

 FILES.LUM File Check Value (LSByte+1) FILES.LUM File Check Value (LSByte)
 FILES.LUM File CRC

Note: Bold Horizontal lines indicate the position of expansion points.

Words are repeated as a group for each file in the
media set (excluding the FILES.LUM File).

Figure C-5 - FILES.LUM File Format

ARINC REPORT 665 – Page 64

APPENDIX D
EXAMPLES

APPENDIX D EXAMPLES

Content to Appendix D is withdrawn. Appendix D is Reserved.

ARINC REPORT 665 – Page 65

APPENDIX E
MANUAL METHOD FOR CALCULATING THE “CC” VALUE

APPENDIX E MANUAL METHOD FOR CALCULATING THE “CC” VALUE

The Software Part Number CC field characters can be either computed as defined
in Section 4 or can be manually computed using the follow method. Both methods
create the same CC characters.

The six-step procedure, with an example for each step, follows:

Step 1:
Establish the characters for the PN before the check characters are known:

ACM??-1234-5678 (?? denoting unresolved CC values, not included in the
calculation)

Step 2:
Exclude delimiters and the unresolved CC values, resulting in: ACM12345678

Step 3:
Convert the ASCII characters to hexadecimal and binary equivalent:
“A” = 0x41 = 0100 0001

“C” = 0x43 = 0100 0011

“M” = 0x4D = 0100 1101

“1” = 0x31 = 0011 0001

“2” = 0x32 = 0011 0010

“3” = 0x33 = 0011 0011

“4” = 0x34 = 0011 0100

“5” = 0x35 = 0011 0101

“6” = 0x36 = 0011 0110

“7” = 0x37 = 0011 0111

“8” = 0x38 = 0011 1000

Step 4:
Add the binary equivalent characters using mod 2 addition rules (0+0=0, 0+1=1,
1+0=1, 1+1=0, No carry):

sum = 0100 0111

Step 5:
Express the resulting value in upper case hexadecimal characters:

0x47 => “47”

Step 6:
Construct the final PN, including delimiters:

ACM47-1234-5678

ARINC REPORT 665 – Page 66

APPENDIX F
IMPLEMENTATION FOR MULTI-STANDARD COMPATIBILITY

APPENDIX F IMPLEMENTATION FOR MULTI-STANDARD COMPATIBILITY

This appendix provides guidance for creating LSP and media sets compatible with
deployed ARINC 615 (Supplement 2 and later) and Boeing Legacy standards
(Pre-ARINC 665 D6-55562-5 and -6 documents). This section does not supplant
guidance provided by the ARINC 615 (Supplement 2 and later) or Boeing Legacy
specifications. Compliant media sets can only be constructed possessing the
knowledge contained in those documents as applicable.

COMMENTARY

Cross platform operation is only possible if the media, file system,
and file names meet the applicable requirements of ARINC 615 or
Boeing Legacy standards.

Multi-standard LSPs are not yet common and have not been
implemented in all support tools and data loaders consistently.
Any multi-standard LSP should be tested for compatibility with
representative models of fielded tools before distribution.

At the time of Supplement 3 to this publication (2005), Boeing
reported that Boeing Standards have been aligned to recognize both
ARINC 665 and Legacy LSP and Media Set structures. Systems
incorporating legacy designs must be carefully structured to
accommodate Load packaging, receiving, storage, management, and
deployment tools. The following offers guidance to accommodate
transition LSPs having to accommodate Boeing Legacy and 665
standards.

Compliance with Boeing Legacy and ARINC 665 standards will not
enable the spanning of an LSP across multiple media members.

Single diskette ARINC 615 (Supplement 2 and later) or Boeing Legacy compatible
media sets are easily accommodated by the ARINC 665 file structure. For
multi-diskette media sets, observe the following restrictions:

 The ARINC 665 file creation tool should accommodate duplicate filenames
within a part and across the media set.

 The ARINC 665 verification process should be able to identify files by the
combination of filename and CRC.

 Loaders and targets should support TFTP options specifying the file name
with its associated CRC

F-1 ARINC 615 (Supplement 2 and Later) and ARINC 615A

This section defines how to create loads and media sets that are compatible with
both ARINC 615-2/3/4 and ARINC 615A Loaders.

F-1.1 Construction of Media Set and Files

First the media set and files should be constructed following requirements of
ARINC 615 (Supplement 2 and later) and observing requirements therein.

F-1.2 Addition of Files to the Media Set

Second, the required ARINC 665 files should be added to the media set without
modifying the files created in F.1.1.

ARINC REPORT 665 – Page 67

APPENDIX F
IMPLEMENTATION FOR MULTI-STANDARD COMPATIBILITY

 The CONFIG.LDR and/or EXCONFIG.LDR file(s) should be listed in the
support file section of the part header file.

 All other files created in F.1.1 should be listed in as data file section of the
part header file.

F-2 Boeing 777, ARINC 629, and ARINC 615A

This section defines how to create loads and media sets that are compatible with
both ARINC 615A loaders and the Boeing 777 loader (ARINC 629).

F-2.1 Construction of the Load

First, the load should be constructed following Boeing legacy specifications
(D6-55562-5), including the defined PN format and Header/Data file naming rules.

F-2.2 Creation of the Files

Second, the ARINC 665 compatible files should be created as defined in Section 2,
with the following guidance:

 Files created in Section F.2.1 should not be modified in any manner.

 The D6-55562-5 Header File should be listed as a Support File in the
ARINC 665 part Header File.

 The D6-55562-5 Data Files should be listed as Data Files in the ARINC 665
Header File.

F-2.3 Creation of the Media Set

Third, create the media set.

 LOADS.LUM and FILES.LUM should be as defined in Section 3 of this
standard

 DISK.DIR and NON_LOAD.CRC files should be constructed for each
member of the media set as defined in D6-55562-6.

 The DISK.DIR and NON_LOAD.CRC files should be listed in the FILES.LUM
but should not be listed in either the ARINC 665 Header File or the
D6-55562-5 Header File because they are not component parts of any load.

F-2.4 Exceptions for the Load Media Set

The above procedure will create a load media set that is fully compliant with the
Boeing Legacy specifications, 777 (ARINC 629), and fully compatible with
ARINC 615A loader standard and compliant with the ARINC 665 loadable software
standards except as follows:

 The load part number will not conform to ARINC 665, Section 2.1 defined
format.

F-3 Boeing 777 (ARINC 629) and ARINC 615 (Supplement 2 and Later) and ARINC 615A

This section defines how to create loads and media sets that are mutually
compatible with ARINC 615A loaders, ARINC 615 (Supplement 2 and later) loaders,
and the Boeing 777 (ARINC 629) Data Load System.

 The load and media should be constructed as defined in Section F.2 above,
with the ARINC 615 files listed in the part header file as defined in Section
F.1.2.

ARINC REPORT 665 – Page 68

APPENDIX G
ACRONYMS AND ABBREVIATIONS

APPENDIX G ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange

ATA Airlines For America

ATA ANSI AT Attachment

BPH Bit Pattern Header

CAGE Commercial and Government Entity

COTS Commercial Off The Shelf

CRC Cyclic Redundancy Check (Code)

DB Data Base

DLS Data Load System

DOS Disk Operating System

EASA European Aviation Safety Agency

EDS Electronic Distribution of Software

FAA Federal Aviation Administration

FAR Federal Airworthiness Regulation

HW Hardware

ID Identification/Identifier

IMA Integrated Modular Avionics

Kbyte Kilo bytes, 1024 bytes

LRU Line Replaceable Unit

LSAP Loadable Software Airplane (Aircraft) Part

LSB Least Significant Bit

LSP Loadable Software Parts

LSbyte Least Significant Byte

MAT Maintenance Access Terminal

Mbyte Megabyte, 1,048,576 bytes

MSB Most Significant Bit

MSbyte Most Significant Byte

NDB Navigation Data Base

OEM Original Equipment Manufacturer

OSS Option Selectable Software

OPC Operational Program Configuration

OPS Operational Program Software

PMAT Portable Maintenance Access Terminal

PN Part Number

SAL System Address Label

SW Software

ARINC REPORT 665 – Page 69

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

APPENDIX H LOADABLE SOFTWARE TERMINOLOGY

Airline Modifiable Information (AMI)
Software Loads generated by the airlines to customize system operations.

Boeing Legacy Part
Prior to the formation of ARINC Report 665, Boeing had established standards for
software parts. LSP standards were found in Boeing Document D6-55562-5. Media
Set Part standards were in Document D6-55562-6. Parts designed in compliance
with these early Boeing standards, are referred to as Boeing Legacy parts.

Although the intent of pre-ARINC 665 Boeing Standards compliments that of ARINC
Report 665, the structures are not directly compatible. Accordingly, Boeing Legacy
parts may be represented in ARINC 665 LSP and Media Set Part formats using
select provisions, found in attachments to ARINC Report 665.

Boot Software (Boot SW)
A program used for starting the computer, which usually clears memory, sets up I/O
devices, and loads the operating system. For software loading purposes, the boot is
the minimum software that must be present to load software parts into the target
hardware.

Check Value
Cyclic Redundancy Codes have traditionally been used to validate instances of an
LSP. As file sizes and technology options grow, alternatives options to ensure
integrity become optimal. Check Value fields enable LSPs to apply advanced
integrity options.

Common
A level of “sameness” that invokes familiarity to the point that no additional
instructions or training is required when dealing with any member of the “common”
set.

Configuration Control
The process of recording, evaluating, approving or disapproving and coordinating
changes to configuration items after formal establishment of their configuration
identification or to baselines after their establishment.

The systematic evaluation, coordination, approval or disapproval, and
implementation of approved changes in the configuration of a configuration item
after formal establishment of its configuration identification or to based lines after
their establishment.

Cross Load
The act or ability to load a target hardware from an already loaded target hardware,
generally of the same type.

Cross Unit
Generally referring to another target hardware of the same type in a multi-target
hardware installation (e.g., the left FMC is the cross unit of the right FMC).

ARINC REPORT 665 – Page 70

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

Sometimes it may refer to other target hardware of the same system (e.g., control
panel and computer).

Cyclic Redundancy Check/Code (CRC)
A value calculated from a block of data and used to detect changes to the data due
to, for example, corruption of memory. CRC algorithms are chosen so that changes
in the block of data are very likely to change the calculated value.

Data Base (DB)
A systematic organization of data, which facilitates access, retrieval and update.

Data File
A specific file that contains, in addition to other information, the actual data that is
the object of the load process. One or more data files plus a header file make up a
load. See Section 2.2.3.2 for content and format.

Data Load System (DLS)
The system on the aircraft which is used for loading. The system includes the load
source, load control function, transfer medium and the target hardware.
Components of a DLS may include: ARINC 615 loader, MAT, Gatelink, AIMS DLGF,
bus to the target hardware, etc.

Dataloader (Software Loader)
Equipment (hardware and software) used to upload or download software (e.g.,
MAT, PMAT, ARINC 615 loader, etc.).

Data Loading
See “software loading.”

Deviation
The formal acknowledgment and documentation that a specific requirement will not
be implemented.

Disk
A 3.5-inch Flexible Disk Cartridge as specified in ISO/IEC 9529-1 “International
Standard - Dimensions, Physical and Magnetic Characteristics” Section 7.1.

Download (Down Load)
Refers to data transfer from a system to a transport or storage media (disk, etc.).

Field Loadable Software
Synonym for “Onboard Loadable Software.” Per RTCA DO-178B, defines Field-
loadable software as executable code or data tables that can be loaded without
removing the system or equipment from its installation. Note: DO-178B does not
draw a distinction between Field Loadable Software that is configured as part of the
target hardware and Field Loadable Software that is configured as part of the
airplane (i.e., LSAPs).

File Name
A "File Name" is the name of the file, without any information relative to its path –
File names should include all extensions and delimiters (e.g., "filename.ext"). File

ARINC REPORT 665 – Page 71

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

names may contain uppercase and lowercase letters. File names on ARINC 665
media and references to them from within ARINC 665 files should be treated as if
they were case-sensitive.

Hardware (HW)
Physical equipment, as opposed to computer programs, procedures, rules, and
associated documentation. Contrast with software, firmware.

Header File
A specific file that contains information about the load that is needed to support the
load process and software handling processes. Each load has one header file. See
Section 2.2.3.1 for content and format.

Incompatibility Check
A determination if there are any known incompatibilities between two entities (e.g.,
software - target hardware, software - aircraft).

COMMENTARY

The lack of any known incompatibilities implies that the entities are
compatible in the current environment within the thoroughness of the
tests performed. However, testing for known potential
incompatibilities cannot guarantee that the entities are totally
compatible and/or interchangeable in every installation/usage. In
many cases, factors that affect compatibility are not available to the
function performing the incompatibility check.

Interchangeability
That quality which allows a component part to be substituted for another component
part without affecting form, fit, function, or interchangeability of the parent
component or system. Note: Being interchangeable does not imply that either part is
certified for operation in any specific installation.

Interface
A shared boundary. An interface may be a hardware component to link two devices,
or it may be a portion of storage or registers accessed by two or more computer
programs.

Line Replaceable Unit (LRU)
A component which is designed to be removed and replaced by line maintenance
personnel.

List-of Loads File
A specific file which contains the media set PN, media sequence number, and a list
of the loads (and information about each load) which are on a specific media set.

Load (noun)
Synonym for “Loadable Software” and “Software Load.”

ARINC REPORT 665 – Page 72

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

Load (verb)
The process of transferring data into the program-memory of the “target hardware,”
also known as “dataload.”

Load PN (Load Part Number)
The PN of the “Loadable Software Part” (not the PN of media set on which the
software load is located).

Loadable Software
A software data set (i.e., group of files) designed for transferring into its “target
hardware” without physically altering the hardware.

Loadable Software Airplane (Aircraft) Part (LSAP)
“Software” that is: (1) intended for transfer into its “target hardware” without
physically altering the hardware or otherwise triggering the need for return-to-
service conformity testing of the “target hardware,” and (2) needs to be formally
referenced independently from any other part (hardware or software) by airline or
aircraft manufacturer’s processes, and (3) is not configuration controlled as a
component part of the target hardware, and (4) is configuration controlled as a
component part of the aircraft.

COMMENTARY

Inherent in the definition of a LSAP is the concept that the LSAP is an
independent, autonomous aircraft part from the target hardware.
Installing a LSAP on the aircraft must not impact the conformity of the
target or any other aircraft hardware. However, it may impact the
aircraft conformity.

Loadable Software Airplane Parts (LSAPs) are a subset of the LSP
class of parts. All provisions for LSPs in this document also apply to
LSAPs.

Loadable Software Part (LSP)
“Software” that is intended for transfer into its “target hardware” without physically
altering the hardware; and needs to be formally referenced independently from any
other part (hardware or software) by airline or aircraft manufacturer’s processes.

Loadsite
The position, place or memory location in the “target hardware” designed to contain
a “load.”

Load Source
The source of the data and header files that are being loaded (Mass Storage
Device, CD-ROM, Gatelink, PC-Card, etc.).

An identifier for specific type of load classifies the LSP to general functional
operations. The type is selected by supplier to correspond with the content of the
Load Type Description field.

ARINC REPORT 665 – Page 73

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

Load Type
An identifier for specific type of load classifies the LSP to general functional
operations. The type is selected by supplier to correspond with the content of the
Load Type Description field.

Mass Storage Device (MSD)
A large capacity nonvolatile storage medium for software or data entities. Example:
A hard disk drive or CD-ROM, which contains multiple files, loads, data bases, etc.

Media
Devices or material which act as a means of transferal or storage of software, for
example; programmable read-only memory, magnetic tapes or disks, etc.

Navigation Data Base
A read-only data base of navigational information for upload to the flight
management computer.

Non-Operational
Not performing its intended normal mission function. A unit may be “non-
operational” when it is: failed, in software load mode, performing boot operations,
aligning itself, etc.

NUL
ASCII no data character (value 0x0000).

Onboard Load
Transfer of “loadable software” into “target hardware” while the hardware is installed
on the aircraft.

Onboard Loadable Software
Synonym for “Field-Loadable Software.”

Operational
Able to or performing its intended normal mission function.

Operational Program Configuration (OPC)
A load which contains information to control/select the flow/functionality of the OPS.
This load replaces (or supplements) hardware program pin functions and may
contain OPS option selections, installed equipment complement, aircraft structural
configuration, engine type or other information that the OPS needs to know to
properly operate in the specific environment. OPCs are generally very small and
aircraft or customer specific.

The OPC is a classification of Option Selectable Software (OSS) LSPs.

Operational Program Software (OPS)
A load which contains application software for the “target hardware.” OPSs are
generally large, take longer to load and are fleet or model generic.

ARINC REPORT 665 – Page 74

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

Option Selectable Software (OSS)
Option Selectable Software is an LSP that the operator can modify within some
boundaries without LRU re-certification. The system design should protect against
inadvertent selections involving unsafe configurations for the Target HW.
(Reference ARINC 667, RTCA DO-178).

Parallel Load
Parallel loading allows multiple target hardware of the same type to be
simultaneously loaded with the same SW.

Part Number
A set of numbers, letters or other characters used to identify a configuration item.

Part Root Directory
A directory in the root directory of a media member, which is the topmost directory
level for all files within a single load part number. This same directory name should
be used on all media members which contain files for a given load part number.

Pathname
The File Pathname is the complete path to the file, without the name of the file. A
Pathname should always begin at the root directory of the media member (indicated
by a leading backslash). A Pathname should always finish with a backslash - When
a Pathname includes one or more directory names, the Pathname is constructed
with the most significant (i.e., parent) directory name first, followed by lower level
(i.e., child) directory name(s). The backslash character (“\”) is used as the delimiter
between concatenated directories.

Pre-Load (Preload)
The “shop load” of a “Loadable Software Airplane Part” into the same hardware it
would reside in if the software were installed on the aircraft.

Note: Installation of a pre-loaded LRU on the aircraft does not conform the aircraft to
its authorized software drawing configuration. It takes an independent aircraft
software configuration verification (after LRU installation) to conform the aircraft to
its authorized software configuration.

Pre-production Part
A pre-production part or system is used for development testing and is not intended
for delivery.

Process
A collection of ordered activities performed to produce a definable output or product.

Production Part
A production-configured hardware or software part intended for delivery.

Program Memory
The nonvolatile memory that the load is intended to remain in when the target
hardware is not in software load mode. Program memory does not include any
buffer memory that data may reside in during data transfer.

ARINC REPORT 665 – Page 75

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

Protocol
A formalized set of rules by which computers communicate.

Root Directory
The directory level for any given media, at which the media file system is intended to
be mounted.

Simultaneous Load
Simultaneous Load is independently loading multiple target hardware (which may be
of different type) with software (which may be different) at the same. This basically
requires 2 independent loader functions even though they may be both using the
same interface bus and source media.

Shop Load (Bench Load)
Transfer of “loadable software” into “target hardware,” while the hardware is not
installed on the aircraft.

Short Load
The concept of Short-Load is that the target hardware may only need to transfer
(from the load source) a selected subset of the complete load in order to bring its
program memory from the current bit image to the correct bit image for subject
software PN. Short-Load is only valid if the process ensures (to the appropriate
integrity) that the resulting target hardware program memory bit image is exactly the
same as it would be if the complete software load were transferred.

Software
Data or code (executable or not) that defines, controls, or is used by its “target
hardware” to perform its function.

Software Load
Synonym for “loadable software.”

Software Load PN
Synonym for “load part number.”

Software Loading (SW Loading)
Process of uploading software (including data) to the “target hardware.”

Software Part Number
Synonym for “load part number.”

Support File
Data associated with the LSP, such as description, Readme.txt, or Copyright
statement, may be included in the content of the part, at supplier’s discretion. Some
system types may anticipate specific file in form of a support file, as directed in
selected sections of this document. Caution is given for LSP developers to minimize
support file inclusion, recognizing any correction to a support file included within the
definition of a load constitutes a distinct LSP.

ARINC REPORT 665 – Page 76

APPENDIX H
LOADABLE SOFTWARE TERMINOLOGY

System
A group of components united by interaction or interdependence, performing various
tasks but functioning as an integrated whole.

Target Hardware (Target HW)
The subject hardware of an operation. For example: the destination of the load, the
hardware/LRU/location selected by the maintenance person as the destination of
the load, the hardware the software is designed to operate in, etc.

Target HW ID (THW_ID)
Target HW ID identifies a type of loadable target hardware.

Target HW ID POS (THW_ID_POS)
The THW_ID_POS identifies a specific instance of loadable target hardware.

Upload (Up Load)
A data transfer from the software media (disks, etc.) to the “target hardware.”

Virus
A piece of software that installs itself on a computer system and reproduces without
the user’s knowledge, and which may have a damaging effect on the computer
system.

ARINC REPORT 665 – Page 77

APPENDIX I
REFERENCE GUIDE

APPENDIX I REFERENCE GUIDE

This Reference Guide lists the references in ARINC Report 665: Loadable Software
Standards. The references are categorized by their importance to the Portable Data
Loader (PDL) developer, Airborne Data Loader (ADL) developer, and Target
HardWare (THW) developer. The following numbers identify the categories:

1. Reference document required to implement the recommendations of ARINC
Report 665.

2. Reference document with information that supports ARINC Report 615A.

3. Reference document that provides additional information.

ARINC 665 - Loadable Software Standards PDL ADL THW
ANSI X9.30 (part 2) SHA-1 Hash Algorithm-1 1 1 1
ARINC Specification 429: Mark 33 Digital Information Transfer System (DITS),
Part 1, Functional Description, Electrical Interface, Label Assignments and Word
Formats [Equipment ID for THW ID only]

1 1 1

ARINC Report 615-3: Airborne Computer High Speed Data Loader 3 3 3
ARINC Report 615A: Software Data Loader Using Ethernet Interfaces 1 1 1
ARINC Specification 629: Multi-Transmitter Data Bus 3 3 3
ARINC Report 641: Logical Software Part Packaging for Transport 3 3 3
ARINC Report 667: Guidance for the Management of Field Loadable Software 3 3 3
ARINC Report 827: Electronic Distribution of Software by Crate (EDS Crate) 3 3 3
ARINC Report 835: Guidance for Security of Loadable Software Parts Using
Digital Signatures

3 3 3

ARINC Specification 838: Loadable Software Part Definition Format 2 2 2
ASCII - American Standard Code Information Interchange 2 2 2
ATA 2000 - Air Transport Association (Airlines for America (A4A)) 2 2 2
ATA 2000 Bar Code Standard - Code 39 1 1 2
CAGE Code - Commercial And Government Entity Code 3 3 3
D6-55562-5 Header File 3 3 3
European Aviation Safety Agency (EASA) Regulatory Requirements 3 1 1
FAR 45.15 - replacement or mod part marking 3 3 3
Federal Aviation Authority (FAA) Regulatory Requirements 3 1 1
IETF RFC1321-The MDS Message Digest Algorithm 1 1 1

ISBN 1-57231-344-7 Windows 95, NT File Systems - Long File Names 2 2 2
ISO 9660 – CD Formatting (Joliet file specifications) 1 1 3
ISO/IEC 9529-1 “International Standard - Dimensions, Physical and Magnetic
Characteristics” Section 7.1.

1 1 3

PC Card Standard 2 2 3
PSS ID Number Q140418 Fat Boot Sectors (Microsoft documentation) 2 2 2
RTCA DO-178 Software Considerations in Airborne Systems and Equipment
Certification

3 1 1

ARINC REPORT 665 – Page 78

APPENDIX J
AIRPLANE LOADABLE SOFTWARE – REQUEST FOR MANUFACTURER’S CODE DESIGNATION

APPENDIX J FORM: AIRPLANE LOADABLE SOFTWARE – REQUEST FOR
MANUFACTURER’S CODE DESIGNATION

Airlines and organizations developing software should utilize a unique
Manufacturer’s Code designation. To request an MMM code, the preferred
method is via a web application, found here:

http://www.aviation-ia.com/cf/manucode_form.cfm

Alternately, an MMM code can be requested via email using the form on the
following page. Return the form via email to manucode@sae-itc.org or by fax
to +1 301 383-1231.

ARINC REPORT 665 – Page 79

APPENDIX J
AIRPLANE LOADABLE SOFTWARE – REQUEST FOR MANUFACTURER’S CODE DESIGNATION

Request for ARINC Report 665 Manufacturer’s Code (MMM) Designation

From: __

Fax: __

Telephone: __

Email Address: __________________________________

Subject: Airplane Loadable Software - Request for Manufacturer’s Code
 Designator

To: ARINC Industry Activities Staff
Manufacturer’s Code Administrator
Fax: +1 301 383-1231
Email: manucode@sae-itc.org

REF: Manufacturer’s Code Date: _______________

In accordance with ARINC Report 665, this is a request for assignment of a
Manufacturer’s Code, also known as a “MMM” Code.

The following information is required to process the Manufacturer’s Code
assignment.

Complete Customer Name: (Upper and Lower Case Required, 2 lines of 50)
(Line 1: Company Name, Line 2: Configuration Management Group supplying
software)

Corporate Address:

PREFERRED NEW CODE: ____________________
(Note: If your preferred new code is already assigned, we will call you and negotiate
for an alternate.)

Phone: _____________________ Fax: _________________________

Response:

ASSIGNED CODE: ____________________

ARINC Industry Activities Staff
Manufacturer’s Code Administrator

ARINC REPORT 665 – Page 80

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

APPENDIX K CALCULATING LOADABLE SOFTWARE PART CRC

K-0 Overview

This appendix offers orientation to, instructions for and examples of Loadable
Software Cyclic Redundancy Codes (CRC). The material is presented in the
sequence of:

 A conceptual CRC Algorithm

 A manual approach to calculating an 8-bit CRC

 A functional flow for automatic generation of a CRC

o This flow incorporates a table build and look-up option to enhance
process efficiency

 A sample C code program for calculating Loadable Software CRCs

o The sample represents a 32-bit CRC

o The code is designed in accordance with the functional flow provided
above

o Alternative size CRC generator code can be derived by appropriate
alterations of variables

o Modifiable variables are consistent with instructions given in
Section 4.3

 Sample files and corresponding CRCs

These materials are given to assist in coordinating CRCs between software supplier
and receiver, to assist in tracking violations of airplane software integrity. The code
and instructions are given strictly as guidance in aligning processes and tools with
Airplane Loadable Software CRC specifications. Sender and Receiver have
responsibility for the CRC tools they elect to employ in their processes.

It is significant to recognize, there are multiple approaches to CRCs. Software may
employ a number of CRCs each for a distinct purpose. The CRCs of this standard,
address the packaging of software parts. Other CRCs may be applied internally,
within the execution of the software, to insure processing integrity. No relationship
between the packaging CRC and internal, processing CRCs should be established.

K-1 Conceptual CRC Algorithm

The following is a conceptual CRC algorithm based on the formal definition. It
cannot be implemented as specified, mainly because there is no computer hardware
register R big enough to accommodate shifting an entire data block left by one bit.
This algorithm is offered only as an aid to understanding.

ARINC REPORT 665 – Page 81

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

Definitions:

 A block B of binary data to be CRC checked is an ordered sequence of L bits
indexed from (L-1) down to 0.

 L 1 L 2 1 0B b ,b , ,b ,b
.

 A CRC “generator” G is an ordered sequence of (n+1) bits indexed from n
down to 0 such that ng 1 and 0g 1.

 n n 1 1 0 n 1 1G g ,g , ,g ,g 1, g , ,g ,1
.

Imagine a hypothetical (and very long) bit shift register R whose entire contents can
be shifted left one bit at each step of the computation; that is, its Most Significant Bit
gets shifted off its left end, all of its other bits shift left one position, and a zero gets
shifted into its Least Significant (or right-most) Bit position. Assume that R is
partitioned into three contiguous sections that can be accessed individually by
name:

 A high order bit T used for testing,

 n contiguous bits collectively called CRC, and

 (L+n) contiguous bits collectively called X.

 Note: in the algorithm given below the notation [T,CRC]
means the concatenation of T and CRC

The algorithm

Set bit T to zero
Set each bit of CRC to zero
Initialize the L high order bits of X with B
Fill the remaining low-order bits of X with “n” zero bits
loop for each bit of X (L + n times)
 Perform a one bit left logical shift on the entire register R
 if T=1
 Set [T,CRC] to [T,CRC] exclusive-OR G
 end if
end loop

The CRC section of R contains the result of the computation.

T CRC X

R

1
n L+ n

0 0 0 … 0 0 00 bL-1 bL-2 … b1 b0 0 0 0 … 0 0 0

T CRC X

ARINC REPORT 665 – Page 82

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

K-2 Manual Approach for CRC Generation

A manual approach for calculating an 8 bit CRC is provided in Appendix E.

K-3 A Functional Flow for Automatic Generation of a CRC

This section describes a table-driven algorithm for computing a cyclic redundancy
code of width = n bits. Function main calls both InitTable and CRCBuffer.

Function main

Computes an n-bit cyclic redundancy code CRC on a binary file F of data.

ARINC REPORT 665 – Page 83

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

ARINC REPORT 665 – Page 84

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

K-3.1 Function InitTable

Initializes the 256 element lookup table T used to calculate the CRC.

ARINC REPORT 665 – Page 85

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

K-3.2 Function CRCBuffer

Updates the running CRC computation per the contents of buffer B.

ARINC REPORT 665 – Page 86

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

K-4 Sample C Code Program for Calculating Loadable Software CRC

The following C code example represents logical structure of a software program
designed in accordance with the CRC calculation methods depicted in Sections K-1
and K-3. The code is offered "AS IS" for instructive purposes only and may not
produce consistent CRC values in variable environments and operating platforms.
Creators of a CRC Generator based on this C code example assume full
responsibility for the results of such generators.

The following example C code computes the ARINC 32-Bit Standard CRC on a
specified file.

/*--------------------------------+-----------------------------------*\
| C R C - 3 2 E x a m p l e |
+--+
| This program computes a 32 bit Cyclic Redundancy Code (CRC) on the |
| contents of a single file = FILENAME. The algorithm has the |
| following specification: |
| |
| Name: CRC-32 |
| Width: 32 bits |
| |
| Polynomial: X**32 + X**26 + X**23 + X**22 + |
| X**16 + X**12 + X**11 + X**10 + |
| X**8 + X**7 + X**5 + X**4 + |
| X**2 + X + 1 |
| |
| Generator 0x04C11DB7 |
| Initialization Value for CRC: 0xFFFFFFFF |
| Input Bytes Reflected: False |
| Final CRC Reflected: False |
| XOR With Final CRC Value: 0xFFFFFFFF |
| |
| Average Probability of |
| Not Detecting an Error: 2.33 * [10**(-10)] |
| |
| Correct CRC for 256 Byte File |
| 0x00 0x01 0x02...0xFE 0xFF: 0xB6B5EE95 |
| |
| Assumptions that could affect portability: |
| char is 8 bits wide |
| unsigned long int is 32 bits wide |
| |
| Invocation: |
| crc-32 FILENAME |
--/
// Include Files
 #include <stdlib.h>
 #include <stdio.h>

// Preprocessor Constants
 #define byte char
 #define word_32 unsigned long int

ARINC REPORT 665 – Page 87

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

 #define BUFSIZE 1024 // Size of file buffer in bytes
 #define G 0x04C11DB7 // The generator G
 #define Init 0xFFFFFFFF // Initialization value for CRC_value
 #define TABLEN 256 // Length of look-up table
 #define XorOut 0xFFFFFFFF // To be XORed to final CRC_value

// Global (file scope) Variables
 static byte Buffer[BUFSIZE]; // The file buffer
 static word_32 CRC_value; // Holds the running CRC value
 static FILE* fp; // File pointer
 static size_t nb; // Number of bytes read from file
 static word_32 table[TABLEN]; // Look-up Table

// Function Prototypes to Resolve Forward Referencing (See below)
 static void CRCBuffer (int);
 static void InitTable (void);

/*--------------------------------+-----------------------------------*\
| m a i n |
--/
void main(int argc, char* argv[]) // argv[1] is FILENAME
{
 // The operator must supply a FILENAME
 if (argc != 2)
 {
 printf("Error: Command line must contain a FILENAME\n");
 }

 // We must be able to open that file
 else if ((fp=fopen(argv[1],"rb"))== NULL)
 {
 printf("Error: Can't open input file\n");
 }

 // Otherwise compute CRC
 else
 {
 // Initialize the look-up table
 InitTable();

 // Initialize the CRC value
 CRC_value = Init;

 // Loop for each BUFSIZE (or less) block of bytes in FILENAME
 while (!feof(fp))
 {
 // Attempt to read a block of BUFSIZE bytes
 nb=fread(Buffer,sizeof(char),BUFSIZE,fp);

 // If any bytes were read, compute the running CRC_value
 // for them
 if (nb>0)
 {
 CRCBuffer(nb);
 }
 }

 // Apply XorOut

 CRC_value ^= XorOut;

 // Close FILENAME
 fclose(fp);

ARINC REPORT 665 – Page 88

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

 // Report
 printf("CRC = %08X\n",CRC_value);
 }
}

ARINC REPORT 665 – Page 89

APPENDIX K
CALCULATING LOADABLE SOFTWARE PART CRC

/*--------------------------------+-----------------------------------*\
| I n i t T a b l e |
| |
| Initializes the look-up table |
--/
static void InitTable(void)
{
 word_32 generator = G; // CRC generator
 word_32 shift_reg; // A shift register
 word_32 leading_bit; // MSB of shift_reg before shift
 int i; // Index into table 0..TABLEN
 int k; // Bit index into byte 7..0

 for (i=0; i<TABLEN; i++)
 {
 shift_reg = ((word_32)i << 24);
 for (k=7; k>=0; k--)
 {
 leading_bit = shift_reg & 0x80000000;
 shift_reg = shift_reg << 1;
 if (leading_bit)
 {
 shift_reg = shift_reg ^ generator;
 }
 }
 table[i] = shift_reg;
 }
}

/*--------------------------------+-----------------------------------*\
| C R C B u f f e r |
| |
| Computes the running CRC_value for the current Buffer |
--/
static void CRCBuffer(int nb)
{
 int i; // Byte index into buffer
 int k; // Index into look-up table

 // Loop for each byte in Buffer
 for (i=0; i<nb; i++)
 {
 // Compute index into look-up table for the current byte
 k = ((CRC_value>>24) ^ (int)Buffer[i]) & 0xFF;

 // Update the running CRC_value for the curtrent byte
 CRC_value = (CRC_value << 8) ^ table[k];
 }
}

ARINC REPORT 665 – Page 90

APPENDIX L
CRC STANDARD REFERENCE FILES FOR SOFTWARE DATA LOADING

APPENDIX L CRC STANDARD REFERENCE FILES FOR SOFTWARE DATA LOADING

L-0 Introduction

This appendix contains a list of test files for checking CRC software algorithms.
These files can be used by developers of software data loaders to test the CRC
calculating functionality of their data loader. These files will enable developers to
ensure that their data loaders conform to ARINC 665 CRC calculation standards.

The description of these files and CRCs are provided in this appendix. The test data
comprising these files are posted on the ARINC IA Website in computer data
formats. See the Software Data Loader Subcommittee webpage, here:
http://www.aviation-ia.com/aeec/projects/sdl/index.html.

Software data loader developers and users may download these files to check the
implementations of their CRC software algorithms.

L-1 Standard CRC Reference File Descriptions

Table L-1 provides the file name, size, and content of the standard CRC Reference
Files.

Table L-1 – Standard CRC Reference File Descriptions

File Name Size (in bytes) Content
CRC_T01A.rom 0 Empty
CRC_T02A.rom 128 All 0xFF
CRC_T03A.rom 100 All 0x00
CRC_T04A.rom 256 128 x (0xAA55)
CRC_T05A.rom 3976 Random values
CRC_T06A.rom 18152 Random values
CRC_T07A.rom 34816 Random values
CRC_T08A.rom 34817 One byte more than CRC_T07
CRC_T09A.rom 1758480 Random values
CRC_T10A.rom 61 Ethernet frame
CRC_T11A.rom 256 Values of 0x00 through 0xFF
CRC_T12A.rom 11 String "ACM12345678"
CRC_T13A.rom 15 String "ABCDEFGHIJKLMNO"

L-2 CRC Values for Reference Files

This section provides the file names and CRC values for reference files for 8-, 16-,
and 32-bit CRCs.

L-2.1 CRC 8-Bit Test Results

Table L-2.1 - Test File Results for 8-Bit CRC’s

File 8 Bit CRC
CRC_T01A.rom 0x00
CRC_T02A.rom 0x00
CRC_T03A.rom 0x00
CRC_T10A.rom 0xE8
CRC_T12A.rom 0x47
CRC_T13A.rom 0x40

ARINC REPORT 665 – Page 91

APPENDIX L
CRC STANDARD REFERENCE FILES FOR SOFTWARE DATA LOADING

L-2.2 CRC 16-Bit Test Results

Table L-2.2 - Test File Results for 16-Bit CRCs

File 16 Bit CRC
CRC_T01A.rom 0xFFFF
CRC_T02A.rom 0x1DA3
CRC_T03A.rom 0x4634
CRC_T04A.rom 0x1D7E
CRC_T05A.rom 0xA208
CRC_T06A.rom 0xA12C
CRC_T07A.rom 0x2DA3
CRC_T08A.rom 0xCF07
CRC_T09A.rom 0x9EB1
CRC_T10A.rom 0xD8D2
CRC_T11A.rom 0x3FBD

L-2.3 CRC 32 Bit Test Results

Table L-2.3 - Test File Results for 32 Bit CRC’s

File 32 Bit CRC
CRC_T01A.rom 0x00000000
CRC_T02A.rom 0x322AB4A6
CRC_T03A.rom 0x53631199
CRC_T04A.rom 0xC2F270BC
CRC_T05A.rom 0x96142DCA
CRC_T06A.rom 0xAE34897C
CRC_T07A.rom 0x55A1228D
CRC_T08A.rom 0x3109EB62
CRC_T09A.rom 0x239B226B
CRC_T10A.rom 0xC0BB3B8E
CRC_T11A.rom 0xB6B5EE95

L-3 Disclaimer

The user of these sets of files and CRC results are responsible for the use and
interpretations of the results as they pertain to the checking of their CRC software
algorithms. ARINC and the AEEC accept no responsibility for the checking of the
user’s implementation of the CRC calculations and their interpretation within the
user’s application.

ARINC REPORT 665 – Page 92

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

APPENDIX M CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC
REPORT 665

This appendix is specific to implementers who create or maintain LSPs
specific to Supplement 2 to ARINC Report 665, published August 30, 2002.
The material was originally published as a working paper as “Clarifications to
ARINC 665-2.”

It is important to note that air transport software should be created,
maintained, and dispositioned using the latest supplement of ARINC Report
665.

M-1 Introduction

This appendix provides clarifications to specific ARINC 665 issues that are
judged to be of particular importance. When new Loadable Software Parts
(LSPs) are created in accordance with ARINC 665-2, the preferred
interpretation identified in this appendix should be implemented. This
appendix is only concerned with issues that are known to cause
incompatibility between tools or which cause dataloading failures that prevent
LRUs from being uploaded. However, it is not the intention of this appendix to
cause any existing software to be modified or any existing loadable software
parts to be changed. The purpose of this appendix is to provide clarifications
to the community and to provide an interpretation that should be used on any
new loadable software parts built to ARINC 665-2.

The goal of this document is to clearly identify the issues, and provide a
classification system for the variations that are in current use, so that users
can:

 Understand the issues

 Classify their tools and LSPs

 Obtain tools that work for their LSPs

 Implement new software for target hardware using the preferred
interpretations

Each issue identified in Section M-3 of this document is structured as follows:

 Problem Statement

 Preferred Interpretation

 History/Discussion

 Alternate LSP Implementations

 Alternate Tool Implementations

M-2 Background

M-2.1 Before ARINC 665

Prior to the release of ARINC 665, common loadable software practices were
controlled by agreement between aircraft manufacturer and aircraft system
supplier. These agreements offered a framework around which much of the
original ARINC 665 standards were patterned. Additionally, ARINC 665 served
to accommodate and promote emerging technologies and advanced designs.
The standard was designed to accommodate primary objectives of:

 Retain and promote existing loadable software practices

ARINC REPORT 665 – Page 93

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

 Enable software load over an Ethernet protocol

 Allow loadable software parts to be distinct and separable from host
media

 Allow for growth in content and application of loadable software

M-2.2 ARINC 665

The objective of ARINC Report 665 is to define Loadable Software Airplane
Parts in such a way as to offer compatibility and interoperability between
airplane systems and tools handling loadable software. This is accomplished
by establishment of “common principles and rules” addressing “part
numbering, content, labeling and formatting.”

Successive updates of ARINC 665 were designed to retain the fundamental
structure of loadable software parts. Added data fields were strategically
placed to maximize compatibility between format versions to avoid redesign
of systems applying the parts, so long as the fields are consistently defined
and applied.

The primary tools involved with ARINC 665 LSPs are:

 ARINC 615A dataloaders

 ARINC 615A target dataloading engines

 ARINC 665 LSP/media set creation tools

 ARINC 665 LSP/media set inspection or verification tools

Other tools may also be involved, for example:

 Target dataloading engines that accept ARINC 665 parts.

 Import tools used to move LSPs into a repository so that it may be
used by some other tool (e.g., a dataloader). Import tools usually parse
and check an LSP, and so are subject to ARINC 665 issues.

 Electronic distribution tools. Distribution tools may parse and check an
LSP prior to distribution and/or after distribution.

In the preparation of ARINC 665, the attention given to provide concise and
complete field descriptions proved successful with the exception of a few
fields. Each update of ARINC 665 attempts to clarify and align design and
process issues. For example, ARINC 665-3 included many clarifications, but
failed to explain how these clarifications were to apply back to earlier part
format versions.

Accordingly, Appendix M identifies key issues of ARINC 665-2 for which
clarification and instruction have proven necessary. Designers of new
Loadable Software Parts and systems are expected to incorporate these
clarifications in their use of ARINC 665-2.

M-3 ARINC 665-2 Identified Clarifications

M-3.1 Unique Filename Convention

M-3.1.1 Problem Statement

The ARINC 615A load protocol allows the target hardware to request files from
a number of LSPs during one load session. The software loader looks for the

Tom Williams
Cross-Out

Tom Williams
Inserted Text
MSP

Tom Williams
Cross-Out

Tom Williams
Inserted Text
MSP

ARINC REPORT 665 – Page 94

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

requested file(s) from all LSPs which are currently being loaded. It may send
the wrong file if the file names are not unique among LSPs. The symptom
most often seen is a target side CRC failure as a result of this file confusion.

This problem may occur regardless of whether the identical file names are
located in the same or separate LSPs. This problem may also occur
regardless of whether the identical file names are located in the same or
separate MSPs.

In ARINC Report 665-2, Section 2.2.2, the requirement is stated:

“The filename should be assigned such that it is unique for all files defined by
the Manufacturer’s Code.”

The intent of this requirement is to avoid file conflicts where the same file
name is used for different file contents. It was originally intended that files
would be renamed for each LSP using the part number as part of the file
name. Where the same file name is used for the same contents, this issue
does not generally cause a problem. Increasing use of COTS on the airplane
complicates this design.

M-3.1.2 History/Discussion

The ARINC 665-2 requirement:

“The filename should be assigned such that it is unique for all files defined by
the Manufacturer’s Code”

is recognized for its intent to avoid file conflicts. However, when interpreted in
isolation, this requirement implies unreasonable and unnecessary obligations
such as preventing the reuse of static reference or library files common
between LSPs and renaming of retained files in subsequent release of an LSP.
To allow for reuse and to avoid unnecessary burden, the requirement
statement was corrected in ARINC 665-3 to read:

“The filename should be assigned such that it is unique for each load
associated to the Manufacturer’s Code.”

This guidance does not invalidate previously released LSPs but
accommodates, acknowledges, and is aligned with existing practices.

This ARINC 665-3 guidance has implications on build and verification tools
which anticipate or enforce the rigidity of the ARINC 665-2 requirement. Static
reference or library files common between LSPs in a given Media Set Part
(MSP) may now be repeated on that MSP.

This guidance makes allowance for an associated condition where a file name
may be repeated in distinct LSPs on the MSP, yet reflect altered content.
Instructions for distinguishing instances of repeated files are offered in
Section 3.2.4.1 of ARINC Report 665-3.

M-3.2 LSP Implementations

M-3.2.1 Implementation A (Preferred)

Following the original intent of ARINC 665-2, all file names for a given MMM
Code are unique because they reflect the MMM Code, LSP part number, etc.

ARINC REPORT 665 – Page 95

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

COMMENTARY

Implementation A implies that every LSP part number roll
requires all LSP file names to be changed regardless of whether
or not the contents have changed. File Part Numbers may or
may not change. This imposes a burden on the part creation
process but it completely eliminates any duplicate file name
issues from arising.

M-3.2.2 Implementation B (Acceptable)

The file names of all LSPs which can be loaded to a particular target hardware
are unique. File names do not conform to the standard in that MMM Code and
part number are not necessarily included in the name of each LSP file. This
typically is used where a file naming convention is applied in common across
a set of LSPs that may come from different manufacturers but the naming
convention prevents duplicate file name issues.

M-3.2.3 Implementation C (Discouraged)

Common file names may be used for different file contents across multiple
LSP, but all file names are unique within an LSP. If different LSPs have
common file names and the ARINC 615A data loader is directed to load
multiple LSPs in a single upload operation, this issue may cause problems.

COMMENTARY

It should be noted that future ARINC 665-3 (Format 8004) LSPs
may have common file names for different file contents, if the
ARINC 615A-3 Part Number and Checksum TFTP options are
used, they will permit these common file names to be loaded
correctly.

The filename is no longer sufficient to identify a unique file. Either Part
number and filename or filename and CRC are required to identify a particular
file. When an LRU requests files for a set of LSPs, the LRU must distinguish
among the duplicate files using either the Part Number or Checksum TFTP
options as defined in ARINC 615A-3.

It is the responsibility of all LSP creators to ensure that a part does not
contain duplicate file names with differing contents and with identical CRCs.
Since the data file CRCs are only 16-bit CRCs, which are only valid over a file
that is no larger than 4 Kbytes, it is theoretically possible to violate this
statement and still be valid with files larger than 4 Kbytes in size.

M-3.2.4 Implementation D (Strongly Discouraged)

Common file names used for different file contents within an LSP. It should be
noted that ARINC 665-2 and ARINC 665-3 prohibit this usage.

COMMENTARY

It should be noted that ARINC 665-3 (Format 8004) LSPs may
have common file names for different file contents; if the ARINC
615A-3 Checksum TFTP option is used, it will permit these
common file names to be loaded correctly.

ARINC REPORT 665 – Page 96

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

Implementation D uses have been seen in legacy systems.

ARINC 615A-2 data loaders will likely fail with Implementation D parts.

ARINC 615A-3 data loaders may or may not fail with Implementation D parts.

The filename is no longer sufficient to identify a unique file. Either part
number and filename or filename and CRC are required to identify a particular
file. When an LRU requests files for a set of LSPs, the LRU must distinguish
among the duplicate files using either the part number or checksum TFTP
options as defined in ARINC 615A-3.

It is the responsibility of all LSP creators to ensure that a part does not
contain duplicate file names with differing contents with identical CRCs. Since
the data file CRCs are only 16-bit CRCs which are only valid over a file that is
no larger than 4 Kbytes, it is theoretically possible to violate this statement
and still be valid with files larger than 4 Kbytes in size.

M-3.3 Guidance on Tool Implementations

When parsing a set of LSPs it may be possible to find duplicate file names
which should contain identical data. In this case, it is acceptable to choose
any file matching the given file name.

It is the responsibility of all LSP creators to ensure that a part does not
contain duplicate file names with differing contents with identical CRCs.

The following table provides desired operational characteristics by LSP
implementation and tool classification.

 Imp. A LSP Imp. B LSP Imp. C LSP Imp. D LSP
Data Loader All data loaders

work properly
All data loaders
work properly

Data loader may
fail one of the
multiple LSPs
loaded

ARINC 615A-3
data loaders will
work. Older data
loaders will not
work.

Target
Hardware
Engine

All engines work
properly

All engines work
properly

Engine may see a
data file CRC error
for some transfers

ARINC 615A-3
engines will work.
Older engines will
not work.

Creator Only Imp. A LSPs
are created.

Only Imp. B LSPs
are created.

Creator does not
take subsequent
multiple LSP
loads into
account.

Creator has no
effect.

Inspector Errors given for
non-Imp. A file
names

Errors given for
non-Imp. B file
names

N/A Should produce
an error

M-3.4 Data File Length (DFL)

M-3.4.1 Problem Statement

Before the publication of Supplement 3 of ARINC 665 in 2005, ARINC 665
specified that the length of all data files should be an even number of bytes
and no guidance was provided for files which are an odd number of bytes in
length.

In addition, the field description in ARINC 665-2, Section 2.2.3.1.2.1 was
inadvertently overlaid by a copy of the text in the section which preceded it.

ARINC REPORT 665 – Page 97

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

As a consequence, manufacturers had no explicit guidance on how to treat a
data file when its length was an odd number of 8-bit bytes and were missing a
clear description of how to use the length field and interpreted as they saw fit.
It should be noted that this does not apply to support files. Only data files are
affected.

M-3.4.2 History/Discussion

The field description in ARINC 665-2 was inadvertently overlaid by a copy of
the text in the section which preceded it. The ARINC 665-2 text is:

“The Data File PN field is an 8-bit ASCII character string whose length is
defined by the Data File PN Length field. The field is allocated...”

The text does not pertain to DFL. The SDL Subcommittee addressed this
quickly after the ARINC 665-2 standard was published and the meeting report
described the correction. Here is the correction that was published (years
later) in the ARINC 665-3 revision.

“The data file length is the number of 16-bit words in the data file. A half-word
at the end of a data file should be counted as a complete word.”

The correction addressed the problem of the overlaid text. However, an
unfortunate outcome was that some users were already interpreting the field
to be the number of 8-bit bytes. Another unfortunate outcome of the
correction is that it introduced another problem – the corrected text does not
allow one to accurately convey the length of odd-length files.

The ARINC 615A-2 standard assumes that data files will be even length.
However, there are many LSAPs that contain odd-length files. In actual
practice, dataloaders and tools must accommodate odd-length files in order
to load these LSAPs.

The SDL Subcommittee took another corrective action to address the odd-
length file issue. A new field called Data File Length in Bytes (DFLB) was
added to the ARINC 665-3 LUH file. The DFL field was left as a word count
field for backwards compatibility, and the new DFLB field conveys the
accurate length information needed for odd-length files.

The result is that the DFL field cannot be relied upon to give an accurate
length unless: 1) you know that the field has a byte count or 2) you know that
the DFL field has a word length, and you know that your data files are even
length.

The issue is further complicated by the question of rounding up or down in
the case where a word count is placed in the field and the file is odd length.
ARINC 665-2 did not address this case. However, ARINC 665-3 document (see
above) addressed this with a “rounding up” decision.

The support file length field does not have this issue. In ARINC 665-2, that
field was specified as a byte count. Therefore, none of these problems
happened with that field.

Known interpretations include:

 General implementation is consistent with the preferred design

ARINC REPORT 665 – Page 98

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

 In some LSP implementations, the number of 16-bit words has been
rounded-up or rounded-down when there are an odd number of bytes
in the file.

 Some LSP implementations interpreted the data file length as a count
of 8-bit bytes

M-3.4.3 LSP Implementations

For LSPs prepared subsequent to release of this bulletin, observe the
specification found in the preferred implementation in Section 3.2.3.1, with the
following accommodations:

 Data files where the final word is comprised of a single 8-bit byte, shall
include the half word in its length count.

 Support tools shall not restrict parts of a last half word, where the
count is off by one.

 Data files length count representing the number of 8-bit bytes shall be
invalid.

Note: If the Data File Length field reflects a count of one less
word, a warning of “Odd-byte Data File Length field
round-down error” may be offered. If the remaining LSP
header file content reconciles to data file CRC checks,
the LSP should be approved. Intent of the warning is to
simply expose odd-byte data files for processes sensitive
to this condition.

M-3.4.3.1 Implementation A (Preferred)

The preferred interpretation as specified in ARINC 665-3 is:

The data file length is the number of 16-bit words in the data file and the data
file should contain an even number of bytes.

In order to fully comply with the preferred implementation, the length of the
actual data file must be an even number of bytes and thus it can be exactly
described as a number of words.

COMMENTARY

The confusing wording found in ARINC 665-2 is replaced by
clarifying Section 2.2.3.1.37 of ARINC 665-3.

M-3.4.3.2 Implementation B (Acceptable)

An odd byte-length file is rounded up to a 16-bit word count. This follows the
ARINC 665-3 wording.

COMMENTARY

Other indicators of file length (file length as reported by a file
system or transport mechanism, e.g., TFTP) should be used as
the definitive file length and the contents of the header file as a
guide.

M-3.4.3.3 Implementation C (Strongly Discouraged)

An odd byte-length file is rounded down to a 16-bit word count.

ARINC REPORT 665 – Page 99

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

COMMENTARY

Other indicators of file length (file length as reported by a file
system or transport mechanism, e.g., TFTP) should be used as
the definitive file length and the contents of the header file as a
guide.

M-3.4.3.4 Implementation D (Strongly Discouraged)

Any other number, e.g., insertion of a byte-length instead of a 16-bit word
count, is inserted in this field. This is considered to invalidate a part as it does
not conform to the standard and should be corrected.

M-3.4.4 Guidance on Tool Implementations

The following table provides desired operational characteristics by LSP
implementation and tool classification.

 Imp. A LSP Imp. B LSP Imp. C LSP Imp. D LSP
Data Loader
(Note 1)

Don’t care

Don’t care Don’t care Don’t care

TH Engine DFL may be used Note 2 Note 2 Note 3

Creator Creates Imp. A
LSPs

Creates Imp. B
LSPs

Creates Imp. C
LSPs

Creates Imp. D
LSPs

Inspector Note 4 Note 4 Note 4 Note 4

Note 1: The loader should not care. It has access to the original
file and while it may note the discrepancy between the
header’s indicated file length and the actual file length
this does not prevent operation of the loader.

Note 2: The ARINC 615A data loading engine can use this
information as an approximate file size. It can
successfully load these type files because it uses an
independent file length as obtained from TFTP, i.e., the
actual length that was transmitted. This length is always
accurate. It successfully loads both byte and word count
DFL fields regardless of whether the DFL was rounded up
or rounded down, in the case of an odd length file. There
may be other ways of obtaining an accurate file size.

However, non-ARINC 615A data loading engines may not
load these LSPs successfully without an independent file
size determination mechanism.

Note 3: The data loading engine either knows that the field is a
byte-length or it has an independent means of
determining the file size.

Note 4: Inspectors are typically paired to the specific LSPs. They
will give warnings or errors when the expected values are
incorrect.

ARINC REPORT 665 – Page 100

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

M-3.5 Zero Number of Support Files

M-3.5.1 Problem Statement

ARINC 665-2, Section 2.2.3.1.24 specified, for LSPs with no support files, to
assign zero to the Pointer to Number of Support Files field. However,
proposed wording to omit the field not pointed to (i.e., the Number of Support
Files (NSF) field) failed to be included in the published ARINC 665-2.

M-3.5.2 Preferred Interpretation

The preferred interpretation is:

“If the Pointer to the Number of Support Files field is set to 0x0000 then the
Number of Support Files field and subordinate Support File fields should be
omitted from the file.”

ARINC 665-3 corrected this error by including the above requirement for
format 8003.

M-3.5.3 History/Discussion

In ARINC 665-2, Table 2.2.3.1 failed to recognize Number of Support Files may
be a value of zero or more. Strict interpretation of ARINC 665-2 may have
generated LSPs with a zero Pointer to Support Files field and a zero-filled
Number of Support Files field.

Consequently, LSP support tools need to account for format 8003 parts which
may or may not include a Number of Support Files field when the “Pointer to
Support file list” contains a zero value (i.e., 0x0000).

M-3.5.4 LSP Implementations

M-3.5.4.1 Implementation A (Preferred)

The NSF field is not inserted if the Pointer to Support Files field is set to zero.

COMMENTARY

An LSP parser should be constructed such that it is indifferent
to the presence or omission of the NSF field.

M-3.5.4.2 Implementation B (Acceptable)

The NSF field is inserted with a zero value if the Number of Support Files field
is set to zero.

COMMENTARY

An LSP parser should be constructed such that it is indifferent
to the presence or omission of the NSF field.

M-3.5.5 Guidance on Tool Implementations

The following table provides desired operational characteristics by LSP
Implementation and tool classification.

 Imp. A LSP Imp. B LSP
Data Loader Don’t care Don’t care
TH Engine Note 1 Note 2
Creator Creates Imp. A

LSPs
Creates Imp. B
LSPs

Inspector Note 3 Note 4

ARINC REPORT 665 – Page 101

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

Note 1: TH engines built to accept Implementation A LSPs will
also accept Implementation B LSPs since they do not
follow the pointer to the Number of Support Files field.

Note 2: TH engines built to accept Implementation B LSPs will
fail when they encounter an Implementation A LSP
because they will expect a zero-value for the Number of
Support Files field.

Note 3: An Inspector that is built to verify Implementation B
LSPs may give warnings when is inspects an
Implementation A LSP.

Note 4: An Inspector that is built to verify Implementation A
LSPs may give warnings when is inspects an
Implementation B LSP.

M-3.6 Media CRC

M-3.6.1 Problem Statement

The media CRC was defined in ARINC 665-2, it was intended to be carried in
the Media Volume Label field per Section 3.2.1. In ARINC 665-3, the salient
objective is met by other integrity measures, i.e., the Load CRC and the Data
File CRCs. The use of the Media CRC in the volume label is discouraged as
the volume label is not always retrievable from different operating systems.
Furthermore, the Media CRC is not stored anywhere in any media file.
Therefore, use of the Media CRC is discouraged because it was not always
available for verification of the media.

M-3.6.2 Preferred Interpretation

The media CRC should not be implemented, and if it is inserted in an LSP, it
should be ignored.

M-3.6.3 History/Discussion

See Problem Statement above.

M-3.6.4 MSP Implementations

M-3.6.4.1 Implementation A (Preferred)

The media CRC is not calculated and not inserted into the MSP Media Volume
Label.

M-3.6.4.2 Implementation B (Acceptable)

The media CRC is calculated and is inserted into the MSP Media Volume
Label.

COMMENTARY

This may be a required by specific MSP recipients.

If the CRC is to be calculated, the MSP file set and order must be determined
in accordance with ARINC 665-2, Section 4.3.4.

ARINC REPORT 665 – Page 102

APPENDIX M
CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

M-3.6.5 Guidance on Tool Implementations

An MSP parser (e.g., an MSP validation tool) should be constructed in such a
way that it is not affected by this issue.

M-4 Conclusions

Implementers of new Loadable Software Parts following ARINC Report 665-2,
are expected to observe the Preferred Implementations stated in Appendix M.

Implementers of inspection tools for LSPs should make tools that identify and
tolerate all Preferred or Acceptable Implementations and identify and report
appropriate warnings and errors for the Discouraged or Strongly Discouraged
implementations.

Implementers of data loaders that are intended for a wide range of LSPs
should accept the Preferred or Acceptable Implementations above. However,
there may be LSPs which have Discouraged or Strongly Discouraged
implementations which may need to be accommodated.

	COVER LETTER/SUMMARY
	SUPPLEMENT TITLE PAGE
	CHANGE/DESCRIPTION
	DRAFT TITLE PAGE
	TABLE OF CONTENTS
	1.0 INTRODUCTION
	2.0 LOADABLE SOFTWARE PARTS
	3.0 LOADABLE MEDIA SET PARTS
	4.0 CYCLIC REDUNDANCY CODES (CRC)
	5.0 INTEGRITY CHECK METHODS
	ATTACHMENT 1 MANUFACTURER’S CODE ASSIGNMENTS
	APPENDIX A LOAD STRUCTURE
	APPENDIX B MEDIA SET STRUCTURE
	APPENDIX C FILE FORMATS
	APPENDIX D EXAMPLES
	APPENDIX E MANUAL METHOD FOR CALCULATING THE “CC” VALUE
	APPENDIX F IMPLEMENTATION FOR MULTI-STANDARD COMPATIBILITY
	APPENDIX G ACRONYMS AND ABBREVIATIONS
	APPENDIX H LOADABLE SOFTWARE TERMINOLOGY
	APPENDIX I REFERENCE GUIDE
	APPENDIX J AIRPLANE LOADABLE SOFTWARE – REQUEST FOR MANUFACTURER’S CODE DESIGNATION
	APPENDIX K CALCULATING LOADABLE SOFTWARE PART CRC
	APPENDIX L CRC STANDARD REFERENCE FILES FOR SOFTWARE DATA LOADING
	APPENDIX M CONSIDERATIONS FOR IMPLEMENTING SUPPLEMENT 2 TO ARINC REPORT 665

